The Case for Energy-Oriented Partial Desktop Migration

Nilton Bila, Eyal de Lara University of Toronto

Matti Hiltunen, Kaustubh Joshi, H. Andres Lagar-Cavilla AT&T Labs Research

> Mohadev Satyanarayanan Cargie-Mellon University

Problem

- Offices & homes crowded with desktop PCs
- PCs idle on average 12 hours a day (Nedevschi09)
- 60% of desktops remain powered overnight (Webber06)
- Why do we care?

Dell Optiplex 745 Desktop Peak power: 280W Idle power: 102.1W Sleep power: 1.2W

Why Idle Desktops Stay On?

- Always-on semantics
- Background Applications: IM, E-mail, VoIP
- Remote Access: files, remote admin

Full VM Migration

- Encapsulate user session in VM
- When idle, migrate VM to consolidation server and power down PC.
- When busy, migrate back to user's PC

Full VM Migration

- Encapsulate user session in VM
- When idle, migrate VM to consolidation server and power down PC.
- When busy, migrate back to user's PC

Downside: VMs are large

Partial VM Migration

 Insight: Idle VM access only a small fraction of their memory and disk state
Migrate just the working set

Advantages

- Small migration footprint
- Client
 - Fast migration
 - Low energy cost
- Network
 - Gentle on network resources
- Server
 - High consolidation ratios

Advantages

Small migration footprint

- Client
 - Fast migration
 - Low energy cost
- Network
 - Gentle on network resources
- Server
 - High consolidation ratios

over 3G or WiFi mobile devices

Advantages

Small migration footprint

Client

Fast migration

■ Low energy cost

over 3G or WiFi mobile devices

Network

Gentle on network resources

wide area (IaaS)

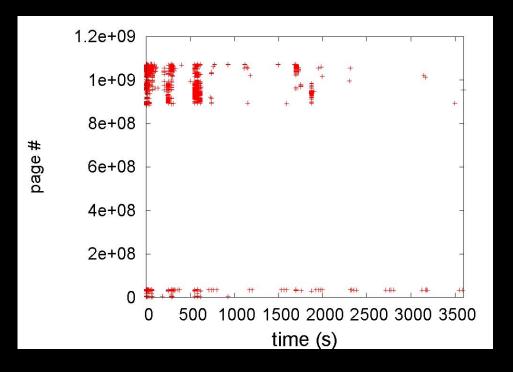
Server

High consolidation ratios

Research Questions

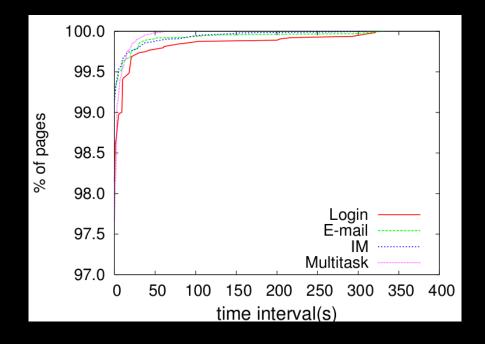
- Length of sleep times?
- Size of the memory footprint?
- Prototyped simple on-demand migration approach with SnowFlock
 - Monitor memory and disk page migration to clone VM

Setup

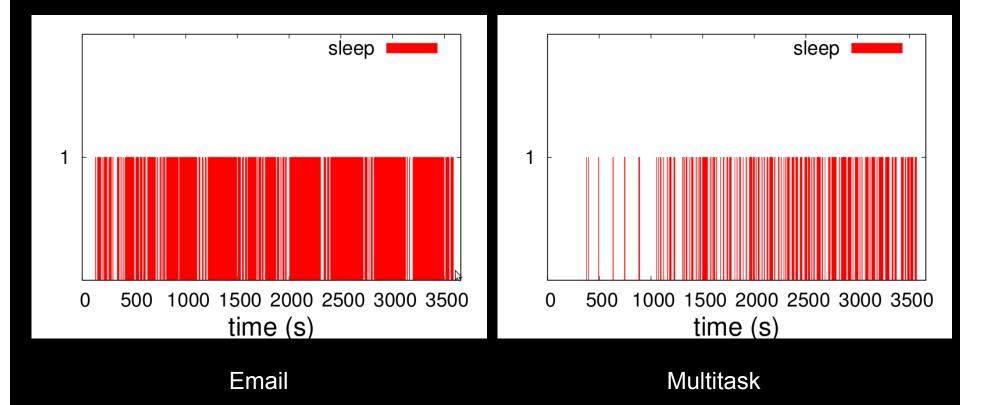

Dell Optiplex 745 Desktop

- 4GB RAM, 2.66GHz Intel C2D
- Peak power: 280W
- Idle power: 102.1W
- Sleep power: 1.2W
- VM Image:
 - Debian Linux 5
 - 1GB RAM
 - 12 GB disk

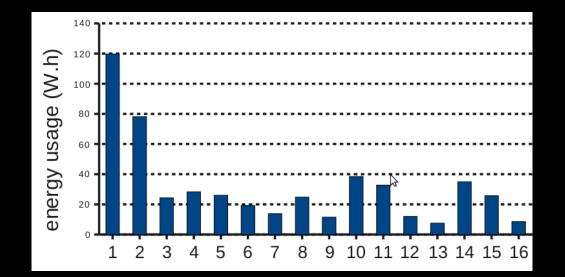
Workloads


Workload	Description
Login	The login screen of a Linux desktop system (GDM).
E-mail	Mozilla thunderbird connected to an IMAP e-mail server. The client polls the server every 10 minutes.
IM	The Pidgin multi-protocol IM client connected to an IRC room with more than 100 users.
Multitask	A Gnome Desktop session with the E-mail client, IM client, Spreadsheet (OpenOffice Calc), PDF Reader (Evince) and file browser (Nautilus)

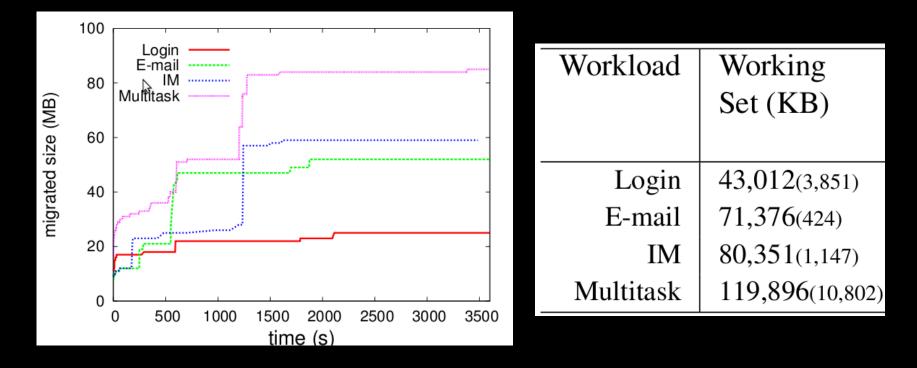
Memory Request Pattern


- Spatial locality
 - Potential benefits for pre-fetching

Page Request Interval


■ 98% of request arrive in close succession

Sleep Potential


- Total sleep of 17 to 46 minutes out of 1hour
- Energy savings of 50% to 0.
- Sleep opportunities increase over time

Energy Savings: Overnight

- Inefficient in 1st hour
- 69% energy savings overall

Memory Footprint

A cloud node with 4GB of RAM can run ~30
VMs

Open Challenges

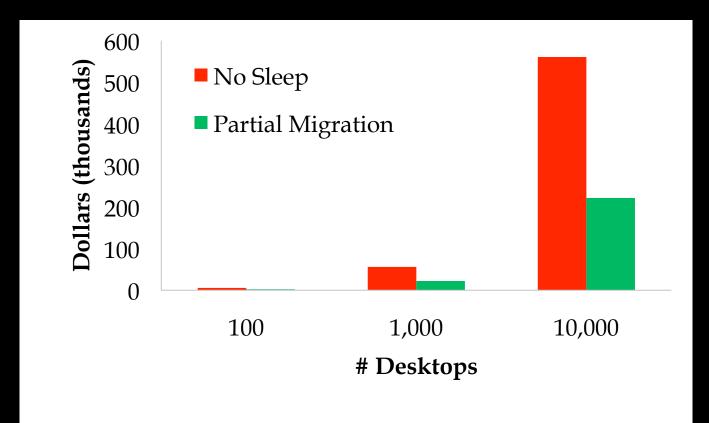
- Frequent power cycling reduces hw life expectancy and limits power savings
 - Reduce number of sleep cycles and increase sleep duration
 - Predict page access patterns and prefetch
 - Leverage content addressable memory
- Fast reintegration
- Policies
 - When to migrate/re-integrate?
 - When does the desktop go to sleep?
 - On re-integration, should state be maintained in the cloud? For how long?

Related Work

- Remote wake up: Wake-on-LAN, Wake-on-Wireless
 - No support for always-on applications
 - Short sleep times
- Protocol proxy: Nedevschi'09, Reich'10
 - Limited flexibility
- Application proxy: Somniloquy, Turducken, SleepServer
 - Applications must be modified
 - Management of applications may be complex
- Full VM Migration: LiteGreen
 - Low consolidation ratios
 - Bandwidth intensive

Conclusion

- Proposed partial VM migration
- Even naïve partial VM migration can reduce energy use of idle desktop
 - 32 50% over an hour-long idle interval
 - 69% overnight
- Idle desktop sessions have a memory footprint an order of magnitude smaller than their RAM allocation.
- Partial VM migration can save medium to large size organizations tens to hundreds of thousands of dollars


Thanks!

http://sysweb.cs.toronto.edu/snowflock

delara@cs.toronto.edu

Questions?

Annual Overnight Energy Costs

■ 44% to 60% reduction in energy costs