
1

Yiying Zhang, Leo Prasath Aruraj,

Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

University of Wisconsin - Madison

 Indirection
 Reference an object with a different name

 Flexible, simple, and modular

 Indirection in computer systems
 Virtual memory: virtual to physical memory address

 Hard disks: bad sectors to nearby locations

 RAID arrays: logical to array physical address

 SSDs: logical to SSD physical address

2
* Usually attributed to Butler Lampson

 Excess indirection
 Redundant levels of indirection in a system

 e.g. OS on top of hypervisor(s)

 e.g. File system on top of RAID

 Are all indirections really necessary?
 Some indirection can be removed

 Space and performance cost

 What about flash-based SSDs?
 File system: file offset to logical address (F -> L)

 Device: logical address to physical address (L -> P)

 3

B

A

C

C L

F

P

 Indirection in SSDs (L->P)
 Mapping from logical to physical address

 Hides erase-before-write and wear leveling

 Implemented in Flash Translation Layer (FTL)

 Cost of indirection
 RAM space to maintain indirection table

 Hybrid: small page-mapped area + big block-mapped area

 Performance cost of garbage collection

 Performance impact on random writes [Kim ’12]

4 4

FTL L -> P

P

FS

SSD

LBA+Data

L

 Solution: De-indirection
 Remove indirection in SSDs (L->P)
 Store physical addresses directly in file system (F->P)

 New interface: Nameless Write

 Write without a name (logical address)
 Device allocates and returns physical address
 File system stores physical address

 Advantages

 Reduces space and performance cost of indirection
 Device maintains critical controls

5

L

F

P

 Designed nameless writing interfaces

 Implemented a nameless-writing system
 Built a nameless-writing SSD emulator

 Ported ext3 to nameless writes

 Evaluation results
 Evaluated against two other FTLs

 Small indirection table, ~20x reduction over traditional SSDs

 Better random write throughput, ~20x over traditional SSDs

6

 Introduction





 Problems of basic interfaces and solutions

 Nameless-writing device and ext3

 Results

 Conclusion

7

8

 Nameless Write
 Writes only data and no name

 Physical Read
 Reads using physical address

 Free/Trim
 Invalidates block at physical address

FTL

P

P

FS

SSD

P Data

P: Addr the structure
 points to

P: Addr of the block

 P1: Cost of straw-man nameless-write approach
 How to reduce the overheads of complete de-indirection?

 P2: Migration during wear leveling
 How to reflect physical address change in the file system?

 P3: Locating metadata structures

 How to find metadata structures efficiently?

9

 Overwrite a data block in a file in ext3

10

P0

P0
FS

SSD

P0

P1 P2

P1 P2

Data Inode Directory

Metadata

Data

Red: Addr the structure
 points to

Blue: Addr of the block

 Problems
 Overhead of updating along FS tree

 FS more complex and less flexible

P1+
offset

 Problem of recursive updates
 Writes propagate to reflect physical addresses

 Solution: Two segments of address space

 Stop recursive updates

 Physical address space
 Nameless write, physical read
 Contains data blocks

 Virtual address space
 Traditional (virtual) read/write
 Small indirection table in device
 Contains metadata blocks (typically small metadata [Agrawal’07])

11

12

Data Blocks Super

Inode
Bitmap

Journal

Data
Bitmap

Inode

L -> P

Dir

FTL allocates physical addresses

Data + logical address Data

Virtual address space Physical address space

SSD physical flash memory

Physical Address

13

P0

P0
FS

SSD

P0

P1

I#

Data Inode Directory

L1 -> P1

Inode + L1

 Overwrite a data block with segmented address space

 Advantages
 One level of update propagation

 Simple implementation

Metadata

Data

Red: Addr the structure
 points to

Blue: Addr of the block

 Block wear in SSDs
 Uneven wear among blocks with data of different access frequency

 Wear leveling
 SSD moves data to distribute block erases evenly

 Physical address change
 File system needs to be informed

 Only address change in the physical space

14

P1

P1

P1

FS

SSD

P2

Read P1

P1

 New interface: Migration Callbacks
 Device informs FS about physical address change

 Temporary remapping table

 Reads and overwrites to old address
 Remapped to new address

 FS processes callbacks in background
 Acknowledges device when metadata updated

15

FTL

P1

P1

FS

SSD

P1 ->P2

P2

P2

P1 -> P2

Ack

 Problem: Locating metadata structures
 e.g. During callbacks

 e.g. During recovery

 Naive approach: traversing all metadata

 Solution: Associated Metadata
 Small amount of metadata used to locate metadata

 e.g. Inode number, inode generation number, block offset

 Sent with nameless writes and migration callbacks

 Stored adjacent to data pages on device, e.g. OOB area

16

17

P1

FS

SSD

P1->P2, Assoc Meta1
P3->P4, Assoc Meta2
P5->P6, Assoc Meta 3

P2

Ack
P1->P2
P3->P4
P5->P6

Hash Table
Key: Assoc Metadata

Value: Callback Entries

P1->P2
P3->P4
P5->P6

P3 P4

P5 P6

Inode1 Inode2

Xact Commit

Callback Entry:
Old physical addr
New physical addr
Associated metadata
Timestamp

P1
P3
P5

P2
P4
P6

 Introduction

 Nameless write interfaces



 Results

 Conclusion
18

 Supports nameless write interfaces

 Flexible device allocation

 Maintains small mapping table
 Indirection of the virtual address space

 Temporary remapping table for callbacks

 Control of garbage collection and wear leveling
 Minimize physical address migration (In-place GC)

19

 Ext3: Journaling file system extending ext2

 Ordered journal mode
 Metadata always written after data

 Fits well with nameless writes

 Interface support
 Segmented address space

 Nameless write

 Physical read

 Free/trim

 Callback

 20

 Total: 4360

 Ext3: 1530

 JBD: 480

 Generic I/O: 2020

 Headers: 340

21

 Introduction

 Nameless write interfaces

 Nameless-writing device and ext3



 Conclusion
22

 SSD emulator
 Linux pseudo block device

 Data stored in memory

 FTLs studied

 Page mapping: log-structured allocation

 ideal in performance, unrealistic in indirection space

 Hybrid mapping: small page-mapped area + block-mapped area

 models real SSDs, realistic in indirection space

 Nameless-writing

23

24

 Mapping table sizes for typical file system images [Agrawal’09]

Nameless
writes use
2% - 7%
mapping table
space of
traditional
hybrid SSDs

100

1024

11
118

0.2 2.2

 Sequential and sustained 4KB random write

25 25

Nameless writes
deliver 20x random
write throughput
over traditional
hybrid SSDs

Performance of
nameless writes is
close to page FTL
(upper-bound)

 Varmail, FileServer, and WebServer from Filebench

26

Similar performance
when workload is
read or sequential-
write intensive

Performance of
hybrid FTL is worse
than the other two
FTLs when workload
has random writes

 Introduction

 Nameless write interfaces

 Nameless-writing device and ext3

 Results



27

 Problem: Excess indirection in flash-based SSDs

 Solution: De-indirection with Nameless Writes

 Implementation of a nameless-writing system
 Built an emulated nameless-writing SSD

 Ported ext3 to nameless writes

 Advantages of nameless writes

 Reduce the space cost of indirection over traditional SSDs

 Improve random write performance over traditional SSDs
 Reduce energy cost, simplify SSD firmware

28

 “All problems in computer science can be
solved by another level of indirection”
 Usually attributed to Butler Lampson
 Lampson attributes it to David Wheeler

 And Wheeler usually added:
“but that usually will create another problem”

29

 Too much: Excess indirection
 e.g. file offset => logical address => physical address

 Partial indirection
 e.g. nameless writes with segmented address space

 Too little: Cost of (complete) de-indirection
 e.g. overheads of recursive update

30

31

Thank you !

Questions ?

The ADvanced Systems Laboratory (ADSL)
http://www.cs.wisc.edu/adsl/

