De-indirection for Flash-based
SSDs with Nameless Writes

Yiying Zhang, Leo Prasath Aruraj,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

University of Wisconsin - Madison

All problems in computer science can be

solved by another level of indirection*

Indirection

Reference an object with a different name
Flexible, simple, and modular

Indirection in computer systems

Virtual memory: virtual to physical memory address
Hard disks: bad sectors to nearby locations

RAID arrays: logical to array physical address
SSDs: logical to SSD physical address

* Usually attributed to Butler Lampson

Indirection: Too Much of a Good Thing?

Excess indirection

Redundant levels of indirection in a system
e.g. OS on top of hypervisor(s) F
e.g. File system on top of RAID

Are all indirections really necessary? ;

Some indirection can be removed
Space and performance cost

What about flash-based SSDs?

File system: file offset to logical address (F -> L)
Device: logical address to physical address (L -> P)

Indirection in Flash-Based SSDs

Indirection in SSDs (L->P) ! .

Mapping from logical to physical address T BAsData

Hides erase-before-write and wear leveling
Implemented in Flash Translation Layer (FTL)

Cost of indirection >
RAM space to maintain indirection table
Hybrid: small page-mapped area + big block-mapped area
Performance cost of garbage collection
Performance impact on random writes [Kim ‘12]

De-indirection with Nameless Writes

Solution: De-indirection
Remove indirection in SSDs (L->P)
Store physical addresses directly in file system (F->P)

New interface: Nameless Write E
Write without a name (logical address)
Device allocates and returns physical address
File system stores physical address 5

Advantages
Reduces space and performance cost of indirection ' p
Device maintains critical controls

Summary of Results

Designed nameless writing interfaces

Implemented a nameless-writing system

Built a nameless-writing SSD emulator
Ported ext3 to nameless writes

Evaluation results
Evaluated against two other FTLs
Small indirection table, ~20x reduction over traditional SSDs
Better random write throughput, ~20x over traditional SSDs

Outline

= Nameless write interfaces
= Basic interfaces
= Problems of basic interfaces and solutions
Nameless-writing device and ext3

Results

Conclusion

Basic Nameless Write Interfaces

Nameless Write AL
Writes only data and no name | ES
Physical Read Plipata
Reads using physical address = c<D
Free/Trim P

Invahdates blOCk at phys|ca| address ...
: P: Addr the structure :

: points to :
| P: Addr of the block

Problems of Basic NW Interfaces

P1: Cost of straw-man nameless-write approach

How to reduce the overheads of complete de-indirection?

P2: Migration during wear leveling

How to reflect physical address change in the file system?

P3: Locating metadata structures

How to find metadata structures efficiently?

P1: Nameless Write Straw-man

Overwrite a data block in a file in ext3

Inode Data
Ml O
pA P, 4
_____________________________ - R
' '
' '
' : ..
P, P, Metadata
b| Data
Problems Red: Addr the structure
Overhead of updating along FS tree points to :
FS more complex and less flexible : Blue: Addr of the block

--

P1 Solution: Segmented Address Space

Problem of recursive updates
Writes propagate to reflect physical addresses

Solution: Two segments of address space
Stop recursive updates

Physical address space

Nameless write, physical read
Contains data blocks

Virtual address space

Traditional (virtual) read/write
Small indirection table in device
Contains metadata blocks (typically small metadata [Agrawal’o7])

11

P1 Solution: Segmented Address

Space Example

Virtual address space Physical address space

Inode Data

Journal Super Bitmap Bitmap Inode Dir Data Blocks

Data + logical address Data

Physical Address

FTL allocates physical addresses

SSD physical flash memory

12

P1 Solution: Nameless Write with

Segmented Address Space

Overwrite a data block with segmented address space

Directory Inode Data
FS | # P,
Inode + L1
__ Po’:\
Li->F1 :
e —————
' .
SSD P, P, Metadata
Data
Advantages Red: Adf:ir the structure
points to
One level of update propagation
: : : : Blue: Addr of the block :
Simple implementation e :

P2: Migration During Wear Leveling

Block wear in SSDs
Uneven wear among blocks with data of different access frequency

: P
Wear leveling o
SSD moves data to distribute block erases evenly E FS
|
Pli Read P2
Physical addresschange 2
Fl . |
ile system needs to be informed .& c<D
Only address change in the physical space '-
P2

14

P2 Solution: Migration Callbacks

New interface: Migration Callbacks =

Temporary remapping table

Reads and overwrites to old address []

Remapped to new address

Pa P2

FS processes callbacks in background
Acknowledges device when metadata updated

15

P3: Associated Metadata

Problem: Locating metadata structures
e.g. During callbacks
e.g. During recovery
Naive approach: traversing all metadata

Solution: Associated Metadata
Small amount of metadata used to locate metadata
e.g. Inode number, inode generation number, block offset
Sent with nameless writes and migration callbacks
Stored adjacent to data pages on device, e.g. OOB area

16

P2 and P3 Implementation in Ext3

Hash Table Inode1 Inode2
Key: Assoc Metadata P4
Value: Callback Entries P2 PE Xact Commit
NE—— — |
|
FS ' '
! ! Ack
P1->P2,E Assoc Meta1 'P1->P2
P3->P4,: Assoc Meta2 | P3->Py
P5->P6) Assoc Meta 3 Ep5->p5
___________________________________ e
v
SSD
....................................... P1 P2
: Callback Entry: :
: Old physical addr P3 P4
: New physical addr Ps PE

! Associated metadata:

17

Outline

= Nameless-writing device and ext3
Results

Conclusion

Nameless-Writing Device

Supports nameless write interfaces
Flexible device allocation

Maintains small mapping table

Indirection of the virtual address space
Temporary remapping table for callbacks

Control of garbage collection and wear leveling

Minimize physical address migration (In-place GC)

19

Porting Ext3 to Nameless Writes

Ext3: Journaling file system extending ext2

Ordered journal mode

Metadata always written after data
Fits well with nameless writes

Interface support

Segmented address space
Nameless write

Physical read

Free/trim

Callback

20

Total Lines of Code

Total: 4360

Ext3: 1530

JBD: 480
Generic |/O: 2020

Headers: 340

Outline

= Results

Conclusion

Evaluation Methodology

SSD emulator

Linux pseudo block device
Data stored in memory

FTLs studied

Page mapping: log-structured allocation
ideal in performance, unrealistic in indirection space
Hybrid mapping: small page-mapped area + block-mapped area
models real SSDs, realistic in indirection space
Nameless-writing

23

Indirection Table Space Cost

Mapping table sizes for typical file system images [Agrawal'og]

)

= 1000

()

-(% 8001 Nameless
600 - writes use

% 2% - 7%

I 400- mapping table

@) space of

g_ 200 - 118 traditional

% o oo 11 2_2- hybrid SSDs

= 100GB 1TB

Page M NamelessM Hybrid

24

Micro-benchmark Performance

Sequential and sustained 4KB random write

90 5
%) ;
0 40- Nameless writes
O deliver 20x random
X 30 write throughput
"g_ over traditional
< 20 1 hybrid SSDs
a Performance of
= 107 nameless writes is
|_
0 close to page FTL
Sequential Random (upper-bound)

Page M NamelessM Hybrid

25

Macro-benchmark Performance

Varmail, FileServer, and WebServer from Filebench

600

A O
o O
o O

200

Throughput (MB/s)
w
3

100+

i =

Varmaill FileServer

Page M Nameless M Hybrid

WebServer

Similar performance
when workload is
read or sequential-
write intensive

Performance of
hybrid FTL is worse
than the other two
FTLs when workload
has random writes

26

Outline

= Conclusion

Summary

Problem: Excess indirection in flash-based SSDs

Solution: De-indirection with Nameless Writes

Implementation of a nameless-writing system
Built an emulated nameless-writing SSD
Ported ext3 to nameless writes

Advantages of nameless writes
Reduce the space cost of indirection over traditional SSDs

Improve random write performance over traditional SSDs
Reduce energy cost, simplify SSD firmware

28

Indirection: Reprise

"All problems in computer science can be
solved by another level of indirection”
Usually attributed to Butler Lampson
Lampson attributes it to David Wheeler

And Wheeler usually added:
"but that usually will create another problem”

Indirection Conclusion

Too much: Excess indirection
e.g. file offset => logical address => physical address

Partial indirection
e.g. nameless writes with segmented address space

Too little: Cost of (complete) de-indirection
e.g. overheads of recursive update

30

Thank you'!

Questions ?

The ADvanced Systems Laboratory (ADSL)
http://www.cs.wisc.edu/adsl/

