
CloudCmp: Shopping for a Cloud Made Easy

Ang Li Xiaowei Yang
Duke University

Srikanth Kandula Ming Zhang
Microsoft Research

Abstract – Cloud computing has gained much popular-

ity recently, and many companies now offer a variety of

public cloud computing services, such as Google Ap-

pEngine, Amazon AWS, and Microsoft Azure. These

services differ in service models and pricing schemes,

making it challenging for customers to choose the best

suited cloud provider for their applications. This pa-

per proposes a framework called CloudCmp to help a

customer select a cloud provider. We outline the de-

sign of CloudCmp and highlight the main technical chal-

lenges. CloudCmp includes a set of benchmarking tools

that compare the common services offered by cloud

providers, and uses the benchmarking results to predict

the performance and costs of a customer’s application

when deployed on a cloud provider. We present prelimi-

nary benchmarking results on three representative cloud

providers. These results show that the performance and

costs of various cloud providers differ significantly, sug-

gesting that CloudCmp, if implemented, will have prac-

tical relevance.

1. INTRODUCTION

Cloud computing has emerged as a revolutionary ap-

proach to provide computing services. It offers sev-

eral key advantages over a traditional in-house comput-

ing model, including on-demand scaling, resource multi-

plexing, pay-as-you-go metered service, and high-speed

network access. A cloud customer only needs to pay

the usage costs of its applications, which are likely to be

much smaller than the upfront investments of building

its own infrastructure.

The advantages of cloud computing have enticed a

number of companies to enter this market [2, 4, 5, 8, 9],

including traditional online service providers such as

Amazon, Google, and Microsoft, web hosting compa-

nies such as Rackspace and GoGrid, and new start-ups

such as Flexiant and Heroku. A practical challenge thus

arises. How can a potential cloud customer, e.g., a small

enterprise wishing to outsource its IT infrastructure, de-

cide whether it should migrate some services to a cloud?

And if so, which cloud provider should it choose?

Answering these questions is not straightforward, due

to the diversity of cloud providers and the applications

they support.

Different cloud providers may offer different service

models, including platform as a service (PaaS) [13], in

which a cloud customer builds its applications using the

computing platform (e.g., a Python sand-box) provided

by a cloud, and infrastructure as a service (IaaS) [6], in

which customers can run their applications within virtual

machines of their chosen operating systems.

Different cloud providers also have different pricing

models. For instance, Amazon AWS charges customers

by the number of virtual instances a customer instan-

tiates and how long it uses them, while Google’s Ap-

pEngine charges by the number of CPU cycles a cus-

tomer’s application consumes.

Worse yet, applications can have drastically different

workloads, e.g., web service versus scientific comput-

ing. It is difficult to predict which cloud offers the best

performance for a particular application without deploy-

ing it on each potential cloud provider. However, de-

ploying an application on a cloud has significant over-

head. For instance, to use a PaaS provider, a customer

needs to port its application to the cloud platform’s APIs.

Even for an IaaS provider, deploying an application may

involve database and configuration file migrations.

In this work, we propose a framework called Cloud-

Cmp that helps a potential cloud customer estimate the

performance and costs of running a legacy application

on a cloud without actually deploying the application.

The framework first characterizes the services offered

by various cloud providers into a set of common ser-

vice interfaces, and benchmarks the performance and

costs of these services. It then expresses an application’s

workload using the interfaces, and estimates the appli-

cation’s performance and costs based on the benchmark-

ing results. This approach to performance prediction re-

sembles the measurement-based prediction approaches

widely adopted in evaluating different high performance

computing systems [15, 18]. To the best of our knowl-

edge, we are the first to generalize the approach to eval-

uate cloud providers.

As an initial step, this paper focuses on characterizing

and benchmarking the common services offered by dif-

ferent cloud providers. We first identify a set of services

shared by six representative cloud providers: Google

AppEngine, Amazon AWS, Microsoft Azure, GoGrid,

and Rackspace CloudServers/CloudSites. The providers

range from PaaS (AppEngine and CloudSites) to IaaS

(CloudServers and GoGrid) and a combination of the

two (AWS and Azure). We then develop a set of bench-

marking tools to measure and compare the performance

and monetary costs of each type of services. It is our

ongoing work to use these benchmarking results to es-

timate the performance and costs of an application on

different cloud providers, and we outline the challenges

and possible solutions.

Our preliminary benchmarking results indicate that

cloud providers differ significantly in both performance

and costs of the services they provide, and one provider

is unlikely to ace all services. For example, provider X

is able to execute the CPU intensive tasks in less than

half of the time used by provider Y, while only charg-

ing <10% more per task. However, provider X’s stor-

age service is slower than that of others when the data

set is large, and has larger latency variation. In another

example, provider Z has good performance in computa-

tion, but its scaling speed is much slower than that of the

other providers. The results suggest that choosing the

best suited cloud platform for a particular application is

a non-trivial problem, and a cloud comparison frame-

work will be valuable to guide cloud selection.

We note that our measurements represent a snapshot

in time. Changes in the load offered by customers as

well as changes to the software, hardware, and network

infrastructure or the pricing model offered by a provider

can qualitatively impact the results. Our goal is to de-

sign a comprehensive benchmark that closely approxi-

mates customer use-cases. By not being specific to to-

day’s cloud offerings, we conjecture that such a com-

parison framework will help clarify customer choice as

cloud services evolve.

2. CLOUD COMPUTING SERVICES

In this section, we summarize the common ser-

vices offered by six representative cloud providers:

Amazon AWS [2], Microsoft Azure [8], Google Ap-

pEngine [5], GoGrid [4], and Rackspace Cloud-

Servers/CloudSites [9]. The providers have different

service models: AppEngine and CloudSites are PaaS

providers, whereas CloudServers and GoGrid are IaaS

ones. AWS and Azure provide both PaaS and IaaS

functionality. The IaaS providers (AWS, Azure, Cloud-

Servers, and GoGrid) support native application code,

with most of them further supporting different guest op-

erating systems such as Linux and Windows. In contrast,

AppEngine and CloudSites only provide sandbox envi-

ronments to run managed code written in languages such

as Java and Python.

We find that the services provided by different cloud

providers do not fully overlap. As a preliminary step,

we focus on the set of common services that support

web applications, which is the only type of applications

supported by all six cloud providers, and is also one of

the most popular types of applications supported by to-

day’s cloud providers. Extending to other types such as

backup and computation services (e.g., HPC, MapRe-

duce, and Dryad) remains future work.

A cloud provider typically offers the following ser-

vices for web applications:

• Elastic compute cluster. The cluster includes an

elastic number of virtual instances that run the ap-

plication’s code and process incoming requests.

• Persistent storage. The storage service stores ap-

plication data in a similar fashion as traditional

databases.

• Intra-cloud network. The network inside a cloud

that connects the virtual instances of an applica-

tion, and connects them to cloud-provided services

such as the persistent storage service.

• Wide-area delivery network. The wide-area de-

livery network of a cloud delivers an application’s

contents to the end hosts from multiple geographi-

cally distributed data centers of the cloud.

Table 1 summarizes the services offered by the six

cloud providers. Next, we describe how the cloud

providers differ in terms of performance and costs for

each type of service.

2.1 Elastic Compute Cluster

A compute cluster provides virtual instances that host

and run a customer’s application code. The virtual in-

stances among various cloud providers differ in at least

three aspects: the underlying hardware, the virtualiza-

tion technologies, and the hosting environment. These

differences determine how efficient an application can

run and how many concurrent requests an instance can

serve. They may also affect the cost to host an applica-

tion, as the customer may need more instances to serve

the same amount of workload if each instance is weaker.

The compute cluster is also “elastic” in the sense that

a customer can dynamically and efficiently scale up and

down the number of instances to match the application’s

workload. An application with low scaling latency can

absorb workload surges without introducing additional

processing latency, and requires fewer always-running

instances. For example, assume an application’s work-

load increases at a maximum rate of 100 requests per

second, and each instance can handle 50 concurrent re-

quests. With an unrealistic (short) one second scaling la-

tency to allocate new instances, the customer only needs

to maintain two always-running instances in addition to

those necessary to support the current load. Since two

new instances can be allocated every second, the scaling

speed of the cluster keeps up with the workload increase

speed and ensures that requests are never bottlenecked

for processing. In contrast, if the scaling latency is 10

seconds, to maintain the same guarantee, the customer

would have to maintain at least 20 additional always-

running instances.

Cloud Elastic Compute Persistent Intra-cloud Wide-area

Provider Cluster Storage Service Network Delivery Network

AWS Xen-based VM SimpleDB

Proprietary

3 data center locations (2 in US, 1 in Europe)

Azure Azure VM Azure Table 6 data center locations (2 in each of US, Europe, and Asia)

AppEngine Sandbox DataStore Unpublished number of Google data centers

CloudServers Xen-based VM N/A 2 data center locations in US

CloudSites Sandbox MySQL/MSSQL 2 data center locations in US

GoGrid Xen-based VM N/A 1 data center location in US

Table 1: The services offered by the cloud providers.

Pricing: All providers except AppEngine and

CloudSites charge customers based on how many in-

stances are allocated and how long each instance is used,

regardless of whether the instances are fully utilized.

AppEngine charges based on the number of CPU cycles

a customer’s code consumes; an idle application incurs

no cost. It also offers 6.5 free CPU hours per applica-

tion per day. CloudSites charges a monthly fee which

includes a fixed amount of CPU cycles the application

can consume. It also charges any over-limit fee based on

how many extra cycles are used beyond the quota.

We do not consider the differences in the customiz-

ability of a virtual instance, because it does not directly

impact the performance or costs of running an applica-

tion. We also do not consider the engineering cost in

porting an application to a cloud, because such cost is

hard to measure by a technical method. Our experience

suggests that the more complex the application and the

ecosystem supporting the application (dependencies on

specific databases such as Oracle or specific libraries)

the greater the cost. We have manually ported our bench-

marking tasks to run on both PaaS and IaaS providers.

We had to make minimal modifications to code in this

process, whereas the main monetary costs for this re-

search came from running the benchmarking tasks over

extended periods.

2.2 Persistent Storage Service

All Cloud providers except CloudServers and GoGrid

offer persistent storage services that store the dynamic

application data in lieu of the traditional database back-

ends in legacy web applications. Most of the services

provide SQL-like interfaces but with limited support for

complex operations such as select. Compared to tradi-

tional databases, the storage services offered by cloud

providers are highly scalable and robust against failures

via replication [1].

The storage services have similar interfaces across

providers, but are implemented with different propri-

etary technologies. Consequently, they vary in perfor-

mance, as suggested by our benchmarking results in § 4.

Pricing: Amazon’s SimpleDB and CloudSites charge a

customer based on the CPU cycles consumed to execute

each storage operation. Therefore, a complex operation

can incur a higher cost than a simple one. AppEngine’s

DataStore also charges based on each operation’s CPU

consumption, but offers 60 free CPU hours per applica-

tion per day. Azure Table Storage currently charges a

customer only based on the number of operations, re-

gardless of each operation’s complexity.

2.3 Intra-cloud Network

The network infrastructure inside a cloud provider’s

data centers connects the virtual instances of an appli-

cation among themselves and with the shared cloud-

provided services. All providers promise high band-

width network paths (typically from hundreds of Mbps

to Gbps), approximating a private data center network.

The actual network infrastructures of all the cloud

providers we studied are proprietary.

Pricing: Currently intra-cloud network is offered at no

cost by all the examined providers.

2.4 Wide-area Delivery Network

The wide-area delivery network serves an applica-

tion’s content from geographically dispersed locations.

Each end user’s request can be directed to the instances

close to the user to minimize the wide-area network la-

tency. Here we focus on the delivery network for dy-

namic content, because static objects can be served by a

third-party CDN, decoupled from a cloud platform.

Almost all cloud providers provide a handful of ge-

ographically distributed data centers to host an applica-

tion. Different clouds have data centers at different loca-

tions. For example, Azure currently has data centers in

US, Europe, and Asia, while CloudServers only has data

centers in US. Such differences can affect the application

response time observed by an end user, which in turn

has significant impact on the application’s revenue [16].

This is particularly important as today’s web applica-

tions face a much broader and geographically more di-

verse user base than before.

Pricing: Charges for using the wide-area delivery net-

work are based on the amount of data delivered through

the cloud boundaries to the end users. Currently all the

providers we studied have similar prices for this service.

3. CloudCmp FRAMEWORK

The ultimate goal of the CloudCmp framework is to

estimate the performance and costs of a legacy appli-

cation if it is deployed on a chosen cloud provider. A

potential cloud customer can use the results to compare

different providers and decide whether it should migrate

to the cloud and which cloud provider is best suited for

its applications.

In this section, we outline a preliminary design of the

CloudCmp framework. CloudCmp estimates the per-

formance and costs of an application via three steps:

service benchmarking, application workload collection,

and performance prediction. For each step, we describe

the challenges in realizing it and the possible solutions.

3.1 Service Benchmarking

The goal of service benchmarking is to generate a

cloud service’s performance and costs profile which in-

cludes the time to finish a task and the associated cost.

Challenges: The benchmarking tasks need to be care-

fully chosen to represent generic customer applications

and to avoid measurement bias. For example, to unbi-

asedly benchmark the performance of a compute clus-

ter, we develop a set of standard CPU, memory, and

I/O benchmarking tasks written in Java (some are based

on the tests in SPECjvm2008 [11], an existing stan-

dard benchmarking suite for Java Virtual Machines). We

chose Java to ensure fair comparison and mitigate the

bias introduced by different compilers/interpreters, be-

cause Java is one of the two languages supported by all

cloud providers we study (the other language is Python,

which is not as widely used as Java in web applications).

This design allows us to run the same Java bytecode on

different cloud providers.

We also design benchmarks to measure the per-

formance and costs of other services (i.e., besides

CPU/memory/disk benchmarks). Some preliminary

benchmarking results are shown in § 4. Due to space

limitation, we omit the design details of those tools.

3.2 Application Workload Collection

The second step toward performance/costs prediction

is to obtain workload representative of an application.

To do so, we propose to collect the application’s request

traces and each request’s execution path. A request’s

trace should include the source IP of the request, the time

when the request arrives, the size of the request, etc.

Challenges: It is a non-trivial task to collect a re-

quest’s execution path, as it involves recording the se-

quence of events (e.g., queries/answers sent to/from a

database backend) triggered by the request and inferring

their causal relationships. It may be necessary to infer

the causal relationships between events across layers to

predict the impact on an application’s performance from

changes at one layer.

20
5

53

13

130

7

6

Frontend

Server

Application

Server

Database

Wide-area

Network

257

Figure 1: An example of a request in a standard three-
tier web application. The execution path of the request is

shown and the time (ms) is marked at each component on

the path. The processing time of each component is com-
puted from the service performance profiles, and the over-

all processing time (491ms) is the sum of each component’s

processing time as the execution path is single-threaded.

Fortunately, there has been much study in obtaining

execution paths annotated with causal relationships. One

technique of particular interest is vPath [19]. It ex-

ploits the synchronous intra-thread communication pat-

tern of the thread-based programming model and ex-

tracts the causality of events within the same thread.

vPath can infer the precise request execution path in

multi-threaded programs without modifying the appli-

cation. Another technique //trace [17] uses throttling to

infer event causality: if throttling a parent event leads to

the absence of a child event, it indicates a causal relation-

ship between the two events. In our design, we propose

to use a vPath-like technique to obtain a request’s ex-

ecution path if the application uses the common thread

programming model. For applications that do not con-

form to the model, we will use the throttling technique

as in //trace to infer inter-event dependencies.

3.3 Performance Prediction

In this step, we will try to predict the processing time

and the costs of each application request we collect by

using the pre-generated performance and costs profile of

each cloud service. We first use the profiles to estimate

the time and costs spent at each component on the exe-

cution path, and then combine the individual processing

time and costs together to obtain the overall time and

costs, as shown in Figure 1.

Challenges: To compute the overall processing time

of a request, we need to identify the critical path that

takes the longest time among all branches in the exe-

cution path. This can be obtained by simulating how

a request is processed. The simulated processing time

at each component is estimated from the service perfor-

mance profiles. We can simplify the performance pre-

diction step if a request is processed in a single thread,

i.e., the execution path contains only one branch, be-

cause in this case the overall processing time equals the

sum of each component’s processing time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

scimark.fft

crypto.aes

crypto.rsa

memory.small

memory.large

N
o
rm

a
liz

e
d
 F

in
is

h
in

g
 T

im
e

Cloud X
Cloud Y (Linux)
Cloud Y (Windows)
Cloud Z

(a) Normalized finishing time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

scimark.fft

crypto.aes

crypto.rsa

memory.small

memory.large

N
or

m
al

iz
ed

 C
os

t p
er

 T
as

k

Cloud X
Cloud Y (Linux)
Cloud Y (Windows)
Cloud Z

(b) Normalized cost per task

Figure 2: The benchmarking results of the compute clus-

ters. Figure (a) shows the finishing time of each bench-

marking task. The time is normalized using the longest
finishing time in all tests. Figure (b) shows the normalized

cost per task.

4. BENCHMARKING RESULTS

In this section, we present some preliminary bench-

marking results of the common services offered by three

popular and representative cloud providers. Due to legal

concerns, we anonymize the names of the providers we

study, and refer to them as cloud X , Y , and Z .

The goal of the measurement study is to examine

whether the performance of the cloud services varies

across different providers. It is our future work to further

understand the causes of the performance differences.

The results in this section show a snapshot of the perfor-

mance and costs of each cloud provider at the provider’s

default data center over a two-week period from March

13th to March 25th, 2010. We are currently extending

the measurements to run continuously in all the data cen-

ters offered by these cloud providers. More results will

be available on the project’s website [3].

We stress that the specifics of the results will change

as providers evolve their software, hardware and net-

work. Our goal is to formulate a methodology to com-

pare providers and we use these results to only demon-

strate the value of such a comparison tool.

4.1 Elastic Compute Cluster

We first compare the performance of the elastic com-

pute clusters. We benchmark both the efficiency of a

virtual instance and the scaling latency to allocate a new

instance. To benchmark a virtual instance’s efficiency,

we develop a set of standard benchmarking tasks in Java

and run them on different compute clusters. For each

provider, we choose to benchmark the default instance

type. For cloud X , we run the tasks on its default sand-

box environment. For Y , we run the tasks on both Linux

(Ubuntu 9.04) and Windows (Server 2008) based in-

stances to test whether different OSes would affect the

benchmarking results. For Z , we run the tasks on Win-

dows Server 2008.

Figure 2(a) shows the results. We include the finishing

time of five tasks, with three CPU intensive ones (sci-

mark.fft, crypto.aes, and crypto.rsa) and two memory in-

tensive ones (memory.small and memory.large). We can

see from the figure that for CPU intensive tasks, cloud

X has the best performance, followed by Z , while Y

has the worst performance. For cryptographic compu-

tations, cloud X instances are almost twice as fast as

Y instances. However, for memory intensive tasks, X’s

performance does not show significant advantages. In

fact, for the task with a large memory allocation size

(memory.large) that does not fit into the L2 cache, X

performs the worst. This result suggests thatX instances

might have faster CPUs but slower memory controllers.

The two types of Y instances (Linux and Windows-

based) have similar performance. This suggests that the

benchmarking results are independent of the guest OSes.

Therefore, they are likely to reflect the differences in the

underlying hardware and the virtualization technologies

used by different cloud providers.

Cost We further measure the cost of running each task.

Cloud Y and Z charge a customer based on how long

each virtual instance is used. We thus compute the cost

per task using the task’s finishing time and the per hour

price for them. X charges a customer based on each

task’s CPU consumption. We compute the task’s cost

by multiplying the CPU time with the per CPU second

price for X . The pricing information is obtained from

each provider’s public website.

Figure 2(b) shows the results. Despite having the

worst performance in the previous test, the Linux-based

cloud Y instance turns out to have the lowest cost for

the first two tasks. This is because the Linux-based Y

instance has the lowest per hour price among the three

instance types charged by usage time (Linux/Windows-

based Y and Z instances). The cost per task of the

Linux-based Y instance is even lower than that of X ,

although the task takes less time to finish on X . The re-

sults suggest that the metric of cost per task captures the

cost-effectiveness of each service regardless of its pric-

ing scheme.

Scaling We then benchmark the scaling service by mea-

suring the latency between when a new instance is re-

 0

 100

 200

 300

 400

 500

 600

 700

 800

Cloud Y (Linux) Cloud Z (Windows)

T
im

e
(s

)

Provision Latency
Booting Latency
Total Latency

Figure 3: The scaling latency to allocate a new virtual

instance.

 10

 100

 1000

fetch/1K

insert/1K

fetch/100K

insert/100K

O
pe

ra
tio

n
La

te
nc

y
(m

s)

Cloud X
Cloud Y
Cloud Z

Figure 4: The time it takes to insert/fetch a random entry
to/from a data table in a storage service. The x-axis label

shows the operation type (fetch or insert) and the size of

the table (1K entries or 100K entries). The y-axis is in a
logarithmic scale.

quested and when the instance is ready. We do not con-

sider X because its scaling is done automatically and

cannot be triggered manually. The scaling latency is fur-

ther split into a provisioning latency, during which the

cloud is preparing to launch a new instance, and a boot-

ing latency, during which the instance’s operating sys-

tem is booting.

Figure 3 shows the result. It show that cloud Y has

a much shorter scaling latency than cloud Z . This sug-

gests that the two cloud providers perhaps use different

strategies to manage virtual instances. Furthermore, the

booting time of Linux on Y appears shorter than that of

Windows 2008 on Z , suggesting that choosing the right

combination of the guest OS and the virtualization layer

can be important for scaling performance.

4.2 Persistent Storage Service

We benchmark the performance of the persistent stor-

age services by measuring the latency to insert (or fetch)

a random entry to and from a pre-defined data table in

each service. We run the tests against two tables with 1K

and 100K entries respectively, and Figure 4 shows the

results. All the storage services exhibit significant varia-

tions in latency across requests (indicated by the lengths

of the error bars whose ends show the 5th and 95th per-

centiles respectively). For fetch operations, Y performs

best under both table sizes, while for insert operations,

Z outperforms the other two. X’s storage service per-

Cloud TCP throughput (Mbps)

Provider Median 5th Percentile 95th Percentile

Y 630 465 742

Z 626 15.1 687

Table 2: The TCP throughput between two instances in
each cloud.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.05 0.1 0.15 0.2 0.25 0.3

C
um

ul
at

iv
e

F
ra

ct
io

n

Round Trip Time (s)

Cloud X
Cloud Y
Cloud Z

Figure 5: The distributions of the round trip time from

260 PlanetLab vantage points to their optimal data centers.

forms well when the table size is small, but its latency

increases significantly with a large variance when the

table size increases. The results suggest that different

storage services can offer different performance at dif-

ferent data scales with different operations. Hence, it

is important to design benchmarking tools that cover a

comprehensive set of operations.

4.3 Intra-cloud Network

The intra-cloud network performance is benchmarked

by measuring the available bandwidth between two in-

stances in the cloud. We use the iperf tool [7] to

measure the average TCP throughput between two in-

stances, and repeat the experiment on many different

pairs of instances. We do not consider cloud X be-

cause it does not allow direct communication between

instances. Table 2 shows the results. From the table, we

see both providers have an average throughput higher

than 600Mbps. Cloud Z’s throughput has a large vari-

ation, ranging from 10Mbps to around 700Mbps. We

speculate that it might be caused by network congestion

inside Z’s data center.

4.4 Wide-area Delivery Network

We measure the latency of each cloud’s delivery net-

work by sending ping packets to the application in-

stances deployed at a cloud provider’s data centers. We

send the ping packets from geographically distributed

vantage points. For each vantage point, we choose the

data center with the minimum round trip time as the op-

timal data center selected by a perfect geographic load

balancing algorithm.

Figure 5 shows the distributions of the round trip time

measured from 260 randomly chosen vantage points on

PlanetLab to their optimal data centers. We see from

the figure that X has the lowest wide-area network la-

tency distribution among the three providers. This is

not surprising because X also offers popular online ser-

vices globally, and is known to have a large number of

data centers around the world. Y and Z have similar

latency distributions and Y has slightly more vantage

points with latencies greater than 100ms. Closer exam-

ination of the data reveals that those vantage points are

mostly in Asia and South America, where cloud Y does

not have any data center presence.

5. RELATED WORK

Garfinkel [14] and Walker [20] investigate the perfor-

mance of one specific cloud provider: Amazon’s AWS.

In contrast, this work focuses on comparing the per-

formance of multiple cloud providers. It serves as an

initial step toward a framework that can assist a cus-

tomer to choose a cloud provider based on its cost and

performance requirements. A few industry reports per-

form simple pair-wise evaluations on the computation

performance of different cloud instances [10, 12]. This

work compares a broader range of cloud services includ-

ing computation, scaling, storage, and networking ser-

vices. Ward compares the performance of a public cloud

provider AWS with that of a private cloud software suite:

Ubuntu Enterprise Cloud [21], while this work focuses

on comparing the performance and costs of the public

cloud providers.

6. CONCLUSION AND FUTURE WORK

Cloud computing has gained much momentum in re-

cent years due to its economic advantages. Various cloud

providers offer different types of services with different

pricing schemes, posing a practical challenge on how to

choose the best performing cloud provider for an appli-

cation. This paper proposes a framework to estimate and

compare the performance and costs of deploying an ap-

plication on a cloud. This framework characterizes the

common set of services a cloud provides, including com-

putation, storage, and networking services, benchmarks

each service’s performance and costs, and combines the

benchmarking results with an application’s workload to

estimate the application’s processing time and costs. As

an initial step toward building such a framework, we

benchmark and compare the cloud services provided by

three representative cloud providers to support web ap-

plications. The results show that the performance and

costs of different cloud providers can differ significantly,

suggesting that a systematic cloud comparison frame-

work is highly relevant.

In the future, we plan to extend the benchmarking

tools to cover more cloud providers, more types of cloud

services (e.g., the different tiers of instances offered by

the same cloud provider and the services that support

other types of applications), and more data center loca-

tions. We also plan to provide continuous rather than
snapshot benchmarking results. We can then build a

complete CloudCmp system to predict application per-

formance and costs based on the benchmarking results

we collect.

Acknowledgements

This work was funded in part by an NSF CAREER Award

CNS-0845858 and Award CNS-0925472. We thank the

anonymous reviewers for their helpful feedback and sug-

gestions.

7. REFERENCES
[1] Amazon SimpleDB. http://aws.amazon.com/simpledb/.

[2] Amazon Web Service. http://aws.amazon.com.

[3] CloudCmp Project Website. http://cloudcmp.net.

[4] GoGrid Cloud Hosting. http://gogrid.com.

[5] Google AppEngine. http://code.google.com/appengine.

[6] Infrastructure-as-a-Service (IaaS). Gni, Tech. Rep.

[7] Iperf. http://iperf.sourceforge.net.

[8] Microsoft Windows Azure. http://www.microsoft.com/
windowsazure.

[9] Rackspace Cloud. http://www.rackspacecloud.com.

[10] Rackspace Cloud Servers versus Amazon EC2: Performance

Analysis. http://www.thebitsource.com/featured-

posts/rackspace-cloud-servers-versus-amazon-
ec2-performance-analysis/.

[11] SPEC Java Virtual Machine Benchmark 2008. http://www.

spec.org/jvm2008/.

[12] VPS Performance Comparison. http://journal.uggedal.
com/vps-performance-comparison.

[13] D. Cheng. PaaS-onomics: A CIOs Guide to using

Platform-as-a-Service to Lower Costs of Application Initiatives

While Improving the Business Value of IT. Longjump, Tech.

Rep.

[14] S. Garfinkel. An Evaluation of Amazon s Grid Computing

Services : EC2 , S3 and SQS. Harvard University, Tech. Rep.

TR-08-07.

[15] S. Hammond, G. Mudalige, J. Smith, S. Jarvis, J. Herdman, and

A. Vadgama. WARPP: a toolkit for simulating

high-performance parallel scientific codes. In International

Conference on Simulation Tools and Techniques, page 19, 2009.

[16] R. Kohavi, R. M. Henne, and D. Sommerfield. Practical guide to

controlled experiments on the web. In ACM KDD, volume 2007.

ACM Press, 2007.

[17] M. P. Mesnier, M. Wachs, R. R. Sambasivan, J. Lopez,

J. Hendricks, G. R. Ganger, and D. O’Hallaron. //trace: parallel

trace replay with approximate causal events. In USENIX FAST,

2007.

[18] G. Nudd, D. Kerbyson, E. Papaefstathiou, S. Perry, J. Harper,

and D. Wilcox. Pace–A Toolset for the Performance Prediction

of Parallel and Distributed Systems. International Journal of

High Performance Computing Applications, 14(3):228, August

2000.

[19] B. C. Tak, C. Tang, C. Zhang, S. Govindan, B. Urgaonkar, and

R. N. Chang. vPath: Precise Discovery of Request Processing

Paths from Black-Box Observations of Thread and Network

Activities. In USENIX ATC, 2009.

[20] E. Walker. Benchmarking amazon EC2 for high-performance

scientific computing. USENIX Login, 2008.

[21] J. S. Ward. A Performance Comparison of Clouds: Amazon

EC2 and Ubuntu Enterprise Cloud. SICSA DemoFEST, 2009.

http://aws.amazon.com/simpledb/
http://aws.amazon.com
http://cloudcmp.net
http://gogrid.com
http://code.google.com/appengine
http://iperf.sourceforge.net
http://www.microsoft.com/windowsazure
http://www.microsoft.com/windowsazure
http://www.rackspacecloud.com
http://www.thebitsource.com/featured-posts/rackspace-cloud-servers-versus-amazon-ec2-performance-analysis/
http://www.thebitsource.com/featured-posts/rackspace-cloud-servers-versus-amazon-ec2-performance-analysis/
http://www.thebitsource.com/featured-posts/rackspace-cloud-servers-versus-amazon-ec2-performance-analysis/
http://www.spec.org/jvm2008/
http://www.spec.org/jvm2008/
http://journal.uggedal.com/vps-performance-comparison
http://journal.uggedal.com/vps-performance-comparison

	Introduction
	Cloud Computing Services
	Elastic Compute Cluster
	Persistent Storage Service
	Intra-cloud Network
	Wide-area Delivery Network

	CloudCmp Framework
	Service Benchmarking
	Application Workload Collection
	Performance Prediction

	Benchmarking Results
	Elastic Compute Cluster
	Persistent Storage Service
	Intra-cloud Network
	Wide-area Delivery Network

	Related Work
	Conclusion and Future Work
	References

