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 Indirection 
 Reference an object with a different name 

 Flexible, simple, and modular 

 

 Indirection in computer systems 
 Virtual memory: virtual to physical memory address 

 Hard disks: bad sectors to nearby locations 

 RAID arrays: logical to array physical address 

 SSDs: logical to SSD physical address 
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* Usually attributed to Butler Lampson 



 Excess indirection 
 Redundant levels of indirection in a system 

 e.g. OS on top of hypervisor(s) 

 e.g. File system on top of RAID 

 

 Are all indirections really necessary? 
 Some indirection can be removed 

 Space and performance cost 

 

 What about flash-based SSDs? 
 File system: file offset to logical address (F -> L) 

 Device: logical address to physical address (L -> P) 
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 Indirection in SSDs (L->P) 
 Mapping from logical to physical address 

 Hides erase-before-write and wear leveling 

 Implemented in Flash Translation Layer (FTL) 

 

 Cost of indirection 
 RAM space to maintain indirection table 

 Hybrid: small page-mapped area + big block-mapped area 

 Performance cost of garbage collection 

 Performance impact on random writes [Kim ’12] 
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 Solution: De-indirection 
 Remove indirection in SSDs (L->P) 
 Store physical addresses directly in file system (F->P) 

 
 New interface: Nameless Write 

 Write without a name (logical address) 
 Device allocates and returns physical address 
 File system stores physical address 

 
 Advantages 

 Reduces space and performance cost of indirection 
 Device maintains critical controls 
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 Designed nameless writing interfaces 
 

 Implemented a nameless-writing system 
 Built a nameless-writing SSD emulator 

 Ported ext3 to nameless writes 

 

 Evaluation results 
 Evaluated against two other FTLs 

 Small indirection table, ~20x reduction over traditional SSDs 

 Better random write throughput, ~20x over traditional SSDs 
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 Introduction 
 





 Problems of basic interfaces and solutions 

 
 Nameless-writing device and ext3 

 
 Results 

 
 Conclusion 
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 Nameless Write 
 Writes only data and no name 

 

 Physical Read 
 Reads using physical address 

 

 Free/Trim 
 Invalidates block at physical address 
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 P1: Cost of straw-man nameless-write approach 
 How to reduce the overheads of complete de-indirection? 

 

 P2: Migration during wear leveling 
 How to reflect physical address change in the file system? 

 
 P3: Locating metadata structures 

 How to find metadata structures efficiently? 
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 Overwrite a data block in a file in ext3 
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 Problems 
 Overhead of updating along FS tree 

 FS more complex and less flexible 

P1+ 
offset 



 Problem of recursive updates 
 Writes propagate to reflect physical addresses 

 
 Solution: Two segments of address space 

 Stop recursive updates 
 

 Physical address space 
 Nameless write, physical read 
 Contains data blocks 

 

 Virtual address space 
 Traditional (virtual) read/write 
 Small indirection table in device 
 Contains metadata blocks (typically small metadata [Agrawal’07]) 
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 Overwrite a data block with segmented address space 

 

 Advantages 
 One level of update propagation 

 Simple implementation 
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 Block wear in SSDs 
 Uneven wear among blocks with data of different access frequency  

 

 Wear leveling 
 SSD moves data to distribute block erases evenly 

 

 Physical address change 
 File system needs to be informed 

 Only address change in the physical space 
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 New interface: Migration Callbacks 
 Device informs FS about physical address change 

 

 Temporary remapping table 
 

 Reads and overwrites to old address 
 Remapped to new address 

 

 FS processes callbacks in background 
 Acknowledges device when metadata updated 
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 Problem: Locating metadata structures 
 e.g. During callbacks 

 e.g. During recovery 

 Naive approach: traversing all metadata 

 

 Solution: Associated Metadata 
 Small amount of metadata used to locate metadata 

 e.g. Inode number, inode generation number, block offset 

 Sent with nameless writes and migration callbacks 

 Stored adjacent to data pages on device, e.g. OOB area 
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 Introduction 

 

 Nameless write interfaces 

 



 

 Results 

 

 Conclusion 
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 Supports nameless write interfaces 
 

 Flexible device allocation 
 

 Maintains small mapping table 
 Indirection of the virtual address space 

 Temporary remapping table for callbacks 

 

 Control of garbage collection and wear leveling 
 Minimize physical address migration (In-place GC) 
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 Ext3: Journaling file system extending ext2 
 

 Ordered journal mode  
 Metadata always written after data 

 Fits well with nameless writes 

 

 Interface support 
 Segmented address space 

 Nameless write 

 Physical read 

 Free/trim 

 Callback 
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 Total: 4360 
 

 Ext3: 1530 
 

 JBD: 480 
 

 Generic I/O: 2020 
 

 Headers: 340 
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 Introduction 

 

 Nameless write interfaces 

 

 Nameless-writing device and ext3 

 



 

 Conclusion 
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 SSD emulator 
 Linux pseudo block device 

 Data stored in memory 

 
 FTLs studied 

 Page mapping:     log-structured allocation 

                  ideal in performance, unrealistic in indirection space 

 Hybrid mapping:  small page-mapped area + block-mapped area 

                   models real SSDs, realistic in indirection space 

 Nameless-writing 
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 Mapping table sizes for typical file system images [Agrawal’09] 

Nameless 
writes use  
2% - 7% 
mapping table 
space of 
traditional 
hybrid SSDs 
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 Sequential and sustained 4KB random write  
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Nameless writes 
deliver 20x random 
write throughput 
over traditional 
hybrid SSDs  

Performance of 
nameless writes is 
close to page FTL 
(upper-bound) 

 



 Varmail, FileServer, and WebServer from Filebench 
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Similar performance 
when workload is 
read or sequential-
write intensive 

Performance of 
hybrid FTL is worse 
than the other two 
FTLs when workload 
has random writes 



 Introduction 

 

 Nameless write interfaces 

 

 Nameless-writing device and ext3 

 

 Results 

 


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 Problem: Excess indirection in flash-based SSDs 
 

 Solution: De-indirection with Nameless Writes 
 

 Implementation of a nameless-writing system 
 Built an emulated nameless-writing SSD 

 Ported ext3 to nameless writes 

 
 Advantages of nameless writes 

 Reduce the space cost of indirection over traditional SSDs  

 Improve random write performance over traditional SSDs 
 Reduce energy cost, simplify SSD firmware 
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 “All problems in computer science can be 
solved by another level of indirection” 
 Usually attributed to Butler Lampson 
 Lampson attributes it to David Wheeler 

 
 And Wheeler usually added:  
“but that usually will create another problem” 
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 Too much: Excess indirection 
 e.g. file offset => logical address => physical address 
 
 
 

 Partial indirection 
 e.g. nameless writes with segmented address space 
 
 
 

 Too little: Cost of (complete) de-indirection 
 e.g. overheads of recursive update 
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Thank you ! 
 

Questions ? 
 

The ADvanced Systems Laboratory (ADSL)  
http://www.cs.wisc.edu/adsl/ 


