
A Collaborative Monitoring Mechanism for Making a Multitenant Platform
Accountable

Chen Wang
CSIRO ICT Center

PO Box 76,
NSW 1710, Australia

Email:chen.wang@csiro.au

Ying Zhou
School of Information Technologies

The University of Sydney
NSW 2006, Australia

Email:ying.zhou@sydney.edu.au

Abstract

Multitenancy becomes common as an increasing amount
of applications runs in clouds, however, the certainty of
running applications in a fully controlled administrative
domain is lost in the move. How to ensure that the data
and business logic are handled faithfully becomes an is-
sue. We propose to maintain a state machine outside of a
multitenant platform to make the platform accountable in
this paper. We give a mechanism to support accountabil-
ity for a multitenant database with a centralized external
service. We also describe how to implement a decen-
tralized virtual accountability service via collaborative
monitoring. Finally, we discuss the characteristics of the
mechanism through experiments in Amazon EC2.

1 Introduction

Technologies such as multitenant database systems and
Platform as a Service (PaaS) enable multiple applica-
tions to share a platform. This approach can signifi-
cantly reduce the cost for an organization to maintain
dedicated hardware/software resources to run its appli-
cations. The success of Force.com [18] shows the power
of this technology. The adoption of the technology rep-
resents a trend of moving clients’ data and business logic
to the cloud. To ensure that the data and business logic
are handled correctly, a platform service provider of-
ten offers service level agreement (SLA) to its clients.
However, few means are provided to clients to make a
SLA accountable when problems occur. Clients are of-
ten required to furnish evidence all by themselves to be
eligible to claim credit for a SLA violation [1]. How-
ever, the existing application design practice does not
take into account of evidence collection functionalities
for credit claiming purpose. Run-time logs contain in-
formation mainly for bug diagnostics, not for SLA com-
pliance check. Supporting evidence collection certainly
adds extra burden for the clients of a multitenant plat-

form. In this paper, we propose to use third party ser-
vices to do the task. This type of services is referred
as accountability services in networking services [4] and
service oriented architecture [10, 17]. We give a mecha-
nism for clients to authenticate the correctness of the data
and the execution of their business logic in a multitenant
platform.

A multitenant platform intends to achieve both flex-
ibility for various tenants and efficiency for itself to
manage a variety of data and applications. Metadata-
driven architecture is often used for this purpose. In
a typical multitenant platform, a client’s business logic
is represented using tenant-specific metadata and exe-
cuted through applications generated from the metadata.
Web-database systems [7] fit into such a multitenant plat-
form well as web pages of a tenant application, includ-
ing both the layout and the content, can be dynamically
generated from the tenant-specific data stored in a shared
database system. Metadata-driven architecture greatly
eases the construction and management of client applica-
tions, however, it also restrains the tasks of client appli-
cation developers to supplying metadata only. The trans-
formation process between metadata and application as
well as how the data is accessed are out of the sight from
a client’s perspective. It is not a trivial task for a client
if she attempts to get assurance that the platform handles
her data and business logic correctly.

Accountability is one of the foundations that form
real-world trust relationships. The capability of identi-
fying a party that is responsible when things go wrong
with undeniable evidences can potentially enhance the
trustworthiness of a system. In the business world, one
may be reluctant to transact with a total stranger, but a
well-known middleman or a group of middlemen can
make them contract with each other and resolve possi-
ble disputes during their transactions [13]. In a world
where data are managed by outsourced data management
systems and business logic is implemented through out-
sourced platforms, there is a strong need for a third party

1

role to witness and audit the execution of business logic
and ensure data correctness.

The responsibilities of an accountability service for a
multitenant platform therefore include the following:

1. Collecting and managing evidence based on a given
SLA. The SLA defines data states of interests and
data state transitions triggered by client operations;

2. Runtime compliance check and problem detection,
e.g., the result of a query does not reflect the recent
data change under a given consistency protocol.

Even though an accountability service can play cer-
tain role in dealing with malicious attacks, the focus of
the paper is on the mechanism of collecting evidence
that show things go wrong. The rest of the paper dis-
cusses how the responsibilities mentioned above are ful-
filled and is organized as follows: Section 2 describes
the problem; Section 3 discusses how to use a trusted
party to make a multitenant platform accountable; Sec-
tion 4 discusses how client applications can collabora-
tively monitor the platform; Section 5 gives evaluation
results; Section 6 discusses related work and Section 7
concludes the paper.

2 Problem Description

We consider a tenant delegates its data management
functionality to a multitenant platform provisioned by
another party. The tenant has a set of applications (called
client application in the following) running on its data
stored in the multitenancy environment. These appli-
cations provide a set of endpoints for the end-users of
the tenant to use its service. We denote the set of end-
points that query or update the data stored in the plat-
form as {ep0, ep1, ..., epn−1}. We assume that the data
can only be accessed through the set of endpoints accord-
ing to a SLA reached between the tenant and the plat-
form provider. We also assume that epi(0 ≤ i < n) is
well-defined in terms that the data state transition it may
trigger is specified in the SLA and deterministic.

There are many ways things can go wrong in this sce-
nario, e.g, a data element is modified without the per-
mission of the data owner (or without going through the
specified set of endpoints), or the consistency require-
ment promised by the platform is broken. A multitenant
database often balances the scalability and consistency
requirements of client applications and offer different
level of consistency [2], but currently there is no prac-
tical way for a tenant to be sure that it always has the
level of data consistency it pays for. From a client’s point
of view, it is essential that all the functionalities offered
by the platform provider are performed with certainty in

runtime and the data contains no surprise to the owner
applications.

To make the data and business logic handling account-
able in such a multitenancy environment, we introduce
a special type of third party provisioned accountability
services. The external party offers services to wrap an
endpoint epi, 0 ≤ i < n in an adapter wepi. The wrap-
per is capable of capturing the input/output from epi and
extracting certain information required by the account-
ability service from the captured data. We denoted the
accountability service as W . The scenario is shown in
Fig. 1. wepi is in fact an abstraction of existing tools
that are capable of logging user activities, such as Http-
Watch (http://www.httpwatch.com/), or prox-
ies between end-users and outsourced services. The be-
haviors of the wrapper provided by an accountability ser-
vice are verifiable. A tenant trusts the wrapper either
through the certification issued by a trusted party or by
reviewing its source code. The tenant should also be able
to configure the wrapper to anonymize sensitive informa-
tion to be sent to W .

Figure 1: Architecture for Supporting Accountability

The problem is therefore how to make use of the cap-
tured information to create a reliable state machine for
authenticating the data managed in a multitenant plat-
form.

2.1 Preliminary
Merkle B-tree (MB-tree) [9] is an effective method for
a data owner to authenticate the data stored in an out-
sourced database. It is a combination of Merkle (hash)
tree [12] and B+-tree. Figure 2 illustrates the structure
of a MB-tree.

Each MB-tree node is an ordinary B+-tree node with
a hash value associated with each entry. The hash value
of data entry in a leaf node is the hash of the data entry
itself. The hash value of the data entry in an internal
node is the hash of the concatenation of the hashes of its
children, denoted as h = H(hi|hi+1|...). The hash of
the root is signed by the data owner for authentication
purpose. When answering a range query, e.g, as shown

2

in Fig. 2, r4 < k < r8, the database system traverses
the MB-tree and locates the left-most data entry, which
is r5, and the right-most data entry, which is r7, in the
leaf nodes. The hash values of the following entries in
each internal node on the two traversal paths are inserted
into a verification object (VO): the left siblings of ki,
the right siblings of kj ; the left siblings of k2, the right
siblings of kx. The following items in the leaf nodes are
inserted into the VO as well: the data entries in the query
range (r5, r6 and r7), the hash values of data entries to
the left of r5 and those to the right of r7, and the data
entry to the left of r5, i.e., r4 and the data entry to the
right of r7, i.e., r8 (this is for completeness verification).

Figure 2: Example of Merkle B-tree

A client can then compute the hashes of the sub-tree
corresponding to the query result set. By combining the
items in the VO, the client can iteratively recalculate the
root of the MB-tree. The comparison of the root and the
recalculated value will reveal the correctness and com-
pleteness of the query result.

3 Supporting Accountability with a Dedi-
cated Service

In this section, we discuss how the MB-tree can be used
to support accountability by a dedicated service. When
using a dedicated accountability service, a tenant needs
to have an agreement with the service provider on how a
call to an application endpoint may affect the data state in
the data management service. The data state change can
be insertion, updating or deletion of a few tuples. We
generalize the operations triggering data state change as
update. Similarly, we refer operations that do not trigger
data state change as query operations. A query can be
composed in a form of point query or range query. We
assume an update and a query operation can be uniquely
identified by the operation type and a set of sortable at-
tributes of the affected tuples in the database.

When endpoint epi is called for updating a data tuple,
wepi extracts the summary of the operation and sends it

to accountability service W . When endpoint epj is called
for data query, wepj extracts the summary of the result
and authenticates the result against the record in W . W
maintains a MB-tree to serve these requests. The process
is described using pseudocode in Algorithm 1.

Algorithm 1 Evidence Collection and Processing
The logging process inside wepi:
Input: Endpoint epi associated with the specification of
the data state transition as a result of the call.

1: if epi triggers state change then
2: extract the operation signature op:

op = {(type, k, h(k|v), t)},
in which type is the operation type; k identifies
the affected data; h(k|v) is the hash of the con-
catenated identifier and the new value of the data;
and t is the time when epi is called.

3: invoke epi

4: if successful then
5: mark op as committed and sent it W
6: end if
7: else
8: invoke epi

9: extract query result set rs:
rs = {(type, k, h(k|v), t)},
in which t is the time when the result is received.

10: send rs to W for authentication
11: end if
The request processing in W side:
Input: Request r (either op or rs) from a client.

1: insert r into a pending request queue
2: sort the requests in the queue based on their times-

tamps
3: for all request r in the queue do
4: if r.t ≤ current time − sliding window size

then
5: if r.type == UPDATE then
6: update the MB-tree with op
7: else
8: authenticate rs
9: end if

10: end if
11: end for

We assume a reliable communication channel between
wepi and W , i.e., a message will eventually arrive in W
once sent out. All wepi synchronize their clocks with W
periodically. When W receives an operation signature
from a client, it updates the MB-tree. Upon receiving an
authentication request, W traverses the MB-tree for the
left and right boundary of the result set. The returned
VO is used together with the hashes in the result set to
recompute the root in order to check the correctness and

3

completeness of the result set. An alert will be raised if
the recomputed root does not match and existing root.

Note, we do not assume that requests arrive in W in
the order of their creating time Algorithm 1. Such an
assumption is difficult to satisfy in some cases due to
the links between clients and W are likely to be het-
erogeneous and the processing speed of each wep may
vary. Instead, we introduce a queue for request process-
ing in W . The requests in the queue are sorted by the re-
quest timestamps. The queue keeps requests arriving in
a sliding time window with a pre-defined window size.
Requests with timestamps outside of the window are re-
moved from the queue and written into the persistent B-
tree.The time window size is determined by the maxi-
mum delay of passing a log entry from a client to W .
An authentication request with timestamp earlier than the
starting time of the sliding window can be answered im-
mediately by recomputing the root of the MB-tree. The
processing of an authentication request with timestamp
fall inside the sliding time window will be postponed till
the starting time of the window passes the timestamp.
Failed authentication requests are temporarily stored.

Even though the size of the sliding window is deter-
mined by the maximum delay of transferring a log entry
from a client to W , exceptions can happen where an up-
date event arrives outside of the window. An alert will be
raised in this case. Some manual procedure may be used
to resolve the exceptions. The failed authentication re-
quests arriving after this delayed update will be reviewed
to check if the update is indeed valid. The frequency
of such type of events may trigger the adjustment of the
sliding window size.

It is not difficult to see that the accountability service
supports eventual consistency. When there is no new up-
date arrives, the answer to an authentication request will
reflect the data state caused by the last update.

4 A Collaborative Monitoring Mechanism

The approach described above requires a centralized ac-
countability service to respond to authentication requests
and maintain the authentication data structure. It requires
that the service is highly available, trustworthy and scal-
able when the demand increases. High availability and
scalability may be achieved through adding computing
and storage resources to the centralized service, but the
trustworthiness is better achieved through separating the
responsibility to multiple services. We hereby give a dis-
tributed approach to reduce the cost of maintaining such
a service as well as enhancing the trustworthiness of the
accountability service.

In a distributed setting, the data state of a multitenant
database is maintained by a set of data state services.
Each service maintains a view of the data state. The set

of data state services form a virtual accountability ser-
vice. They can be co-hosted with the client applications
if the host is accessible by other client applications. The
scenario is shown in Fig. 3.

Figure 3: Distributed Architecture for Supporting Ac-
countability

There are two extremes of design choices for support-
ing a client application to log its update operations and
submit authentication requests:

1. An update log is sent to any of the data state ser-
vices the client application knows. The service that
receives the log propagates the log to other data
state services in a synchronous manner, or to en-
hance trustworthiness, the propagation can be done
through the use of a Byzantine fault tolerance pro-
tocol, e.g., [5], which ensure the data state is cor-
rectly maintained even when up to 1/3 data state ser-
vices become faulty. This approach ensures strong
consistency among data state services. As a result,
an authentication request can be answered by any
data state service. However, the drawback of this
approach is that the logging performance can be
dragged down, particularly when the number of data
services increases.

2. An update log is sent to any of the data state services
and the service receiving the log propagates the log
to other nodes asynchronously. The log will be
eventually reflected in all data state services, how-
ever it is not guaranteed that the answer to a sub-
sequent authentication request will reflect the data
state change carried in the log sent from the data
state service where the change is initially recorded.
In another words, the data state services maintains a
weak consistency. This approach gives client appli-
cations better logging performance, but also causes
uncertainty in answering an authentication request,
especially when the inconsistency window is hard
to determine or when faults occur.

4

Our design is between the two extremes. We par-
tition the whole range of the indexed attribute into a
few non-overlapped regions. Each region is mapped to
one or more (greater than one in general) data state ser-
vices. An update to a key falling into certain region will
be logged to one of the services that is responsible for
the region. The corresponding wep directs the log to
the correct service (through a shared encoding and map-
ping method). Once receiving the log, the data state ser-
vice synchronizes the new data state with other services
that are responsible for the same region, meanwhile it
propagates the update to other data services in an asyn-
chronous manner. This approach ensures strong consis-
tency among data state services that are mapped to the
same region and enhances the availability of data state
services. Faults in a single service is unlikely to make
the whole data state uncertain.

Similarly, an authentication request will be directed to
a data state service whose assigned region overlaps most
with the data range associated with the request. If the
data range in the result set of the request totally falls
inside the region of the service, the service can answer
the request with certainty; otherwise, it will have to wait
for an allowable delay window for the update logs from
other involved region to arrive before answering the re-
quest, in a similar way as described in Algorithm 1.

5 Evaluation

We evaluate our mechanism through experiments in
Amazon EC2. The testing environment consists of a data
management service, an accountability service built on
top of the authenticated indexed structure library pro-
vided by [9] and a few clients that use the database
servers. The data management service consists of a Web
service that eventually maps business logic to insert,
point query and range query operations, and a database
server running MySQL version 14.12 that is capable of
supporting multiple such services. The Web services are
implemented using gSOAP [16]. Each party runs on an
EC2 small instance created from the same Ubuntu image
(Linux version 2.6.21.7-2.fc8xen).

The data used by client applications and managed by
the database server is the “Census Income” dataset from
the UCI Machine Learning Repository [3]. The indexed
column is “fnlwgt” in our experiment.

5.1 The Overhead
We measure the overhead introduced by a centralized ac-
countability service by comparing the average response
time for insert operations, point and range queries from
the client side. The calls to the data management service
and accountability service are both synchronous ones for

Figure 4: Breakdown of the Average Response Time of
Insert Operations and Point Queries

measurement purpose. Fig. 4 shows the overhead results
of insert operations and point queries. The data points
used in testing point queries are randomly selected from
the whole dataset.

The average cost of logging operation summary to the
accountability service for an insert operation is about
65% of the elapsed time of the transaction that includes
calling both data management service and accountability
service. For point query, the cost of result authentica-
tion is about 70% of the elapsed time. Authenticating
the query result incurs higher cost is due to that the ad-
ditional step of recalculting of VO based on the client-
supplied result set and the hash values retrieved from the
MB-tree. Inserting into a MB-tree does not require such
a step and the update to the MB-tree is not as expensive
when the dataset is not very big.

Fig. 5 shows the overhead of processing range queries
changing with the result set size. In our experiment,
the range starting points are randomly selected from the
whole dataset while the end points are calculated based
on the corresponding starting points and the given range
sizes.

It is apparent that the overhead increases along with
the result set size from around 55% to above 90%. This
can be attributed to the rising cost of transferring the
hash values of the result set to the accountability ser-
vice as well as the increasing cost of calculating the VO.
One method for reducing the overall overhead is to re-
duce the frequency of sending authentication requests of
range query results to the accountability service, which
requires a mechanism to determine the frequency so that
the size of possible window of attacks can be minized
while the performance is maintained at a satisfactory
level for clients.

5

Figure 5: Breakdown of the Average Response Time of
Range Queries

5.2 Performance Improvement with Multi-
ple Data State Services

From the above, we can see that a single accountability
service faces the scalability problem when the number of
client applications of a multitenant platform increases, as
the processing of a data state change or an authentication
request by an accountability service is slower than the
processing of an insert or query operation by a normal
data management service. Our collaborative monitoring
mechanism addresses the issue effectively. Fig. 6 shows
how the average response time for an authentication re-
quest of a point query changes along with the number of
available data state services.

In this experiment, we setup 3 client applications run-
ning on different EC2 instances to continuously send 100
point queries to the data management service and authen-
ticate each result against a randomly selected data state
service. The data points in the queries are randomly se-
lected from the dataset. As shown in Fig. 6, when the
number of available data state services increases, the av-
erage response time for authentication a result is signifi-
cantly reduced compared with the centralized approach,
e..g., the reduction is 59% when the number of data state
services goes up to 3.

6 Related Work

Our work is related to research on query authentication.
P. T. Devanbu et. al. [6, 11] gives a general Merkle tree
based data structure to verify the query results of on-line
databases. F. Li et.al. [9] utilizes the data structure to
handle the situations where data in an on-line database
is periodically updated. H. Pang et. al. [14] uses dif-
ferent hash method to reduce the size of VO. K. Pavlou

Figure 6: The Effect of Data State Service Number on
the Average Authentication Time of Point Queries

et.al. [15] gives a method for further detecting when and
what kind of tampering occurs. Most work on query au-
thentication adopt an architecture where the data owner
maintains a master database and authenticates the query
results of its clients. In most database as a service sce-
narios, building such a mater database is too expensive
to benefit from the cost-effectiveness of outsourcing data
management functionalities. Particularly, when the au-
thentication is required to be done on multiple sortable
attributes, a separate tree has to be maintained for each
attribute. Our approach separates the MB-tree from the
data manager and allows distributed parties to share the
burden of maintaining the trees.

PeerReview [8] gives a set of protocols for distributed
nodes to detect faults and misbehaviors. These nodes
collaborate without relying on a centralized coordinator.
Our collaborative monitoring mechanism has similarity
to PeerReview in terms of decentralization, however, our
method has a focus on features such as query result com-
pleteness, continuous result authentication and address-
ing the consistency issues among the distributed state
machines.

7 Conclusion

In this paper, we described a mechanism for making a
multitenant platform accountable. We gave a central-
ized and a decentralized model to achieve accountability.
The mechanism was developed based on the principle
that the involvement of a third party often smooths busi-
ness transactions between strangers. It enables the state
machine of the outsourced data to be maintained outside
of the data management service so that the clients know
what the data state should be at a certain time. We argue
it is an increasingly important type of services to be of-

6

fered in a multitenancy environment. We also discussed
technical challenges for maintaining such a state ma-
chine and gave some preliminary experimental results.
Further work will be done on issues such as modeling
the sliding window size and dealing with logging excep-
tions.

References
[1] AMAZON INC. Amazon EC2 service level agreement. http:

//aws.amazon.com/ec2-sla/, 2008.

[2] AMAZON INC. SimpleDB consistency enhancements.
http://developer.amazonwebservices.com/
connect/entry.jspa?externalID=3572, February
2010.

[3] ASUNCION, A., AND NEWMAN, D. UCI machine learning
repository, 2007.

[4] BENDER, A., SPRING, N., LEVIN, D., AND BHATTACHARJEE,
B. Accountability as a service. In SRUTI’07: Proceedings of the
3rd USENIX workshop on Steps to reducing unwanted traffic on
the internet (Berkeley, CA, USA, 2007), USENIX Association,
pp. 1–6.

[5] CASTRO, M., AND LISKOV, B. Practical byzantine fault toler-
ance and proactive recovery. ACM Trans. Comput. Syst. 20, 4
(2002), 398–461.

[6] DEVANBU, P. T., GERTZ, M., MARTEL, C. U., AND STUB-
BLEBINE, S. G. Authentic third-party data publication. In DBSec
(2000), pp. 101–112.

[7] GUIRGUIS, S., SHARAF, M. A., CHRYSANTHIS, P. K.,
LABRINIDIS, A., AND PRUHS, K. Adaptive scheduling of web
transactions. In ICDE (2009), pp. 357–368.

[8] HAEBERLEN, A., KOUZNETSOV, P., AND DRUSCHEL, P. Peer-
review: practical accountability for distributed systems. In SOSP
(2007), pp. 175–188.

[9] LI, F., HADJIELEFTHERIOU, M., KOLLIOS, G., AND REYZIN,
L. Dynamic authenticated index structures for outsourced
databases. In SIGMOD Conference (2006), pp. 121–132.

[10] LIN, K.-J., PANAHI, M., ZHANG, Y., ZHANG, J., AND
CHANG, S.-H. Building accountability middleware to support
dependable SOA. IEEE Internet Computing 13, 2 (2009), 16–25.

[11] MARTEL, C. U., NUCKOLLS, G., DEVANBU, P. T., GERTZ,
M., KWONG, A., AND STUBBLEBINE, S. G. A general model
for authenticated data structures. Algorithmica 39, 1 (2004), 21–
41.

[12] MERKLE, R. C. A certified digital signature. In CRYPTO (1989),
pp. 218–238.

[13] O’HARA, E. A. Trustworthiness and contract. In Moral Mar-
kets: The critical role of values in the economy, P. J. Zak, Ed.
Princeton University Press, 2008, pp. 173 – 203.

[14] PANG, H., AND TAN, K.-L. Authenticating query results in edge
computing. In ICDE (2004), pp. 560–571.

[15] PAVLOU, K. E., AND SNODGRASS, R. T. Forensic analysis of
database tampering. ACM Trans. Database Syst. 33, 4 (2008).

[16] VAN ENGELEN, R., AND GALLIVAN, K. The gSOAP toolkit for
web services and peer-to-peer computing networks. In CCGRID
(2002), pp. 128–135.

[17] WANG, C., CHEN, S., AND ZIC, J. A contract-based account-
ability service model. In ICWS (2009), pp. 639–646.

[18] WEISSMAN, C. D., AND BOBROWSKI, S. The design of the
force.com multitenant internet application development platform.
In SIGMOD ’09: Proceedings of the 35th SIGMOD international
conference on Management of data (New York, NY, USA, 2009),
ACM, pp. 889–896.

7

