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Abstract

As if fueled by its own fire, curiosity and speculation
regarding botnet sizes abounds. Among researchers, in
the press, and in the classroom—the questions regard-
ing the widespread effect of botnets seem never-ending:
what are they? how many are there? what are they used
for? Yet, time and time again, one lingering question
remains: how big are today’s botnets? We hear widely
diverging answers. In fact, some may argue, contradic-
tory. The root cause for this confusion is that the term
botnet size is currently poorly defined. We elucidate this
issue by presenting different metrics for counting bot-
net membership and show that they lead to widely dif-
ferent size estimates for a large number of botnets we
tracked. In particular, we show how several issues, in-
cluding cloning, temporary migration, and hidden struc-
tures significantly increase the difficulty of determining
botnet size with any accuracy. Taken as a whole, this
paper calls into question speculations about botnet size,
and more so, questions whether size really matters.

1 Introduction

It is widely accepted that botnets pose one of the most
significant threats to the Internet. For the most part,
this belief has been supported by the conjecture that at
any moment in time, there is a large collection of well-
connected compromised machines that can be coordi-
nated to partake in malicious activities at the whim of
their botmaster(s). Indeed, the potential threat of bot-
nets comprising several hundred thousands bots has re-
cently captured the headlines of the press [11, 18], but
the question of size itself, continues to be a point of de-
bate among the research community.

In particular, the question of how we arrive at size es-
timates, or more importantly, just what they mean, re-
mains unanswered. As a case in point, while earlier
studies (e.g., [4, 5, 14]) have proposed a number of

techniques to measure the size of botnets, they provide
very inconsistent estimates. For example, while Dagon
et al. [5] established that botnet sizes can reach 350,000
members, the study of Rajabet al. [14] seems to indi-
cate that the effective sizes of botnets rarely exceed a
few thousand bots. Clearly, something is amiss.

In this paper, we attempt to shed light on the ques-
tion of botnet membership. Our study primarily focuses
on IRC botnets because of their continuing prominence
in the Internet today. Specifically, we survey a num-
ber of techniques for determining botnet membership
and examine the different views they generate. As we
show later, the inconsistency among the resulting out-
comes is largely tied to the counting techniques being
used, and does not necessarily reflect a change in un-
derlying activity during the time that these studies were
undertaken. For example, one of the botnets we tracked
appeared to consist of 48,500 bots over the entire track-
ing period. However, if we examine the bots that si-
multaneously appeared on the bot server in question, the
size does not exceed 3,000 bots. At a high level, this
suggests that expecting a single definitive answer to the
question of botnet membership is unreasonable. Instead,
“botnet size” should be a qualified term that includes
the specifics of the counting method, its caveats, and the
context in which the measurements are relevant.

Additionally, we show that the issue of botnet mem-
bership extends beyond single botnet considerations
in that potential cross-botnet relationships add another
challenge to estimating membership. Specifically, our
preliminary insights raise questions about the extent to
which we can assert that two or more botnets are differ-
ent, or more importantly, the degree of overlap among
the populations of different botnets.

In summary, this paper makes the following contribu-
tions: (i) we explore a number of mechanisms (includ-
ing prior work) for estimating botnet sizes and highlight
the challenges associated with each,(ii) we present re-
sults of applying these techniques to data derived from
a large-scale measurement study and show the extent of
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the discrepancy between the different size estimates, and
(iii) we examine potential hidden structures among bot-
nets we tracked and highlight their implication on deter-
mining botnet membership.

The remainder of this paper is organized as follows.
Section 2 provides a comprehensive list of botnet size
estimation techniques and highlights the challenges as-
sociated with each. In Section 3 we present the results of
applying these techniques to botnet data collected from
a wide-scale monitoring experiment. In Section 4 we ex-
amine the existence of hidden structures among the bot-
nets we tracked, while Section 5 discusses related work.
We conclude in Section 6 with a discussion about the
subtleties associated with counting botnet membership.

2 Size Matters, But What Does It Mean?

While the topic of large botnets has certainly cap-
tured the attention of academicians and practitioners
alike [5, 7, 12, 14, 15, 16], there seems to be little, if any,
agreement on what specifically the size of a botnet refers
to. Arguably, the only consensus seems to be that a bot-
net’s size is the main determining factor of its perceived
impact. However, unlike other classes of malware (e.g.,
worms), where the size of the infected population deter-
mines the impact of the outbreak, botnet size can convey
several meanings. Therefore, to clear the fog on this is-
sue, we start by providing different definitions of botnet
size and detail the context in which each definition is
relevant.

In what follows, we draw the distinction between two
main terms. First, we denote a botnet’sfootprint as the
overall size of the infected population at any point in its
lifetime. While this measure reflects how wide spread
a botnet infection is, it fails to capture the actual capac-
ity of the botnet to execute a particular command issued
by the botmaster at any given point in time. Second,
we consider the botnet’slive populationas the number
of live bots simultaneously present in the command and
control channel. Therefore, unlike its footprint, the live
population of a particular botnet indicates the botnet’s
capacity to perform a malicious task posted as a com-
mand message by the botmaster.

Generally speaking, the estimation techniques we
survey belong to two broad categories based on the in-
formation used. Next, we elaborate on each category,
detailing the estimation techniques, their challenges, and
their relevance in light of the aforementioned notions.

2.1 A View From Within

The first category includes techniques that directly
count bots connecting to a particular server. Two main
variants are relevant here:infiltration andredirection.

Botnet Infiltration. An obvious way to learn several
aspects of a botnet’s activity is to infiltrate the botnet
by joining the command and control channel. Botnet
infiltration provides valuable information about several
malicious activities such as DDoS attacks as shown ear-
lier by Freiling et al. [7]. In our earlier work [14], we
used botnet infiltration to provide in-depth analysis of
several facets of botnets, including inferring their mem-
bership by directly counting the bots observed on indi-
vidual command and control channels. To achieve this,
we developed a lightweight IRC tracker (see [14] for
details). In a nutshell, the tracker intelligently mimics
the behavior of actual bots and joins a number of bot-
nets, all the while recording any information observed
on the command and control channel. This informa-
tion may include the identities of all active bots. In this
case, the botnet’s footprint is simply the total number of
unique identities observed on the channel over the entire
tracking period. Similarly, the botnet’s live population
is measured by counting the number of bots simulta-
neously present on the channel at a particular time. In
some cases, this estimate can also be derived from the
IRC server’s welcome message.

Despite its simplicity, this technique suffers from a
number of limitations. First, botmasters may suppress
bot identities from being transmitted to the channel and
in doing so render this technique useless. Second, even
when this information is available, counting can lead to
different estimates depending on whether we count the
fully qualified unique user IDs or the IP addresses—be it
cloaked or plain. As we show later, temporal population
variations due to bot cloning and temporary migration of
bots complicate this issue even further. What this means
is that it is difficult to provide an accurate bot count in
these cases, as distinguishing between actual bots and
temporary clones or migrants is nontrivial.

DNS Redirection. As an alternative to botnet infiltra-
tion, Dagonet al. explored a technique for counting in-
fected bots by manipulating the DNS entry associated
with a botnet’s IRC server and redirecting connections
to a local sinkhole [5]. The sinkhole completed the
three-way TCP handshake with bots attempting to con-
nect to the (redirected) IRC server and recorded the IP
addresses of those victims. Their results suggest the ex-
istence of large botnets with populations up to 350,000
bots. Unfortunately, although this approach allows us to
observe the IP addresses of different bots, it has a num-
ber of limitations. First, this technique can only mea-
sure the botnet’s footprint. The reason is that although
the sinkhole observes bot connection attempts, it is im-
possible to know how many live bots are simultaneously
connected to the actual server channel. Second, as the
sinkhole does not host an actual IRC server, there is no

2



way of knowing if the bots are connecting to the same
command and control channel. Finally, as Zouet al.[19]
suggest, it is conceivable that botmasters can detect DNS
redirection and subsequently redirect their bots to an-
other IRC server thus distorting the estimate provided
by this technique.

2.2 When The Lights Go Out

When insider information is not available because bot
activities are not echoed on the channel (and so can no
longer be overheard by an IRC tracker), it is still pos-
sible to estimate a botnet’s size by exploiting external
information. In this case, however, techniques that rely
on externally visible information can only provide an es-
timate of a botnet’s footprint.

A natural source of externally visible information
about a botnet’s prevalence is DNS. In our earlier
work [14], we explored the use of DNS cache snooping
to uncover a botnet’s footprint. In short, our approach
takes advantage of the fact that bots normally make a
DNS query to resolve the IP address of their IRC server
before joining the command and control channel. Our
technique estimates a botnet’s DNS footprint by prob-
ing the caches of a large collection of DNS servers and
recording all cache hits. A cache hit implies that at least
one bot has queried its nameserver within the time to
live (TTL) interval of the DNS entry corresponding to
the botnet server. The total number of cache hits pro-
vides an indication of the botnet’s DNS footprint.

That said, a botnet’s DNS footprint provides (at best)
only a lower bound of its actual footprint. For one,
using DNS to estimate size is only possible for DNS
servers that allow probes from arbitrary clients and reply
to queries for cached results. To yield an accurate esti-
mate, this technique requires a large list of such servers.
Moreover, botnet servers that have DNS names with
low TTL furhter complicates this technique because, for
such names, the probability of a cache hit from an in-
fected domain is low. Finally, a hit indicates only the
existence of at least one infected host associated with
that DNS server.

Recently, Ramachandranet al. [15] suggested an-
other DNS-based technique. Their approach infers bot
counts by observing DNS lookups for hosts listed in
DNS-based blackhole lists. The rationale behind this
approach is that botmasters tend to query these lists to
detect if their bots are blacklisted and thereby unusable
for certain tasks (e.g.,sending spam e-mails). This ap-
proach has the potential to provide an overall estimate of
possible bots in DNS-based blackhole lists, but clearly it
cannot estimate the footprint or the live population of a
specific botnet.

Duration of data collection period (days) 300
Total number of unique malicious binaries1,400
Total number of IRC botnet binaries 1,058
Number of unique botnet channels tracked472

Table 1. Summary of collected data.

3 Just How Big is Your Botnet?

To elucidate the discrepancies among different count-
ing techniques, we now provide botnet size estimates
using the different approaches discussed in Section 2.
Where possible, we outline the factors that contribute to
inflating or deflating the botnet population estimates de-
rived by these techniques. For comparison purposes we
analyze the traces of a large collection of botnets cap-
tured and tracked over a period of more than 9 months
using a distributed data collection infrastructure. We
established this infrastructure as part of an ongoing ef-
fort to study the botnet phenomenon. In short, we use
a combination of lightweight responders (based on the
nepenthes framework [1]) as well as deep interaction
honeypots to collect malware binaries. The collected bi-
naries are analyzed in an isolated environment to elicit
any IRC related features and then produce configuration
templates. These templates are used to create several
customized IRC tracker instances that infiltrate the bot-
nets specified in the collected binaries (see [14] for more
details). Table 1 summarizes the data we collected, in-
cluding traffic traces captured at our distributed darknet,
IRC logs gathered from 472 botnet channels either vis-
ited by our IRC tracker or observed on our honeynet, and
DNS cache hits from tracking 100 IRC servers for more
than 45 days.

3.1 One Botnet to Rule Them All

Before addressing our main question, let us first be-
gin by analyzing the global statistics that we can infer
about the botnet problem in general from the available
data. Despite earlier predictions [11], even this seem-
ingly simple task is laden with challenges. For example,
a crude count of the number of unique bots (based on
user IDs) across all botnets we tracked results in an esti-
mate of 1,153,371 bots, while counting the IP addresses
(either cloaked or plain) yields a more moderate figure
of 426,279 bots. However, notice that these estimates
do not account for two important factors, namely, the
overlap across different botnet populations (which may
be substantial) and the impact of dynamic addressing
(e.g.,DHCP and NATting), which is generally difficult
to quantify [3] especially when the IP addresses of the
bots are cloaked.

From another viewpoint, we note that our cache prob-
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Figure 1. CCDF of the aggregate infected host
population counted by unique IDs and unique
IP addresses.

ing results show evidence of at least one botnet infection
in 11% of the 800,000 DNS servers we probed. While
one could speculate that this figure is in agreement with
the conjecture that bots reside in 11% of the overall In-
ternet host population (e.g.,[11]), this claim can not be
easily justified. In fact, our DNS results can not be di-
rectly extrapolated to actual bot counts.

3.2 Large Botnets May Not Be So Big After All

Returning to our outstanding question, we turn our
attention to a simple question: how big is a botnet? In
short the answer is, it depends. To see why, let us ex-
plore the results for estimating the size of the botnets
we tracked, based on the strategies given in Section 2.
Figure 1 shows the complementary cumulative density
function (CCDF) of botnet footprint sizes, counted by
user IDs and by IP addresses for the botnets that broad-
cast that information. Overall, 52% of the botnets we
tracked make such data available. Notice that counting
bot IP addresses versus IDs already leads to one dis-
crepancy. While botnet sizes, by ID count, can exceed
450,000 bots, counting by IP addresses yields sizes in
the range of 100,000 bots.

Figure 2 shows the CCDF of the live botnet popula-
tion size for the same set of botnets. Clearly, there is an
even more substantial discord in this case. While botnet
footprint sizes can exceed 100,000 infections1, their live
populations are normally in the range of a few thousand
bots—a significant decrease in size which has profound
impact on the perceived vivaciousness of these botnets.
This discrepancy can be explained by the fact that the
live population of a botnet is normally constrained by

1These results are in accord with the estimates of Dagonet al. [5]
derived using DNS redirection.
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Figure 2. CCDF of the maximum number of si-
multaneous online bots.

the capacity of the botnet server and affected by high
bot churn rates [14].

Finally, we resorted to DNS cache snooping to esti-
mate the DNS footprints of the remaining 48% of the
botnets that do not publish membership data. Figure 3
presents the CCDF of DNS footprint sizes. Because in
this case we count domains rather than bots, the discrep-
ancy between DNS footprints and infection footprints
(cf. Fig. 1) is wide. Refining the estimate of a botnet’s
infected population from its DNS footprint is a subject
that warrants further work and one we are currently pur-
suing.
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Figure 3. CCDF of the DNS footprint sizes.

3.3 Challenges and Caveats

As we alluded to earlier, there are several additional
issues that complicate the task of counting botnet mem-
bers. Temporary bot migration and bot cloning are ma-
jor contributors to this effect. In several occasions, we
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observed botmasters commandeering their bots to tem-
porarily migrate from one botnet to another. In cloning,
botmasters command bots to create copies of themselves
and join a new channel on the same server, or to connect
to a different server altogether [14]. Generally, we ob-
served two types of cloning:(i) clone flooding, in which
bots create a large number of instances to overwhelm
a target IRC server, and(ii) normal cloning events in
which botmasters command their bots to create a new
IRC connection and join another channel on the same
server or on a different server.

These observations raise the following important
question: when we count botnet members are we really
countingactualcompromised machines? Although di-
rect counting of bots by botnet infiltration seems to be
the most direct way of estimating a botnet size, it is,
unfortunately, unclear whether or not the resulting esti-
mate is a count of real bots. For one, temporary bot-
net migration can significantly inflate the membership
of a particular botnet. Figure 4, for example, presents an
instance of temporary migration observed by our IRC
tracker. In this example, if we were to count the popu-
lation of Botnet II immediately after the migration, we
would arrive at an inflated count. While on the surface
this may not seem as a big concern, if such migrations
occur frequently, then we could be substantially over-
counting the cumulative bot population.

To further illustrate the impact of bot cloning on size
estimation we extracted all clone commands observed
in the IRC traces of the botnets we tracked. In this case,
we only consider the events corresponding to the second
type of cloning and therefore we exclude all commands
corresponding to “clone flood” attacks. Overall, we ob-
served cloning behavior in 20 tracked botnets. Interest-
ingly, our results show that although the total footprint
of these botnets was near 130,000 bots, they created a to-
tal of 2,383,500 clone instances of which roughly 10%
connected to new botnet servers. Figure 5 presents an
example of one such cloning event in which bots are
asked to join another channel on the same server. The
graph shows a sudden surge in the number of online
bots reported in the server’s welcome message shortly
after the botmaster posted a command to her bots to cre-
ate clones and join a new channel on the same server.
Obviously, the population count in this case is not in-
dicative of actual bots. Coupled with the issue of bot
migration, this may be one of the underlying reasons for
the wide variation in botnet sizes quoted in the litera-
ture. Unfortunately, without more qualified discussions
of what botnet sizes represent, it is difficult to come to
any definitive conclusions.

4 Exposing hidden botnet connections

One of the most challenging facets of the botnet
membership problem lies in discerning the relationship
among (seemingly) different botnets. To highlight this,
we examine the existence of hidden relations among
the botnets we tracked. The presence of these relations
raises new challenges to the accuracy of botnet popula-
tion counting techniques. Specifically, for botnets that
are related, is the aggregate population count simply the
sum of the different botnet populations? Or more impor-
tantly, how do we characterize the overlap between dif-
ferent botnet populations? In what follows, we discuss
our methodology for finding potential hidden relation-
ships among botnets.

First, we create for each botnet ad-dimensional struc-
tural feature vector~vi = x1, x2, . . . , xd. We choose the
following features to represent a botnet’s unique iden-
tity:

1. DNS name and/or IP address of IRC Server.

2. IRC server or IRC network name (e.g.,
ToXiC.BoTnEt.Net).

3. Server version (e.g.,Unreal3.2.3).

4. IRC channel name.

5. Botmaster ID. All these IDs are extracted from the
IRC trace by observing the identity of the user
with operator privileges who posts commands to
the channel.

To reveal the existence of clusters of related bot-
nets we then create a proximity matrixM by calculat-
ing a pair-wise scores across all botnet vectors,V =
~v1, ~v2, . . . , ~vn. For a pair of vectors~vi, ~vj the pair-wise
scoremi,j is a weighted dot product of the two vectors.

mi,j =

d∑

k=0

wk (xi,k · xj,k)

wherewk is the weight assigned to dimensionk and the
product of the two vector fields is one if they are identi-
cal, or zero otherwise. Considering that similarity in the
names of the IRC servers implies strong correlation be-
tween two botnets, we assign a weight of 1.5 to the IRC
server dimension, while all other dimensions are given
equal weights of 0.5.

Given the matrixM, we infer related botnets by
extracting botnet groups that have pairwise similarity
scores above a thresholdδ. We chooseδ = 1.5, so that
two botnets are related if they have the same IRC server
DNS name or match in at least three other dimensions.
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Figure 4. Botnet temporary migration instance.
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Figure 5. Bot count for a botnet with cloning.

# <DNS name> <Channel> <Server ID> <Botmaster ID> <Server Version>
[1] hid.shgon.net #!GT!# IRC.Death.TeaM.KW [Lindi_Cracker]-1!HackPimp Unreal3.2.5
[2] bruimi.shgon.net #!GT!# IRC.Death.TeaM.KW ChanServ!Coder Unreal3.2.5
[3] newbot.shgon.net #.rxb0t IRC.Death.TeaM.KW Chan!Coder Unreal3.2.5
[4] bb.shgon.net #.rxbot IRC.Death.TeaM.KW Chan!Coder Unreal3.2.5

Figure 6. Example of a botnet cluster.

Preliminary Results. We applied this methodology to
the 472 botnets we captured and tracked. Our results re-
vealed 90 groups of related botnets covering 25% of the
botnets we tracked. Figure 6 presents the features of
the botnets in one of these clusters. As the figure illus-
trates, while these botnets used different servers, sim-
ilarities across other dimensions can be used to detect
their potential relationship. Notice that in this example
(and many similar ones) the names of all IRC servers be-
long to the same DNS domain which provides additional
evidence of the relationship among these botnets.
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Figure 7. Example of a botnet cluster.

Figure 7 provides a graphical representation of one
example cluster, with nodes indicating distinct botnets
and edges indicating relationships between different bot-
nets. The label on each edge reflects the pairwise sim-
ilarity score. It is evident from this graph that botnet
relationships can evolve to form rather complex clusters
that significantly complicate the task of estimating bot-
net membership.

Figure 8 plots the CDF of the number of botnets af-
filiated with botnet cluster we discovered. The graph
indicates that botnet clusters can span relatively large
collections of botnets. Finally, we note that while code
reuse [2] could explain the commonalities across some
of the features we chose (e.g.,IRC server version), other
common features, such as channel names and botmas-
ter IDs, are more likely to indicate intentional botnet re-
lationships. Further research into feature selection and
assigning proper weights for each feature is a subject of
our ongoing work.

5 Related Work

Of late, articles about botnets with hundreds of thou-
sands of members have captured the headlines on sev-
eral occasions (e.g.,[11, 17, 18]). This attention is war-
ranted, as botnets undoubtedly pose a significant threat
to the Internet. Starting from the early work of Freiling
et al. [7], a number of research efforts have explored
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Figure 8. CDF of the number of botnets affiliated
to each observed cluster.

the rise of botnets. However, the issue of determin-
ing botnet size still remains contentious. In particular,
Dagonet al. used DNS redirection to study the size and
evolution of several botnets and reported botnets with
350,000 members [5]. Similar observations were also
reported in [8, 13]. In contrast, the work of Cookeet
al. [4] and Jahanian [9] seem to point to a trend towards
smaller botnets with sizes ranging from several hundreds
to a few thousand hosts; many of these botnets emerge
and then become defunct after relatively short periods
of time [9]. In this paper we examine two techniques
for gleaning information about a botnet’s size namely,
IRC tracking and DNS snooping [6]. Our results show
that while the footprints of the botnets we tracked can
grow to several tens of thousands of bots, their effec-
tive sizes usually are limited to a few thousands at any
given point in their lifetime. These discrepancies argue
that botnet size should be a qualified term that is relevant
only within the context of the counting method used to
generate the result.

Equally important to the question of size is that of the
overall prevalence of botnets. While the earlier work of
Rajabet al. [14] provided partial insights about this is-
sue, more recent work has attempted to answer this par-
ticular question. Specifically, Ramachandranet al. [15]
monitored queries sent to servers maintaining the DNS
names of blacklisted hosts to infer the overall prevalence
of bots in these lists. In this paper, we show that the same
discrepancies that plague size measurements of individ-
ual botnets apply to total populations counts as well, and
we attempt to expose the causes that lead to these inac-
curate and conflicting size estimates.

Lastly, Dagonet al. [10] presented a taxonomy and
analysis of potential botnet structures. In this paper, we
sketch a technique for unveiling the existence of hidden
clusters among botnets.

6 Summary

From a high-level perspective, this paper underscores
the need for better clarity in studies related to botnet dy-
namics. Specifically, given the variety of botnet size es-
timation techniques and the diversity of results they pro-
vide, it seems only natural that botnet size should be a
qualified term reflecting the context in which the result-
ing estimate should be interpreted.

That said, the results in this paper (and the questions
they raise), should not be construed as an indication of
our opinion on the prevalence of the botnet problem.
Rather, our goal is simply to emphasize the fact that
no single metric is sufficient for describing all aspects
of a botnet’s size. Moreover, given the variable tem-
poral behavior that botnets exhibit and the inherent in-
accuracies of existing estimation techniques, a prudent
step towards providing more reliable size estimates is to
synthesize the results from multiple concurrent and in-
dependent views of a botnet’s behavior.

Finally, while we focus primarily on IRC botnets,
many suggest that a migration to more sophisticated
topologies and protocols (e.g.,P2P botnets [19]) is in-
evitable. If (or when) this transition occurs, the adoption
of such technologies will pose substantial challenges to
existing botnet tracking efforts, and brings its own set of
difficulties.
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