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State of Virtualization 
Adoption

* Source: Symantec State of the Data Center Survey 2010 



Challenges to Virtualization 
Adoption

“Manageability is top challenge in adopting 
virtualization”

–  SNW Virtualization Summit 09 “Troubleshooting in the Dark: 27 % identified a lack of visibility 
and tools as the largest troubleshooting challenge in virtual 

environments”

- Survey of Interop 2009 participants “36% said they lacked the appropriate tools to monitor their virtual 
servers and desks, citing this as the greatest problem with 

virtualization”

- Survey of Interop 2010 participants 

“53.9% indicated ‘VM sprawl and flexible deployment 
capabilities leading to unmonitored/invisible machines’ as a 
security concern related to virtualization”

- PRISM Microsystems State of Virtualization Security Survey 



The Butterfly Effect In The Virtualized 
Cloud

•  Small variations in a complex, dynamic system...larger and more complex variations 
over the long term 

•  Problem compounded by:  

–  multi-tier application infrastructure 

–  VM/application inter-dependencies  

–  distributed architectures 

–  Dynamic creation and migration of VMs (VM Sprawl) 

–  Lack of visibility into VM’s workload 

•  VM migration, aggressive DRS and automated DR can trigger unforeseen 
consequences if done without realizing the ‘big picture’ 
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Dependencies Between VMs

•  VM ensembles spread across multiple machines 

•  Dependence relationships: ‘uses’ relations in which two VMs 

communicate because one VM offers a service used by another 



Knowledge of VM Interdependencies 
Helps

•  Better VM placement and migration decisions 

•  Better resource allocation 

•  Better disaster recovery automation 

•  Better troubleshooting 

–  Identify cause of failures 

–  Identifying anomalies in the system 



How Does LWT Achieve This?

1.  Monitor 

–  Sample ‘per VM’ CPU utilization (xentop) 

3.  Model 

–  Estimate an Auto- Regressive model for CPU utilization of each VM 

4.  Cluster 

–  K-means clusters similar AR models of interdependent VMs 
together 



Intuition
•  In a multi-tier application, VMs have request-response interactions 

•  The server’s workload is determined by the clients workload 

–  Heavier the workload of the client, the more requests it makes 

–  Prominent spike in the server’s CPU usage at the same time when there is a spike in the client’s 
CPU usage 



Monitoring 

•  CPU utilization sampled per VM using xentop 

•  Sampling Period 

-  Too small : increases computation  Too large : Might miss relevant spikes 

-  Optimal period chosen as 1 sec 

•  Sample size 

–  Increases with increasing # of VMs 

–  300 seconds: Dependency calculation can occur every ~ 5 minutes 

•  Perturbation 

–  Dynamically change resources (CPU cycles) available to VM 

–  Performance hit is reflected in dependent VMs, adds more time dependent spikes 



Modeling
•  Auto Regressive modeling summarizes time series CPU usage of each 

VM 

–  Captures how one spike is influenced by previous CPU spikes  

•  AR model is a weighted sum of p previous values of time series dataset 

–  Xt is the CPU utilization value at time t 

– φ are model parameters   

–  p  is order of the model 

–  ε is white noise 



Similarity In Dependent AR Models 

Coefficients of the AR models of 2 interdependent VMs 



Selecting Order Of AR 
Model

•  p will increase as system 
becomes more complex 

–  Very large p results in over-fitting 

–  40-50 yields best accuracy for current 
setup 



Clustering
•  VMs clustered based on Euclidean distance between their AR 

models 

–  Similar spikes at time t imply similar coefficient of Xt in AR model 

–  These AR models will be closer and form cluster 

•  K-means divides data into K clusters 

–  Iteratively selects K centroids for data 

–  K is provided manually 



Visualization of AR models in Space



Experimental Setup
•  31 VMs spread over 5 physical servers 

–  Xen 3.1.2 virtual machine monitor 

–  512 MB RAM/ VM 

•  Applications/ Workloads 

–  RUBiS : eBay like benchmark 

•  Selling, browsing, bidding implemented as 3 tier application 

•  An instance uses 4VMs – Apache, Tomcat, MySQL and RUBiS client 

–  Hadoop MapReduce Framework

•  An instance uses 3 VMs – 1 master and 3 slave nodes 

–  Iperf : Network testing tool 

•  An instance uses 2 VMs – sender and receiver   



Results
•  Dependencies identified with overall accuracy of 97.15% 

–  91.67% true positives 

–  99.08% true negatives 

The ‘All’ workload consists of 3 Hadoop, 4 RUBiS and 2 Iperf instances. Total of 31 VMs

Workloads True 
Positives

True 
Negatives

False 
Positives

False 
Negatives

RUBiS 
No Perturb 12 54 0 0 

Perturb 12 54 0 0 

Hadoop 
No Perturb 6 21 6 3 

Perturb 9 27 0 0 

All 
No Perturb 22 315 12 2 

Perturb 22 324 3 2 



Why it works ?

•  RUBiS 

–  Identified dependencies with 100% accuracy 

–  Lot of request-response interaction between the VMs 

–  Follows typical ‘n-tier’ application model used in DCs today 

•  Hadoop 

–  Results more non-intuitive 

–  1 master, all slaves 

–  Mappers and reducers communicate intermediate results via files 

–  Communicate to find location of input/output 



Hadoop CPU usage of Dependent 
VMs



Perturbation

•  Changed CPU cycles (‘credits’) available 
to some VMs while sampling 

–  Affected performance of dependent VMs 

–  Added spikes to CPU utilization of 
dependent VMs 

•  RUBiS identified 100%                                                                                  
without perturbation 

•  Significant accuracy                                                                                      
increase for Hadoop 



Scalability & Time Complexity

•  Time complexity depends on 

–  # of VMs (N) 

–  Order of AR model (p) 

–  Sample size 

•  Finding AR models is linear in N 

–  Calculated at each host and sent to central machine for clustering 

•  K-means complexity is Ω (N) 

–  Clustered a fictional dataset of 1200 VMs and p = 100 in 1.5 mins 

–  LWT Can easily scale for a cloud DC 



Conclusions

•  LWT identifies inter-VM dependencies by considering only 
CPU usage 

•  LWT is non-intrusive, real-time, scalable and application 
agnostic 

•  Monitor    Model   Cluster 

•  97.15% average overall accuracy 



Future Work

•  Deploy on large scale DC 

•  Add more metrics to identify dependencies accurately   

•  Applications where many VMs depend on 1 VM for service 

•  Automate calculation of sample size, AR model order, K 

•  Handle conditions where the initial assumption breaks 



24 

Questions?



How K-means Works?

K = 2. K centroids selected in each iteration  

Source: Pattern Recognition and Machine Learning by Christopher M. Bishop 



Recent Virtualized DC issues

•  About 165,000 Web sites knocked offline by NaviSite outage 

– Virtual migration of servers without considering dependencies  

–  Interdependent server brought up in wrong order 

•  Amazon EC2 hit by botnet   

–  Instance compromised by Zeus botnet controller 



Selection of Sampling Period

Correlation matrix for sampling period = 3 sec, VMs above cutoff = 0.9 are dependent 

Optimal period of 1 sec determined using such matrices 



Google’s App Engine Datastore Failure
•  Repository for determining entity location became overloaded causing 

read/write requests to time out 

•  App Engine waits 30 seconds to complete a Datastore request causing 
waiting requests to pile up 

•  Requests start to fail, regardless of whether or not they used the 
Datastore 

•  Primary and secondary Datastore out of sync 

•  Unapplied writes also affected the billing state of a approximately 0.3% of 
App Engine applications 



Properties of a Dependence Discovery 
System

•  Near real-time 

–  DC applications and infrastructure are very dynamic 

•  Non intrusive 

–  Minimal modifications to applications, OS & hypervisor 

•  Lightweight 

–  Should not rob CPU/memory from VMs 

•  Application & Guest OS independent 

–  Requires no knowledge of what the VM is running 

•  Scalable 

•  Automated 

–  Minimal or no pre-config by admin 


