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Handling the data deluge

« Data stored in data centers is growing at a fast pace

* Challenge: How to store and process this data ?
* Key technique: Redundancy elimination

» Applications of redundancy elimination
* Incremental storage: data de-duplication
* Incremental computation: selective re-execution
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Redundancy elimination is expensive
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For large-scale data, chunking easily becomes a bottleneck
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Accelerate chunking using GPUs

GPUs have been successfully applied to compute-intensive tasks
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Using GPUs for data-intensive tasks presents new challenges
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Rest of the talk

Shredder design
e Basicdesign
 Background: GPU architecture & programming model
 Challenges and optimizations
Evaluation
Case studies
 Computation: Incremental MapReduce
« Storage: Cloud backup
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Shredder basic design
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GPU architecture
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GPU programming model
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Scalability challenges

1. Host-device communication bottlenecks
2. Device memory conflicts

3. Host bottlenecks (See paper for details)
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Challenge # 1
Host-device communication bottleneck
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Synchronous data transfer and kernel execution
» Cost of data transfer is comparable to kernel execution
* For large-scale data it involves many data transfers
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Asynchronous execution
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Pros:

+ Overlaps communication with computation
+ Generalizes to multi-buffering

Cons:
- Requires page-pinning of buffers at host side

3

Max
Planck
Institute

for
Software Systems

Buffer 1 | Buffer 2

Copy to Copy to
Buffer 1 Buffer 2 Time
>

Pramod Bhatotia

Compute  Compute
Buffer 1 Buffer 2

11



Circular ring pinned memory buffers
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Challenge # 2
Device memory conflicts
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Accessing device memory

Device global memory
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Memory bank conflicts

Device global memory

Un-coordinated accesses to global memory lead to

a large number of memory bank conflicts
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Accessing memory banks
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Memory coalescing

Device global memory
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Processing the data
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Outline

Shreddeardedion
Evaluation
Case-studies
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Evaluating Shredder

* Goal: Determine how Shredder works in practice
« How effective are the optimizations? (See paper for details)
* How does it compare with multicores?

* Implementation
e Host driver in C++ and GPU in CUDA
* GPU: NVidia Tesla C2050 cards
* Host machine: Intel Xeon with12 cores
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Shredder vs. Multicores
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Outline

« Shredderdesign
 Evaluation
e (Case studies
 Computation: Incremental MapReduce
« Storage: Cloud backup (See paper for details)
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Incremental MapReduce
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Unstable input partitions
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GPU accelerated Inc-HDFS
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Related work

* GPU-accelerated systems
« Storage: Gibraltar [ICPP’10], HashGPU [HPDC'10]
« SSLShader[NSDI'11], PacketShader[SIGCOMM'10], ...

* Incremental computations

* Incoop[SOCC'11], Nectar[OSDI'10], Percolator[OSDI'10],...
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Conclusions

GPU-accelerated framework for redundancy elimination
* Exploits massively parallel GPUs in a cost-effective manner

* Shredder design incorporates novel optimizations

* More data-intensive than previous usage of GPUs

Shredder can be seamlessly integrated with storage systems
* To accelerate incremental storage and computation
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Thank Youl!



