
Look Who’s Talking

Discovering Dependencies between Virtual Machines
Using CPU Utilization

Renuka Apte, Liting Hu, Karsten Schwan, Arpan Ghosh

Georgia Institute of Technology

Talk by Renuka Apte *

*Currently at NVIDIA corporation

State of Virtualization
Adoption

* Source: Symantec State of the Data Center Survey 2010

Challenges to Virtualization
Adoption

“Manageability is top challenge in adopting
virtualization”

–  SNW Virtualization Summit 09 “Troubleshooting in the Dark: 27 % identified a lack of visibility
and tools as the largest troubleshooting challenge in virtual

environments”

- Survey of Interop 2009 participants “36% said they lacked the appropriate tools to monitor their virtual
servers and desks, citing this as the greatest problem with

virtualization”

- Survey of Interop 2010 participants

“53.9% indicated ‘VM sprawl and flexible deployment
capabilities leading to unmonitored/invisible machines’ as a
security concern related to virtualization”

- PRISM Microsystems State of Virtualization Security Survey

The Butterfly Effect In The Virtualized
Cloud

•  Small variations in a complex, dynamic system...larger and more complex variations
over the long term

•  Problem compounded by:

–  multi-tier application infrastructure

–  VM/application inter-dependencies

–  distributed architectures

–  Dynamic creation and migration of VMs (VM Sprawl)

–  Lack of visibility into VM’s workload

•  VM migration, aggressive DRS and automated DR can trigger unforeseen
consequences if done without realizing the ‘big picture’

Typical Virtual
Cloud

....

Rack 1

Physical Server 1

Virtualization Layer

Map
Reduce
Master

Web
Server 1

Web
Server 2

Physical Server 2

Virtualization Layer

Map
Reduce
Slave

Map
Reduce
Slave

Rack ‘n’

Physical Server 4

Virtualization Layer

Application
logic

Server 1
Database
Server 1

Database
Server 2

Physical Server 3

Virtualization Layer

Map
Reduce
Slave

Application
logic

Server 2

Dependencies Between VMs

•  VM ensembles spread across multiple machines

•  Dependence relationships: ‘uses’ relations in which two VMs

communicate because one VM offers a service used by another

Knowledge of VM Interdependencies
Helps

•  Better VM placement and migration decisions

•  Better resource allocation

•  Better disaster recovery automation

•  Better troubleshooting

–  Identify cause of failures

–  Identifying anomalies in the system

How Does LWT Achieve This?

1.  Monitor

–  Sample ‘per VM’ CPU utilization (xentop)

3.  Model

–  Estimate an Auto- Regressive model for CPU utilization of each VM

4.  Cluster

–  K-means clusters similar AR models of interdependent VMs
together

Intuition
•  In a multi-tier application, VMs have request-response interactions

•  The server’s workload is determined by the clients workload

–  Heavier the workload of the client, the more requests it makes

–  Prominent spike in the server’s CPU usage at the same time when there is a spike in the client’s
CPU usage

Monitoring

•  CPU utilization sampled per VM using xentop

•  Sampling Period

-  Too small : increases computation Too large : Might miss relevant spikes

-  Optimal period chosen as 1 sec

•  Sample size

–  Increases with increasing # of VMs

–  300 seconds: Dependency calculation can occur every ~ 5 minutes

•  Perturbation

–  Dynamically change resources (CPU cycles) available to VM

–  Performance hit is reflected in dependent VMs, adds more time dependent spikes

Modeling
•  Auto Regressive modeling summarizes time series CPU usage of each

VM

–  Captures how one spike is influenced by previous CPU spikes

•  AR model is a weighted sum of p previous values of time series dataset

–  Xt is the CPU utilization value at time t

– φ are model parameters

–  p is order of the model

–  ε is white noise

Similarity In Dependent AR Models

Coefficients of the AR models of 2 interdependent VMs

Selecting Order Of AR
Model

•  p will increase as system
becomes more complex

–  Very large p results in over-fitting

–  40-50 yields best accuracy for current
setup

Clustering
•  VMs clustered based on Euclidean distance between their AR

models

–  Similar spikes at time t imply similar coefficient of Xt in AR model

–  These AR models will be closer and form cluster

•  K-means divides data into K clusters

–  Iteratively selects K centroids for data

–  K is provided manually

Visualization of AR models in Space

Experimental Setup
•  31 VMs spread over 5 physical servers

–  Xen 3.1.2 virtual machine monitor

–  512 MB RAM/ VM

•  Applications/ Workloads

–  RUBiS : eBay like benchmark

•  Selling, browsing, bidding implemented as 3 tier application

•  An instance uses 4VMs – Apache, Tomcat, MySQL and RUBiS client

–  Hadoop MapReduce Framework

•  An instance uses 3 VMs – 1 master and 3 slave nodes

–  Iperf : Network testing tool

•  An instance uses 2 VMs – sender and receiver

Results
•  Dependencies identified with overall accuracy of 97.15%

–  91.67% true positives

–  99.08% true negatives

The ‘All’ workload consists of 3 Hadoop, 4 RUBiS and 2 Iperf instances. Total of 31 VMs

Workloads True
Positives

True
Negatives

False
Positives

False
Negatives

RUBiS
No Perturb 12 54 0 0

Perturb 12 54 0 0

Hadoop
No Perturb 6 21 6 3

Perturb 9 27 0 0

All
No Perturb 22 315 12 2

Perturb 22 324 3 2

Why it works ?

•  RUBiS

–  Identified dependencies with 100% accuracy

–  Lot of request-response interaction between the VMs

–  Follows typical ‘n-tier’ application model used in DCs today

•  Hadoop

–  Results more non-intuitive

–  1 master, all slaves

–  Mappers and reducers communicate intermediate results via files

–  Communicate to find location of input/output

Hadoop CPU usage of Dependent
VMs

Perturbation

•  Changed CPU cycles (‘credits’) available
to some VMs while sampling

–  Affected performance of dependent VMs

–  Added spikes to CPU utilization of
dependent VMs

•  RUBiS identified 100%
without perturbation

•  Significant accuracy
increase for Hadoop

Scalability & Time Complexity

•  Time complexity depends on

–  # of VMs (N)

–  Order of AR model (p)

–  Sample size

•  Finding AR models is linear in N

–  Calculated at each host and sent to central machine for clustering

•  K-means complexity is Ω (N)

–  Clustered a fictional dataset of 1200 VMs and p = 100 in 1.5 mins

–  LWT Can easily scale for a cloud DC

Conclusions

•  LWT identifies inter-VM dependencies by considering only
CPU usage

•  LWT is non-intrusive, real-time, scalable and application
agnostic

•  Monitor Model Cluster

•  97.15% average overall accuracy

Future Work

•  Deploy on large scale DC

•  Add more metrics to identify dependencies accurately

•  Applications where many VMs depend on 1 VM for service

•  Automate calculation of sample size, AR model order, K

•  Handle conditions where the initial assumption breaks

24

Questions?

How K-means Works?

K = 2. K centroids selected in each iteration

Source: Pattern Recognition and Machine Learning by Christopher M. Bishop

Recent Virtualized DC issues

•  About 165,000 Web sites knocked offline by NaviSite outage

– Virtual migration of servers without considering dependencies

–  Interdependent server brought up in wrong order

•  Amazon EC2 hit by botnet

–  Instance compromised by Zeus botnet controller

Selection of Sampling Period

Correlation matrix for sampling period = 3 sec, VMs above cutoff = 0.9 are dependent

Optimal period of 1 sec determined using such matrices

Google’s App Engine Datastore Failure
•  Repository for determining entity location became overloaded causing

read/write requests to time out

•  App Engine waits 30 seconds to complete a Datastore request causing
waiting requests to pile up

•  Requests start to fail, regardless of whether or not they used the
Datastore

•  Primary and secondary Datastore out of sync

•  Unapplied writes also affected the billing state of a approximately 0.3% of
App Engine applications

Properties of a Dependence Discovery
System

•  Near real-time

–  DC applications and infrastructure are very dynamic

•  Non intrusive

–  Minimal modifications to applications, OS & hypervisor

•  Lightweight

–  Should not rob CPU/memory from VMs

•  Application & Guest OS independent

–  Requires no knowledge of what the VM is running

•  Scalable

•  Automated

–  Minimal or no pre-config by admin

