
The Case for Energy-Oriented Partial Desktop Migration

Nilton Bila†, Eyal de Lara†, Matti Hiltunen?, Kaustubh Joshi?,
H. Andrés Lagar-Cavilla? and M. Satyanarayanan‡

†University of Toronto, ?AT&T Labs Research, ‡Carnegie Mellon University

Abstract
Office and home environments are increasingly crowded
with personal computers. Even though these computers
see little use in the course of the day, they often remain
powered, even when idle. Leaving idle PCs running is
not only wasteful, but with rising energy costs it is in-
creasingly more expensive. We propose partial migration
of idle desktop sessions into the cloud to achieve energy-
proportional computing. Partial migration only propa-
gates the small footprint of state that will be needed dur-
ing idle period execution, and returns the session to the
PC when it is no longer idle. We show that this approach
can reduce energy usage of an idle desktop by up to 50%
over an hour and by up to 69% overnight. We show that
idle desktop sessions have small working sets, up to an
order of magnitude smaller than their allocated memory,
enabling significant consolidation ratios. We also show
that partial VM migration can save medium to large size
organizations tens to hundreds of thousands of dollars
annually.

1 Introduction

Why are desktop PCs left running idle, if the hardware is
typically capable of transitioning to power saving sleep
states [13, 18]? Two reasons prevent the adoption of
traditional power saving techniques. First, it is not un-
common for desktops to experience periods of brief idle-
ness interspersed with active use. Second, desktops typ-
ically run a number of applications with always-on se-
mantics, many of them requiring persistent network pres-
ence, such as VoIP, IM, e-mail, personal media sharing,
etc [5, 8].

We propose to utilize partial virtual machine migra-
tion to solve this problem. By encapsulating the desk-
top session in a Virtual Machine (VM), the desktop VM
can be temporarily staged in a consolidation backend
or cloud during idle periods, allowing the actual phys-
ical desktop to be put to sleep. We note that cloud

here can refer to a third-party infrastructure as a service
(IaaS) cloud, an intranet backend, or even a federation
of other computers in the same domain. Our approach
will thus retain always-on semantics as the session itself
never sleeps. When the idle period is over (e.g. user
interacts with the system, or we detect significant back-
ground activity, such as system backup or virus check),
the desktop hardware is woken up, and the VM is mi-
grated back onto it. In this manner, our approach also
leverages the user’s desktop hardware and the capabil-
ities of modern VM stacks to support hardware-based
acceleration of graphics and multimedia, a fundamental
challenge for thin client-based solutions to consolidation
and power savings [11].

The key insight of our approach is that an idle desk-
top VM, even in spite of background activity, will need
to access very little of its memory and disk state to func-
tion. If this working set is small enough, then a very large
number of desktop VMs could be consolidated in a small
set of cloud hosts. In addition, because only limited state
needs to be transferred, migration can be performed al-
most instantaneously and at low energy cost, creating op-
portunities to save desktop power even for short periods
of idleness.

To validate the feasibility of partial VM migration,
we conducted an experiment that mimics a naı̈ve im-
plementation that fetches VM state on-demand. Our re-
sults show that, first, even with a naı̈ve implementation
it is possible to reduce desktop energy use by up to 50%
over an hour of idleness, and up to 69% overnight; sec-
ond, that idle desktop sessions have an order of magni-
tude smaller working sets than their allocated RAM; and
third, that because small working set sizes enable high
consolidation ratios, the energy efficiency of running idle
VMs in the cloud can be high. Our conservative esti-
mates show that small organizations can achieve savings
in overnight energy use of at least 44%, and medium to
large organizations can reach savings of more than 55%,
amounting to tens to hundreds of thousands of dollars

annually.
In the following sections we describe partial VM mi-

gration for desktops, and motivate its usefulness as an
energy saving technique. In Section 2, we discuss back-
ground and related work. In Section 3, we provide ex-
perimental results that show potential benefits of the ap-
proach. In Section 4, we identify the challenges that need
to be addressed for the proposed approach to work well
in practice and outline possible solutions, and finally, in
Section 5, we conclude the discussion.

2 Background and Related Work

Modern computers ship with built-in mechanisms to re-
duce power usage of idle systems by entering low power,
sleep states [1] . However, recent studies have found that
users are reluctant to put their idle systems in low power
states. Nedevschi et al. [13] find that desktop systems re-
main powered but idle for an average of 12 hours daily.
Webber et al. [18] find that 60% of corporate desktops
remain powered overnight.

Why are users reluctant to put their systems to sleep?
People refuse to put their system to sleep either for the
off-chance they may require remote access, run back-
ground applications (IM, e-mail), among other uses [5],
or because many idle periods are short, often interspersed
with active periods [8].

While there have been approaches to support remote
access [2, 3, 15, 4], they do not support always-on appli-
cation semantics.

Support for always-on applications have been pro-
posed [6, 5, 13, 9, 16] either through remote proxies
or specialized hardware. These approaches require de-
velopers to re-engineer most applications to support bi-
modal operation, transferring control and state between
the full-fledged application and its proxied instance.

Alternatively, thin clients [14] allow users to run low
power clients, which waste little power when idle. How-
ever, thin clients remain unpopular due to poor interac-
tive performance, lacking crispness in response and local
hardware acceleration. Also, while thin clients reduce
energy usage of the client, they do little to improve en-
ergy efficiency of the servers, as they run sessions with
full state and must support the peak loads of those ses-
sions.

LiteGreen [8] takes a similar approach to ours. It mi-
grates idle desktop VMs to a server and returns the VMs
to the dedicated desktops when no longer idle. In con-
trast to our approach, LiteGreen migrates the VM’s en-
tire memory state to the consolidation server and expects
the disk state to be readily available in network storage.
Instead, partial VM migration migrates only the working
set of the idle VM. Because this working set is small,
as shown in Section 3.4.1, partial VM migration is able

to migrate VMs almost instantaneously and at low en-
ergy cost, even across the wide area. This creates op-
portunities to save desktop power even in short periods
of idleness. Partial VM migration can also achieve high
consolidation ratios, and offers flexibility in the choice
of consolidation platforms and deployment costs, allow-
ing consolidation to occur on the desktops themselves or
even on an IaaS cloud.

3 Feasibility Study

To evaluate the feasibility of partial virtual machine mi-
gration, we conducted an experiment that mimics a naı̈ve
implementation of the approach that fetches state exclu-
sively on-demand. State is migrated on-demand so we
can gain insights on what memory and disk pages need
to be migrated and when. We use this experimental tool
to answer the following fundamental questions:

1. While the VM runs on the cloud, can its desktop host
save energy by sleeping?

2. Does the entire domain save energy by migrating idle
sessions from desktops to the cloud?

These questions identify the minimal requirements for
this approach to work. The former, tells us whether the
sleeping intervals are long enough to offset energy costs
associated with power state transitions. The latter, takes
a holistic view of the architecture, including both, the
desktops and the cloud, and compares their energy effi-
ciency.

We answer these questions with a characterization of
real, idle desktop workloads. To answer Question 1
we study in detail the memory and disk page migra-
tion caused by consolidated VMs. Page migrations tell
us when the desktop must be awake to service page re-
quests. We use these migration intervals to estimate the
energy usage of each workload under the naı̈ve prototype
and contrast that with the cost of idling the desktop.

To answer Question 2 we measure the working set of
each session, defined as the sum (in KB) of pages ac-
cessed by the VM during the session, and estimate the
energy costs of running both desktops and cloud nodes.
The working set offers an estimate of the consolidation
ratio, the number of VMs that can run concurrently on a
single cloud node. Consolidation ratios allow us to com-
pare the energy efficiency of running VMs on the cloud
against the efficiency of running on dedicated desktops.
In addition to deriving the consolidation ratios, the work-
ing set also offers an upper bound on the amount of state
that must be migrated back to the VM’s home system
during reintegration.

2

3.1 Methodology
We prototyped the on-demand migration functional-
ity of partial virtual machine migration by using the
SnowFlock [12] VM fork abstraction. SnowFlock sup-
ports rapid cloning of VMs by allowing cloned VMs to
begin execution with minimal state, and fetching addi-
tional state on-demand, as needed by the VM. However,
SnowFlock does not support reintegration of VM state,
nor does it support idle session migration policies. Al-
though SnowFlock is an incomplete representation of a
naı̈ve partial virtual machine migration prototype, it al-
lows us to measure important attributes of such system.

We prepared a VM image with the applications de-
scribed in the workloads section (3.1.2) below, and ran
the VM. We allowed the session to become stable, and af-
ter approximately five minutes used SnowFlock to clone
the running image into a cloned copy. We ran the cloned
copy for a full hour and recorded all disk and memory
pages it retrieved from its master copy (including the ini-
tial state fetched to instantiate the copy). In a real system,
we would put the desktop to sleep while the session runs
on the cloned VM. Each experiment was repeated three
times, unless otherwise noted.

3.1.1 Platform

SnowFlock is implemented on the Xen [7] VMM version
3.4.0. Both the host and the VM use Debian Linux 5.0
with x64 version of the kernel 2.6.18.8. The VM image
was configured with 1GB of RAM and a 12GB disk.

We collected our traces on a Dell Optiplex 745 with
2.66GHz Intel Core 2 Duo CPU and 4GB of RAM.
A similar Optiplex 745 system was used by Agarwal
et al. [5], who, experimentally profiled the system and
found it to draw 102.1W of power when idle and 1.2W
when suspended in sleep state. Agarwal et al. also re-
port measuring 10 seconds of suspend and 5 seconds of
resume times for the system.

Workload Description
Login The login screen (GDM) of a Linux desk-

top system.
E-mail Mozilla thunderbird connected to an

IMAP e-mail server. The client polls the
server every 10 minutes.

IM The Pidgin multi-protocol IM client con-
nected to an IRC room with more than
100 users.

Multitask A Gnome Desktop session with the
E-mail client, IM client, Spreadsheet
(OpenOffice Calc), PDF Reader (Evince)
and file browser (Nautilus)

Table 1: Idle session workloads.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 500 1000 1500 2000 2500 3000 3500

pa
ge

 #

time (s)

Figure 1: Memory page migration for E-mail workload.

3.1.2 Workloads

Table 1 describes the workloads we studied. The work-
loads consist of typical desktop applications. Login il-
lustrates the nightly behaviour of desktop systems whose
users log out at the end of the work day. E-mail and IM
are minimal workloads, consisting of an X session, xterm
and the the subject application. These micro workloads
are intended to give us a detailed look at the behaviour of
applications that maintain presence with external hosts.
Multitask illustrates the behaviour of the desktop of a
multitasking office worker.

3.2 Memory and Disk Access Patterns
Figure 1 shows the memory page migration pattern for
the E-mail workload. First, the figure shows a degree
of locality in page migrations. Pages tend to migrate in
clusters that include, on the one hand, application code
and data, and kernel data, and on the other kernel code,
represented in the figure by the high and low address
spaces, respectively. The other workloads studied show
similar clustering patterns. We exclude those figures for
brevity. As we argue in Section 4, this locality of page
accesses can be exploited for pre-fetching strategies that
improve energy efficiency.

3.2.1 Desktop sleep opportunities

We now investigate in detail the frequency and duration
of potential sleep intervals, exploitable by a naı̈ve imple-
mentation of partial VM migration, that migrates pages
on-demand. Potential sleep intervals are all periods in
which the desktop is not serving disk or memory pages
to the remote VM. This definition assumes instantaneous
state transitions, an assumption we relax in Section 3.3.

Figure 2 shows sleep opportunities available to the
desktop over an hour-long run of the workloads in the
cloud. The figure shows that, for most workloads, the
desktop can spend a large period of time sleeping. For
the micro-workloads, it can sleep for 42 to 46 minutes,
and for the multitask workload it can sleep for a total of
17 minutes. Each sleep interval lasts, on average, 50 to

3

 1

 0 500 1000 1500 2000 2500 3000 3500

time (s)

sleep

(a) Login

 1

 0 500 1000 1500 2000 2500 3000 3500

time (s)

sleep

(b) E-mail

 1

 0 500 1000 1500 2000 2500 3000 3500

time (s)

sleep

(c) IM

 1

 0 500 1000 1500 2000 2500 3000 3500

time (s)

sleep

(d) Multitask

Figure 2: Potential desktop sleep intervals.

97.0

97.5

98.0

98.5

99.0

99.5

100.0

 0 50 100 150 200 250 300 350 400

%
 o

f p
ag

es

time interval(s)

Login
E-mail

IM
Multitask

Figure 3: Page request interarrivals.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

m
ig

ra
te

d
si

ze
 (

M
B

)

time (s)

Login
E-mail

IM
Multitask

Figure 4: Cumulative size of migrated pages.

73 seconds for the micro-workloads, and 13 seconds for
the multitask workload. While these workloads migrate
between 6,413 to 21,777 pages, Figure 2 shows that the
desktop only wakes up to service pages between 37 and
81 times. This indicates that the desktop is able to batch
multiple page migration requests in each wake up.

Figure 3 shows the page request interarrivals. The
figure confirms that most page requests arrive on the
desktop simultaneously (more than 98% of pages across
workloads). These results show significant potential for
energy savings for the desktop through sleep.

Figure 2 also shows that page requests, while frequent
at the start of the session, their frequency decreases over
time, resulting in longer sleep intervals. Indeed, Figure 4
further shows that the VM’s demand for pages flattens in
the first 25 minutes across all workloads.

3.3 Desktop Energy Savings
We now estimate potential energy savings by the idle
desktop system. Given the distribution of page migra-

10 2
0

30 40 50 6
0

70 80 90 1
00

110

12
0

0

20

40

60

80

100

120

Login E-mail IM No Sleep

wait time (s)

e
ne

rg
y

us
ag

e
(W

.h
)

Figure 5: Effect of tw on energy usage.

tions, we developed naı̈ve wait, a strategy that demon-
strates potential energy savings over the above sleep in-
tervals. This strategy relaxes the assumption of instan-
taneous sleep and wake ups, and takes into account the
energy costs associated with state transitions.

Naı̈ve wait has no advance knowledge of incoming
page requests. Rather, it decides to put the system to
sleep only if it has not received a page request after a
pre-determined waiting period (tw). Whenever a page
migration request arrives, it wakes the system up to ser-
vice the request.

3.3.1 Energy savings during hour-long idle intervals

The potential for energy savings for the naı̈ve wait ap-
proach depends on the choice of parameter tw. With
shorter tw, naı̈ve wait aggressively puts the system to
sleep, which may extend sleep intervals, but can also
mean more frequent state transitions, which are power
intensive. We vary tw from one second to two minutes,
in increments of one second, aggregate the times spent
in each state as well as in transition, and use these, to-
gether with the power profile of the system, to compute
the total energy used. As reported earlier, sleep and idle
power draw of the system are 1.2W and 102.1W, respec-
tively. For the transition state, we make the conservative
assumption that the system draws its peak power. We use
the capacity of the system’s DC power supply of 280W
as a reasonable estimate of peak power.

Figure 5 shows the energy usage for all hour-long
micro-workloads as we vary the parameter tw of the
naı̈ve scheduler. We contrast these usage profiles with
the energy of the base case, in which the desktop always

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

120

140

hour

e
ne

rg
y

us
ag

e
(W

.h
)

Figure 6: Hourly energy usage for multitask workload.

runs the idle workloads locally. The workloads demon-
strate larger energy gains with short wait periods. The
minimal energy points for all three micro-workloads oc-
cur between tw = 10s and tw = 11s. With tw = 10s,
the Login and E-mail workloads reach their lowest en-
ergy usage of 51.5W.h and 62.6W.h, respectively. With
tw = 11s, IM reaches it’s lowest of 69.1W.h. These
results demonstrate potential energy savings of 32% to
50% for the micro-workloads.

3.3.2 Overnight energy savings

While naı̈ve wait can reduce energy usage of the micro-
workloads in the course of an hour-long session, we find
it unable to produce similar savings for more demanding
workloads, such as multitask, in the same short period.
This is a challenge that motivates better designs than the
naı̈ve example. We defer this discussion to Section 4.

Naı̈ve wait is, however, still capable of reducing en-
ergy usage greatly in overnight sessions, even for more
demanding workloads. Figure 6 shows hourly energy us-
age for a 16-hour overnight run of multitask workload
on a system that implements naı̈ve wait. The energy us-
age is computed with tw = 10s. The figure shows that,
while in the first hour the system is unable to save any
energy, in subsequent hours it registers significant en-
ergy savings. In the second hour, energy usage drops
to 78.1W.h., leading to savings of 23% over the base,
no-sleep case. In subsequent hours the system consis-
tently saves at least 62% of energy hourly. Overall, in the
course of 16 hours, naı̈ve wait saves the desktop system
69% of energy, while running the multitask workload.

3.4 Domain-wide Energy Savings

We now evaluate the potential energy savings an orga-
nization can achieve by migrating idle desktop sessions
to the cloud. These estimates include both the energy
costs of running the desktops and the cloud systems. We
first show that idle desktop VMs can be more energy effi-
ciently ran on the cloud than on dedicated desktops, and
then show that partial VM migration can save organiza-
tions conservatively thousands of dollars annually.

3.4.1 Cloud Energy Efficiency

Workload Working
Set (KB)

Memory
Migration
(KB)

Disk Mi-
gration
(KB)

Login 43,012(3,851) 23,511(1,971) 2,217(3,827)

E-mail 71,376(424) 53,580(379) 25(8)

IM 80,351(1,147) 57,031(1,158) 3,176(38)

Multitask-1h 119,896(10,802) 93,195(9,744) 248(327)

Multitask-16h 148,224 110,436 7524
Table 2: State footprints of workloads. Standard devia-
tions are given in parenthesis.

To determine whether, on aggregate, the systems in a
domain, including desktops and cloud nodes, attain net
energy savings, we look at how effectively partial virtual
machine migration consolidates multiple idle VMs.

Table 2 shows the working set of the VM under each
workload, as well as the total page migrations broken
down into memory and disk pages. Memory migration
size differs from working set size because, the VM is
capable of allocating memory locally on the cloud (for
example, when applications request page allocations to
be immediately overwritten). As the table shows, the
working set across workloads is small, under 85 MB for
the micro-workloads and under 145MB for the multitask
workload, even when ran for 16 hours. Recall that the
VM is configured with 1GB of RAM and 12GB of disk.
Looking at the memory requirements alone gives us con-
solidation ratios of at least seven (in the worst, 16 hour
of multitask case). From previous experience, we ex-
pect the consolidation ratios to be even higher on systems
configured with large RAM. We find that the working
set size does not grow proportionally with the allocated
VM memory. In fact, we experimented with the above
workloads under a VM with 512MB of RAM, and found
the working set and migration sizes to be very similar
to those of the 1GB configuration. We therefore expect
partial virtual machine migration to scale well with the
size of available RAM. And, because increased RAM in
the cloud nodes does not increase the energy footprint
proportionately, larger RAM will lead to higher energy
efficiency, as long as other system components are not
the bottleneck.

3.4.2 Annual Energy Savings

We now estimate the annual energy savings an organi-
zation can obtain by employing the naı̈ve implementa-
tion of partial virtual machine migration to migrate desk-
tops during overnight hours. These numbers do not in-
clude additional savings obtained by migrating the desk-
top throughout the day as a function of idleness.

5

The annual overnight energy cost for an organization
without partial virtual machine migration is given by:

$NoSleep = N × I × E × 365

where:
N is the number of desktops in the organization
I is the total energy consumed by an idle desktop

overnight (102.1W × 16h for the Dell Optiplex)
E is the dollar cost of electricity. The U.S. Depart-

ment of Energy estimates the average residential cost of
electricity to be 9.4 cents per kWh [17].

The annual overnight energy cost for an organization
with partial virtual machine migration is given by the fol-
lowing formula:

$PartialMigration = [C×B+(N−C)×S]×E×365

where:
C = dN

V e is the number of systems needed to form the
cloud

B is the total energy consumed by a busy system. We
make the conservative assumption that the cloud nodes
are constantly busy, and draw peak power of 280W.

S is the total energy consumed by a sleeping desktop
overnight (505.7W for the 16 hour multitask workload,
as shown in Section 3.3.2). It includes the cost of wak-
ing up to service page requests.

V is the number of VMs per cloud host. On the Dell
Optiplex with 4GB of RAM, we were able to repeatedly
run 23 VMs, each configured with 145MB of RAM, suf-
ficient to accomodate the working set of the 16 hour mul-
titask workload measured in Section 3.4.1. In addition
to VM memory allocation, Xen allocates approximately
64MB to itself (hypervisor), and 416MB to the adminis-
trative system (dom0).

of Desktops Energy Cost ($)
No Sleep Partial Migration

10 560.49 309.86
50 2,802.44 1,276.61

100 5,604.88 2,416.86
1,000 56,048.82 23,350.43

10,000 560,488.16 232,822.49
Table 3: Annual overnight energy costs for organizations
of various sizes.

Table 3 shows potential energy savings for organi-
zations of various sizes in which partial virtual ma-
chine migration is used to reduce energy usage during
the overnight hours. Small organizations can benefit
from at least 44% in energy savings, while medium to
large organizations benefit from more than 55%. For a
large organization with 10,000 desktops, this translates to
$327,665 saved annually by simply allowing idle desk-
tops to partially migrate during the overnight hours.

So far, the discussion has made an implicit assumption
of homogeneity of hosts on the cloud as the dedicated
desktops. This is done only for simplicity of the discus-
sion. The cloud may very well run powerful servers (or
even low power devices), so long as the per session en-
ergy efficiency of each node individually is better than
that of the dedicated desktop.

4 Challenges of partial virtual machine mi-
gration

While the previous results indicate that partial migration
of desktops can result in high consolidation ratios and
make substantial energy savings possible, several chal-
lenges still remain.

Desktop power cycling is necessary for achieving the
energy savings we desire, and is an integral part of our
approach. This raises dual concerns. First, frequent
power cycles may lead to reduced life expectancy of
computer components, especially mechanical hard disks
that are rated for a limited number of lifetime spin up and
down cycles. Second, power cycles also lead to higher
transient energy use compared to idle power consump-
tion, and can reduce the savings realized by partial desk-
top consolidation. A fundamental challenge for our ap-
proach then is to reduce the number of sleep cycles and
increase sleep duration, and we propose to do so using a
variety of methods.

Memory pre-fetching can potentially result in signif-
icant reductions in demand-paging requests from the
cloud and allow the desktop to sleep longer. The memory
access patterns shown in Figure 1 show excellent local-
ity and indicate that contiguous page pre-fetching may
help over short periods of time. An outstanding chal-
lenge is to develop techniques to allow the host VMM
to access per-application working sets. Over longer peri-
ods of time, current working sets may not be sufficient as
scheduled background activities change the memory ac-
cess patterns, and additional techniques will be needed to
predict prefetch sets. One possibility is to use VM time-
travel [10] techniques to estimate future access patterns.

Since we strive to maintain a seamless user experi-
ence in spite of sleeping through even short periods of
inactivity, fast reintegration of a VM from the cloud
back to its desktop is a crucial requirement. Different
pre-fetching strategies than those used for migration are
likely to be useful during reintegration. For example,
while quickly transferring read-only code pages is essen-
tial during migration, transferring dirty pages especially
from frequently used structures such as the stack is more
important for reintegration. In addition, periodic resyn-
chronization of dirty pages whenever the desktop is wo-
ken up for demand fetching can provide a cheap way of

6

keeping the state transfer requirements during reintegra-
tion limited.

The proposed approach supports migration to local
backends as well as to third party IaaS clouds. In the
latter case, because the desktop VM is migrated to a dif-
ferent IP subnet, it requires the use of traffic redirection
techniques such as MobileIP or VPN tunnels.

Finally, several policy questions will need to be ad-
dressed to ensure that both energy efficiency and user
experience are optimized. These include heuristics to de-
cide when to partially migrate a host to the cloud, when
to migrate on-demand missing pages from the desktop
as opposed to reintegrating the VM back to the desktop,
how long to keep the desktop awake after it has been
woken up to serve pages, and how long to retain a rein-
tegrated VM image in the cloud in case it is migrated
again. While the answers are obvious in some scenar-
ios, e.g., local user activity should trigger reintegration,
other situations require energy and capacity tradeoffs to
be considered.

5 Conclusion

We proposed the use of partial virtual machine migra-
tion to improve energy efficiency of idle desktop com-
puters. Partial VM migration works by encapsulating the
desktop session in a virtual machine and migrating only
a small footprint of state of the idle VM needed to con-
tinue execution remotely, while putting the desktop to
sleep. When the user returns to the desktop, or other-
wise the session ceases to be idle, partial virtual machine
migration reintegrates the changed state of the remotely
running VM with the desktop and resumes local execu-
tion. We have shown that even a naı̈ve implementation
of this approach can reduce energy usage of an hour-
long idle desktop session by up to 50%, and of an idle
overnight session by up to 69%. We have shown that the
working set of an idle desktop session is an order of mag-
nitude smaller than its total allocated memory, enabling
high consolidation ratios and energy savings across the
domain. We have shown that, conservatively, partial VM
migration can reduce annual energy costs in overnight
hours for organizations with 100 or more desktops by at
least 55%, amounting to $3,100 for an organization with
100 desktops to more than $300,000 for organizations
with 10,000 desktops. We expect page pre-fetching for
cloud execution to help reduce the frequency of power
cycles in desktops, and improve energy savings further.
And finally, we have identified remaining challenges that
must be addressed for the proposed system to work well
in practice, and outlined possible solutions.

References
[1] ACPI specification. http://www.acpi.info/

DOWNLOADS/ACPIspec40.pdf.

[2] Wake on LAN technology. http://www.liebsoft.com/
pdfs/Wake_On_LAN.pdf, Jun 2006.

[3] Wake on Wireless LAN (WoWLAN). http://www.intel.
com/support/wireless/wlan/sb/CS-029827.htm,
2008.

[4] Y. Agarwal, R. Chandra, A. Wolman, P. Bahl, K. Chin, and
R. Gupta. Wireless wakeups revisited: Energy management for
VoIP over Wi-Fi smartphones. In MobiSys ’07, Jun 2007.

[5] Y. Agarwal, S. Hodges, J. Scott, R. Chandra, P. Bahl, and
R. Gupta. Somniloquy: Augmenting network interfaces to re-
duce PC energy usage. In NSDI ’09, Apr 2009.

[6] Y. Agarwal, S. Savage, and R. Gupta. SleepServer: Energy sav-
ings for enterprise pcs by allowing them to sleep. Technical
Report CS2009-0953, University of California, San Diego, Nov
2009.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of vir-
tualization. In SOSP ’03, Oct 2003.

[8] T. Das, P. Padala, V. N. Padmanabhan, R. Ramjee, and K. G.
Shin. LiteGreen: Saving energy in networked desktops using
virtualization. In 2010 USENIX ATC, Jun 2010.

[9] C. Gunaratne, K. Christensen, and B. Nordman. Managing en-
ergy consumption costs in desktop PCs and LAN switches with
proxying, split TCP connections, and scaling of link speed. IJNM,
15(5):297–310, Sep 2005.

[10] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren, A. Vahdat, and
G. M. Voelker. To infinity and beyond: Time-warped network
emulation. In NSDI ’06, May 2006.

[11] H. A. Lagar-Cavilla, N. Tolia, E. de Lara, M. Satyanarayanan,
and D. O’Hallaron. Interactive resource-intensive applications.
In Middleware ’07, Nov 2007.

[12] H. A. Lagar-Cavilla, J. A. Whitney, A. M. Scannell, P. Patchin,
S. M. Rumble, E. de Lara, M. Brudno, and M. Satyanarayanan.
SnowFlock: rapid virtual machine cloning for cloud computing.
In EuroSys ’09, Mar 2009.

[13] S. Nedevschi, J. Chandrashekar, J. Liu, B. Nordman, S. Rat-
nasamy, and N. Taf. Skilled in the art of being idle: Reducing
energy waste in networked systems. In NSDI ’09, Apr 2009.

[14] T. Richardson, Q. Stafford-Fraser, K. Wood, and A. Hopper.
Virtual Network Computing. IEEE Internet Computing, 2(1),
Jan/Feb. 1998.

[15] E. Shih, P. Bahl, and M. J. Sinclair. Wake on Wireless: An event
driven energy saving strategy for battery operated devices. In
MobiCom 2002, Sep 2002.

[16] J. Sorber, N. Banerjee, M. D. Corner, and S. Rollins. Turducken:
Hierarchical power management for mobile devices. In MobiSys
’05, Jun 2005.

[17] U.S. Department of Energy. Energy savers: Tips on saving
energy & money at home. http://www1.eere.energy.
gov/consumer/tips/appliances.html, 2009.

[18] C. A. Webber, J. A. Robertson, M. C. McWhinney, R. E. Brown,
M. J. Pinckard, and J. F. Busch. After-hours power status of office
equipment in the USA. Energy, 31(14):2487–2502, Nov 2006.

7

