Shredder

GPU-Accelerated Incremental
Storage and Computation

Pramod Bhatotia3,
Rodrigo Rodrigues$, Akshat Verma

SMPI-SWS, Germany
TIBM Research-India

USENIX FAST 2012

Handling the data deluge

« Data stored in data centers is growing at a fast pace

* Challenge: How to store and process this data ?
* Key technique: Redundancy elimination

» Applications of redundancy elimination
* Incremental storage: data de-duplication
* Incremental computation: selective re-execution

Max
Planck
% Institute
for Pramod Bhatotia
Software Systems

Redundancy elimination is expensive

Duplicate
File Chunks Hash Yes
Chunking —> Hashing —> Matching<
No

Content-based chunking [SOSP’01]

o| Fingerprint 1100110110010111101101o1o| File

v

Content
Marker
For large-scale data, chunking easily becomes a bottleneck

Max
Planck
% Institute
for Pramod Bhatotia 3
Software Systems

Accelerate chunking using GPUs

GPUs have been successfully applied to compute-intensive tasks

3
2.5
2
1.5
1
0.5
0

GBps

20Gbps (2.5GBps)

X

4

Multicore

GPU based design

Storage
Servers

?

2X

Using GPUs for data-intensive tasks presents new challenges

Max
Planck

% Institute
for

Software Systems

Pramod Bhatotia

Rest of the talk

Shredder design
e Basicdesign
 Background: GPU architecture & programming model
 Challenges and optimizations
Evaluation
Case studies
 Computation: Incremental MapReduce
« Storage: Cloud backup

Max
Planck
Institute

for Pramod Bhatotia
Software Systems

Shredder basic design

CPU (Host) GPU (Device)

Data for Chunked
chunking data

Max

Planck

Institute

for Pramod Bhatotia

Software Systems

GPU architecture

GPU (Device)

Multi-processor N

Multi-processor 2

Multi-processor 1
[Shared memory]

Pramod Bhatotia

Max
Planck

@ Institute
for

Software Systems

GPU programming model

GPU (Device)

Host memory

.Input

Multi-processor N

Multi-processor 2

Multi-processor 1

PCl " Shared memory |
L A Output

3383 B0k

Threads

Max
Planck
@ Institute
for Pramod Bhatotia

Software Systems

Scalability challenges

1. Host-device communication bottlenecks
2. Device memory conflicts

3. Host bottlenecks (See paper for details)

- Max
Planck
% Institute
for Pramod Bhatotia
Software Systems

Challenge # 1
Host-device communication bottleneck

CPU (Host) GPU (Device)
Main N [)
memory Device Chunkin
\{ Transfer global ™ kernelg
PCl memory
1\ J

/O

Synchronous data transfer and kernel execution
» Cost of data transfer is comparable to kernel execution
* For large-scale data it involves many data transfers

Max
Planck
% Institute
for Pramod Bhatotia 10
Software Systems

Asynchronous execution

CPU (Host)

S Transfer]
memory [

Asynchronous

copy

GPU (Device)

Device global memory

Pros:

+ Overlaps communication with computation
+ Generalizes to multi-buffering

Cons:
- Requires page-pinning of buffers at host side

3

Max
Planck
Institute

for
Software Systems

Buffer 1 | Buffer 2

Copy to Copy to
Buffer 1 Buffer 2 Time
>

Pramod Bhatotia

Compute Compute
Buffer 1 Buffer 2

11

Circular ring pinned memory buffers

CPU (Host)

11T

Pageable

Quffers

w:pv

nl a

S

L/

Pinned circular
Ring buffers

N

Asynchronous
copy

GPU (Device)

4

Max

Planck

Institute

for

Software Systems

Pramod Bhatotia

_{

Device global
memory

|

12

Challenge # 2
Device memory conflicts

CPU (Host) GPU (Deuice)

Main
memory

/0 \/

Max
Planck
“ Institute
‘ for Pramod Bhatotia 13

Software Systems

Accessing device memory

Device global memory

b

A n
I S S— et S
400-600 3 3 3 3
Cycles Thread-1 Thread-2 Thread-3 Thread-4
A
Few - Device shared memory —
cycles
v v SP-1 [SP-2] [SP-3] SP-4
Multi-processor

Max
Planck
% Institute
for Pramod Bhatotia
Software Systems

14

Memory bank conflicts

Device global memory

Un-coordinated accesses to global memory lead to

a large number of memory bank conflicts

Max

Planck

Institute

for

Software Systems

Device shared memory

[sp] [sp] [sp] [sp]

Multi-processor

Pramod Bhatotia

15

Accessing memory banks

—

Interleaved memory

Bank O Bank 1 Bank 2 Bank 3
Memory 0 1 2 3
address 4 5 6 7
> 8
Chip
enable / / / /v‘
OR

MSBs

LSBs

3

Address

Max

Planck

Institute

for

Software Systems

|

Data out

Pramod Bhatotia 16

Memory coalescing

Device global memory

Thread # 11213141

Memory
coalescing

Device shared memory

Max
Planck
@ Institute
for Pramod Bhatotia 17

Software Systems

Processing the data

Thread-1 Thread-2 Thread-3 Thread-4

Device shared memory

Max
Planck
Institute

for Pramod Bhatotia
Software Systems

18

Outline

Shreddeardedion
Evaluation
Case-studies

Max

Planck

Institute

for

Software Systems

Pramod Bhatotia

19

Evaluating Shredder

* Goal: Determine how Shredder works in practice
« How effective are the optimizations? (See paper for details)
* How does it compare with multicores?

* Implementation
e Host driver in C++ and GPU in CUDA
* GPU: NVidia Tesla C2050 cards
* Host machine: Intel Xeon with12 cores

Max
Planck
% Institute
for Pramod Bhatotia
Software Systems

20

Shredder vs. Multicores

GBps

2.5

1.5

5X

0.5

.

Multicore GPU Basic GPU Async GPU Async +
Coalescing

-

Max
Planck
Institute

for Pramod Bhatotia 21

Software Systems

Outline

« Shredderdesign
 Evaluation
e (Case studies
 Computation: Incremental MapReduce
« Storage: Cloud backup (See paper for details)

Max
Planck
% Institute
for Pramod Bhatotia
Software Systems

Incremental MapReduce

‘ ‘ ‘ Map tasks

Reduce tasks

¢ ¢ ¢
S

— Max
Planck

% Institute
for Pramod Bhatotia
Software Systems

Write output

Unstable input partitions

© 0 ©® o

? Reduce tasks
O B B [wee e
M fzsr - Pramod Bhatotia 24

Software Systems

GPU accelerated Inc-HDFS

3

copyFromLocal

Shredder
HDFS Client

Content-baseP chunking

Max
Planck
Institute

for Pramod Bhatotia
Software Systems

25

Related work

* GPU-accelerated systems
« Storage: Gibraltar [ICPP’10], HashGPU [HPDC'10]
« SSLShader[NSDI'11], PacketShader[SIGCOMM'10], ...

* Incremental computations

* Incoop[SOCC'11], Nectar[OSDI'10], Percolator[OSDI'10],...

Max
Planck
% Institute
for Pramod Bhatotia
Software Systems

26

Conclusions

GPU-accelerated framework for redundancy elimination
* Exploits massively parallel GPUs in a cost-effective manner

* Shredder design incorporates novel optimizations

* More data-intensive than previous usage of GPUs

Shredder can be seamlessly integrated with storage systems
* To accelerate incremental storage and computation

Max
Planck
Institute

for Pramod Bhatotia 27

Software Systems

Thank Youl!

