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Abstract
A common problem experienced in datacenters and utility clouds is the lack of knowledge about the mappings of the
services being offered to or run by external users to the sets of virtual machines (VMs) realizing them. This makes it
difficult to manage VM ensembles to attain provider goals like minimizing the resources consumed by certain services
or reducing the power drawn by datacenter machines. This paper presents the ‘Look Who’s Talking’ (LWT) set of
methods and framework for identifying inter-VM dependencies. LWT does not require services to be modified, or
middleware or operating systems to be instrumented, but instead, operates in management VMs with privileged access
to hypervisor-level information about current machine use. The current implementation of LWT has been integrated
into the Xen hypervisor running across a small-scale prototype datacenter, for which experimental measurements
show that it can effectively identify dependencies between VMs with an average of 97.15% overall accuracy rate, with
zero knowledge of or modifications to applications or workloads and with minimal effect on system performance.

1 Introduction

“Such minor changes, such huge consequences”. This
famous tagline of ‘The Butterfly Effect’ aptly captures
the dilemma most administrators of enterprise datacen-
ters must face, due to the complexities that are inherent
to these systems.

Virtualization in the cloud is becoming increasingly
popular, due to advantages that include server consol-
idation, workload balancing, high availability, multi-
tenancy and fault isolation. Recently, Cisco, EMC and
VMware announced a coalition to offer organizations
fully integrated, infrastructure packages that combine
virtualization, networking, computing, storage, security,
and management technologies with end-to-end vendor
accountability [6]. Such solutions allow customers to
provision new virtual cloud data centers or move existing
ones, running workloads consisting of a large number of
VMs, within minutes.

Typically, the applications running in such cloud data
centers are composed of a number of cooperating com-
ponents, running across multiple VMs. Figure 1 shows
multi-tier applications deployed across three physical
machines. For example, there is a multi-tier applica-

Figure 1: Multi-tier Applications Showing VM Dependencies

tion, with an HTTP server front-end, which uses the ser-
vices of an application server and a database server back-
end. These VMs, typically termed VM ensembles, may
be spread across a multitude of host machines.

There are multiple dependence relationships between



Figure 2: LWT System Diagram

VMs within a VM ensemble, most notably those defined
by ‘uses’ relations in which two VMs communicate be-
cause one VM offers a service used by another. For an
administrator to successfully manage a datacenter – allo-
cate resources optimally, balance & migrate workloads,
meet service level agreements, detect and mitigate criti-
cal faults [9] – it is important to be able to identify the de-
pendencies that exist between the VMs. This is because,
by knowing which VMs are dependent, an administrator
can make more sophisticated decisions including, but not
limited to the following list:

• Whether to migrate a VM to another physical ma-
chine: if two VMs are dependent on one another, it
might be preferable to keep them on the same phys-
ical machine, even if another one, physically further
distant, is free.

• Whether relinquishing resources from some VM
may affect another dependent service: allocation
and management of resources can be made more
intelligent. It might seem like a VM is over-
provisioned, but the services of this VM may be
used by multiple dependent VMs.

• Identifying causes of faults: based on the knowl-
edge of dependencies, the management system can
better determine cause-effect relations, and deter-
mine how a fault may manifest itself.

In this paper, we introduce the ‘Look Who’s Talk-
ing’ (LWT) set of methods and framework for identifying
inter-VM dependencies. LWT accomplishes this without
instrumenting or modifying application or system code.
LWT is independent of the Guest OS, run-time environ-
ments, applications or services being monitored. It re-
quires minimal input from the administrator and intro-
duces minimal performance penalties.

LWT applies to multi-tier applications that have
request-response type of interactions, where a client VM
makes a request to a server, which performs some com-
putation and responds. The heavier the workload of the
client, the more requests we expect it to make. As a re-
sult, we expect to see a prominent spike in the server’s

CPU usage at about the same time we see a spike in the
client’s CPU usage. By modeling the VMs’ CPU us-
age and clustering them based on the similarity between
these models, we are able to predict with high accuracy
the dependencies between them.

LWT consists of three stages – Monitoring, Modelling
and Clustering. The first stage uses a xentop-based mon-
itor to record and extract per VM CPU usage. Next, we
estimate an auto-regressive (AR) model for each of the
VMs. Finally, we use K-means to cluster the AR models.
An autoregressive model is simply a linear regression of
the current value of the series against one or more prior
values of the series. As we expect communicating VMs
to show similar spikes in time, we expect their AR mod-
els to be ‘close’. Thus, K-means is able to cluster VMs,
such that the VMs in one cluster are interdependent. We
are able to further improve the results by explicitly per-
turbing some randomly chosen VMs. Figure 2 shows the
LWT system diagram.

The current implementation of LWT has been inte-
grated into the Xen hypervisor running across a small-
scale system consisting of 5 physical machines and 31
VMs. The VMs run instances of three different ap-
plication suites – RUBiS, Hadoop and Iperf. We are
able to identify dependencies with an overall accuracy of
97.15%, with a 91.67% accuracy for true positives, and
99.08% accuracy for true negatives.

2 Related Work

We divide related work into four categories: manual,
trace-based, middleware-based, and perturbation-based
techniques.

Manual Techniques: Management systems like Mer-
cury MAM [3] and Microsoft MOM [4], provide sup-
port for application designers to specify the dependency
models by maintaining topology maps. However, this ap-
proach requires significant manual effort to keep up with
the dynamic nature of applications in large systems and
is often restricted to a particular set of applications from
the same vendor.
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Trace-based Techniques: Project5 [7] and WAP5 [17]
infer causal paths from black-box network traces. They
record messages at each host with both sent and re-
ceived timestamps. Then Project5 uses an offline nesting
and convolution algorithm to infer causal relationships,
while WAP5 uses a message-linking algorithm to gen-
erate timelines and causal trees. Their approaches dif-
fer from our work in that they target the debugging and
profiling of individual applications and thus, their pri-
mary concern is resolving which incoming packet trig-
gered which outgoing packet. In contrast, we focus on
discovering the service dependencies of multi-tier appli-
cations running on VMs in real time.

Magpie [10] reconstructs causal paths based on OS-
level event tracing. It can automatically extract a sys-
tem’s workload under realistic operating conditions by
using event tracing for Windows, built into the Windows
OS, to collect thread-level CPU and disk usage informa-
tion. Magpie, however, requires an application-specific
event schema, written by an application expert, to stitch
traced information into request patterns.

Orion [14] discovers dependencies for enterprise ap-
plications by using time correlation of messages between
different services. By ‘time correlation’ it means that if
service A depends on service B, the message delay be-
tween A and B should be close to a ‘typical’ value that
exhibits a ‘typical’ spike in its delay distribution. Simi-
larly, Sherlock [9] calculates an Inference Graph. How-
ever, this rule may fail on a virtual machine platform be-
cause the ‘typical’ spike could be easily distorted by var-
ious sources of noise, e.g., the domain running A or B
might be blocked and may spend uncertain time waiting
on the run queue to be scheduled for a CPU.

Gao et al. [15] detect problems in a distributed system
by monitoring resources, tracking pair-wise correlations
between the monitored parameters, creating a probabil-
ity model and raising an alarm when the observed data
does not comply with the model.

Middleware-based Techniques: Pinpoint [12][13]
collects end-to-end traces of client requests traveling
through a distributed system by tagging each J2EE call
with a unique request-ID. The key to their approach
is to use these traces (paths) to enable meaningful
automated statistical analysis, e.g., path anomalies and
latency profiles can be used to detect system failures.
Pinpoint requires all distributed applications to run on
homogeneous platforms with the appropriate logging
capabilities, but real-life large enterprise datacenter
are almost invariably heterogeneous with a plethora of
operating systems from different vendors.

Perturbation-based Techniques: Bagchi et al. [8] un-
cover resource dependencies by taking an active ap-

Figure 3: Similar Spikes in CPU Usage of Dependent VMs

proach, using fault injection. Brown et al. [11] identify
cross-domain dependencies by explicitly perturbing sys-
tem components while monitoring the system’s response,
e.g., by locking a particular database table to deny the
queries from certain component. While we use pertur-
bations to improve our accuracy, we do not rely on it as
the sole means of finding dependencies. Pip [16] can ob-
tain high rate of accuracy for extracting causal paths by
modifying or at least recompiling the applications.

3 Design of LWT

In order to successfully achieve the aforementioned
goals, our algorithm needs to have the following prop-
erties: It should be application and system agnostic,
non-intrusive, scalable, resistant to component failures
or configuration changes and computationally efficient.

3.1 Intuition & Overview
In a request-response type of architecture, when a client’s
workload increases, typically, it makes more requests to
the server it depends on, and the server’s workload, in
turn, increases. Hence, we expect to see a prominent
spike in the CPU utilization of both the client and server
simultaneously, proportional to this increase, as illus-
trated in Figure 3. We cluster the VMs based on the sim-
ilarity of their respective spikes as they appear in time.

We model each VM’s CPU utilization as a time series
signal and use this information to classify VMs. The al-
gorithm consists of three steps – Monitoring, Modelling
and Clustering, detailed below. Further, we use active
perturbation of randomly selected VMs in order to im-
prove our results.

3.2 Monitoring
We assume that a VM runs either an application in its
entirety or a service (component of an application) like
a web server. This is a reasonable assumption, given the
deployment models in most virtualized datacenters to-
day. The monitoring module records the resource uti-
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Figure 4: Inter-VM Correlation - Sampling Period = 3s

lization of VMs per host using xentop. The recorded
information is then parsed to extract CPU usage details
per VM.

3.2.1 Sampling Period

If the sampling period is too small, it increases the
amount of computation performed by the algorithm. In
the limiting case, it also begins to introduce noise in the
readings. Similarly, a very large sampling period will
cause us to miss important spikes.

We used sampling periods between 10 milliseconds to
7 seconds for a small set of VMs and used simple corre-
lation to analyze the results. We then selected a cut-off,
C, for the correlation coefficient. VMs having a cor-
relation coefficient above this were marked dependent.
One such example for a sampling period of 3 seconds
is shown in Figure 4, which uses C = 0.9. It can be
seen from the figure that the Apache Webserver, Tomcat
Server, MySQL Server and RUBiS Client show a corre-
lation above the threshold, and therefore are dependent;
similarly, there exists a dependency between the Iperf
client and server, while Nbench, a CPU benchmark is
not dependent on any other VMs. Through these experi-
ments, we found that a sampling period of 1 second was
an optimal choice.

3.2.2 Sample Size

The sample size required increases gradually as we in-
crease the number of VMs monitored. For our current
implementation, with 31 VMs, we have empirically de-
termined that a sample size of 300 (with a sampling pe-
riod of 1s) is sufficient. Further, since we want to use
this approach in a real-time environment, we could mon-
itor continuously and calculate dependencies every 300
or more seconds. Each subsequent result can improve
the current notion of dependencies present in the system.
This approach can not only accommodate an environ-

ment where VMs can be created or destroyed dynami-
cally, but also substantiate or invalidate the dependencies
found with each iteration. This also makes the approach
less sensitive to the sample size.

3.2.3 Active Perturbation

Perturbation refers to purposely changing some aspects
of a VM, such as its available CPU timeslice in order to
affect its ability to provide service. Specifically, we set
the cap on how much CPU a domain can use, even if the
host system has idle CPU cycles. We do this using the
xm command in Xen to change the amount of “credits” a
VM can be given. By perturbing a VM, we expect to see
changes in the CPU utilization of dependent VMs. For
example, by reducing the cap for a VM, we inhibit its
capacity to service requests. Thus, the drop in its CPU
utilization will be propagated to dependent VMs, which
are waiting to be serviced. By periodically changing this
cap on a randomly selected subset of VMs, we introduce
additional time-dependent spikes in our sample set.

3.3 Auto-Regressive Modelling
An auto-regressive model for a time series dataset X =
{x1, x2, ..., xn} is given by a weighted sum of p previous
values, where p is the order of the model. The model is
given by

Xt = c+
∑

p

ϕiXt−i + εt (1)

Where ϕ1, ϕ2, ..., ϕp are the parameters of the model,
c is a constant and εt is white noise.

By fitting the time series CPU usage of each VM to
such a model, we are able to capture how one spike in
time is influenced by previous spikes. Although we are
not using this model for prediction, it allows us to effec-
tively summarize our observations. AR modelling can be
performed per host, and takes a finite amount of time for
a given order.

3.3.1 Order of AR model

Selecting an order for the model, in this context, is more
a choice of how much we want to summarize. Since we
do not expect this model to be used for prediction , we do
not use prediction errors or similar techniques to select
the order. This problem is similar to that of selecting the
sample size. As the system becomes more complex, we
expect the value of p to steadily increase. However, an
excessively large value of pwill result in overfitting. This
trend can be seen in Figure 5, which shows the accuracy
of predicting dependencies for different values of p.

For the size of our experimental setup, we find that an
order ranging from 40 to 50 works well.
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Figure 5: Accuracy with Varying Order of AR models

3.4 Clustering

The final step is to use clustering to group dependent
VMs together, based on the distance between their AR
models. We use Euclidean distance, so that models
with similar coefficients for a particular sample in his-
tory (which effectively correspond to spikes in time) will
be closer. We use K-means for clustering.

K-means divides the data into a number of clusters=K,
whereK is provided to the algorithm. K-means does this
by selecting K centers or centroids for the data. With
each iteration of the algorithm, the points for the centers
are improved by decreasing the metric corresponding to
intra-cluster distances and increasing that corresponding
to inter-cluster distances. The value of K is provided by
the administrator.

Although this final step needs to be performed cen-
trally, K-means is very efficient. For a dataset with
1000 samples and 500 real-valued attributes (which cor-
responds to 1000 VMs with AR models of order 500),
K-means finishes computation within a few seconds.

4 Experimental Setup

Our testbed consists of 5 dual core, Dell PowerEdge
1950 compute nodes with Intel Xeon 5150 processors,
4GB of memory, and 80GB hard drives, connected by a
gigabit network. We have simulated a cluster with 31 vir-
tual machines, each of which is configured to use 512MB
of RAM. We use Xen 3.1.2 as the virtual machine moni-
tor on each host.

The applications and workloads used are described be-
low:

RUBiS [5] is a well-known eBay like benchmark, im-
plementing the core functionality of an auction site: sell-
ing, browsing and bidding. We use a servlets-based, four
node configuration of RUBiS, consisting of an Apache,
Tomcat and MySQL server, along with a fourth client
node. One RUBiS instance thus consists of 4 VMs. We

use different preexisting workloads provided by RUBiS
for different instances of it.

Hadoop MapReduce [1] is a programming model and
software framework for writing applications that rapidly
process vast amounts of data in parallel on large clus-
ters of compute nodes. We create a single instance of
Hadoop using 3 VMs, 1 master and 3 work nodes (one
of the VMs is both master and worknode). We use three
of the existing sample programs provided with Hadoop
- wordcount, randomwriter and sort, to create workloads
for Hadoop instances.

Iperf [2] is a commonly used network testing tool that
can create TCP and UDP data streams and measure the
throughput of a network that is carrying them. We use a
client and server functionality based two node configura-
tion of Iperf, where the throughput between the two ends
is measured. One Iperf instance consists of 2 VMs.

We use MATLAB to calculate AR models and K-
Means.

5 Results

5.1 Performance Evaluation
Figure 5 shows an overview of the results. It shows the
total accuracy of predicting dependencies, as well as the
breakdown of true positives and negatives upon varying
the order of the AR model. As stated in section 3.3.1,
it can be seen that an excessively large value of order
begins to reduce accuracy due to overfitting. It can also
be seen that the method is not extremely sensitive to a
particular value of order.

Table 1 shows the breakdown of the results for RU-
BiS and Hadoop individually as well as for the combined
configuration running 3 Hadoop instances, 4 RUBiS in-
stances and 2 Iperf instances for a total of 31 VMs (called
All workload). It can be seen that we are able to iden-
tify, with 100% accuracy, the dependencies in the RU-
BiS VMs, even without the use of perturbations. This is
because an application like RUBiS, which requires a lot
of cooperation between the component VMs, is particu-
larly well suited for our approach. It is also the kind of
application that will benefit the most from provisioning
decisions made by considering the dependencies.

It is more non-intuitive why the approach works well
even for Hadoop. The Hadoop Master divides the work-
load and assigns tasks to the workers (mappers and re-
ducers). After this point, the mappers and reducers com-
municate via files, i.e. the mappers store intermediate re-
sults to files and communicate their location to the mas-
ter. The master in turn informs the reducers about these
locations, so that they can be read and processed. In our
setup, all three VMs of a Hadoop instance are workers
(one of them is both a master and worker). As a result,
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Figure 6: CPU Usage Time Series of Hadoop Instances

there is a fair amount of correlation in their CPU Usage.
This can be seen in Figure 6. The figure plots the CPU
usage time series of two instances of Hadoop. The left
column which belongs to the first instance shows a sig-
nificantly different pattern than the right column.

Figure 7 shows the effect of perturbations on accuracy.
As stated in Section 3.2.3, perturbing a VM by periodi-
cally changing its ability to service, introduces additional
prominent spikes in the CPU utilization of dependent
VMs. Perturbations increase the accuracy of the Hadoop
workload by 25% overall (33.33% for true positives and
23.23% for the true negatives). Similarly, for the All
workload the increase in accuracy is about 2.5%. This
seemingly small increase is due to the fact that 96.33%
of true negatives have already been identified without the
use of perturbations.

Table 1: Results for Identified Dependencies

True Positives True Negatives False Positives False Negatives

No Perturb 12 54 0 0
RUBIS

Perturb 12 54 0 0

No Perturb 6 21 6 3
Hadoop

Perturb 9 27 0 0

No Perturb 22 315 12 2
All

Perturb 22 324 3 2

AR models for two of the application instances are
shown in Figure 8, by plotting the coefficients of their
previous values in the time series. Models having similar
coefficients imply that they have shown similar spikes

Figure 7: Effect of Perturbations on % Accuracy Rate

Figure 8: AR Models: (a) RUBiS Model (b) Iperf Model

in time. It can be seen that models from the same ap-
plication instance are more similar in their coefficients
than others, as a result of which they will be clustered
together.

Figure 9 shows a scatter plot of the RUBiS VMs, with
respect to their 2nd, 3rd and 4th order coefficients. Even
in this space, dependent VMs (shown by the same color)
are closer to each other.

5.2 Scalability & Time Complexity

The time complexity of the algorithm depends on 3 fac-
tors – number of VMs N , choice of order p and choice
of sample size W . As we choose p and W before de-
ploying the algorithm on a particular system, we can take
their effect to be constant (finite time). The complex-
ity of the first step, finding AR models, is thus, linear
in N . Models can be calculated per host and sent to
a central machine for the clustering phase. The com-
plexity of k-means is Ω(N). Although this step is per-
formed centrally, for a dataset with 1000 samples and
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500 real-valued attributes (corresponding to 1000 VMs
with AR models of order 500), K-means finishes compu-
tation within a few seconds. Thus, this algorithm can eas-
ily scale in a datacenter of thousands of VMs. To further
establish this, we simulated an array of CPU usages for
1200 VMs by copying over an existing utilization array.
Using an order p = 100, we ran the algorithm over this
fictional dataset. Even though we calculated AR models
centrally, the total run time for the algorithm was only
1.5 minutes on an Intel core2 duo machine running at
2GHz with 1GB of RAM.

6 Conclusions & Future Work

In this paper we have presented the ‘Look Who’s Talk-
ing’ (LWT) set of methods and framework for identifying
inter-VM dependencies. The method is non-intrusive,
application agnostic, real-time and scalable, and can be
easily deployed on a running datacenter with no modi-
fications to VMs. We estimate auto-regressive models
for the CPU usage of individual VMs and cluster them
based on which models are similar. The current imple-
mentation of LWT has been integrated into the Xen hy-
pervisor running across a small-scale prototype datacen-
ter, for which experimental measurements show that it
can effectively identify dependencies between VMs with
an average of 97.15% overall accuracy rate, identifying
almost all true negative dependencies and more than 90%
of the true positives.

One of the aspects, as yet to be explored by this work
is how the system would react if a large number of VMs
depend on a single VM for service. In this case, the char-
acteristic spikes will not be clearly visible. Perturbations
will be effective only if deployed on this VM. We would
also like to automate the discovery of parameters like the
order of the AR models and sample size.
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