
De-indirection for Flash-based SSDs
with Nameless Writes

Yiying Zhang, Leo Prasath Aruraj, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

All problems in computer science can be solved
by another level of indirection.*

Indirection
• Mapping between different objects
• Flexibility, simplicity, modularity

Excess indirection
• Redundant levels of indirection in a system
• Space and performance cost

Indirection in Flash-based SSDs
• File offset -> logical address -> physical address
• Hides erase-before-program and wear leveling

* Usually attributed to Butler Lampson

De-indirection with
Nameless Writes

References
[1] M. Ben-Yehuda,M. D. Day, Z. Dubitzky,M. Factor, N. Har’El, A. Gordon, A.
Liguori, O. Wasserman, and B.-A. Yassour. The Turtles Project: Design and
Implementation of Nested Virtualization. OSDI ’10. Vancouver, Canada,
December 2010.
[2] N. Agrawal, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Generating
Realistic Impressions for File-System Benchmarking. FAST ’09, San Francisco,
California, February 2009.

…but that usually will create another problem.**

De-indirection
• Remove excess indirection
• The Turtles project [1]

New interface: Nameless Write
• Write without a name (logical address)
• Device allocates and returns physical address
• File system stores physical address

Advantages
• Reduces space and performance cost
• Device maintains critical controls

** Original quote by David Wheeler

Indirection:
Too Much of a Good Thing?

Evaluation

SSD emulator
• Linux pseudo block device
• Data stored in RAM

FTLs studied
• Page-level mapping: Performance upper bound
• Hybrid mapping: Models real SSDs
• Nameless-writing

Mapping Table Space Cost

Micro-benchmarks

Macro-benchmarks

Segmented Address Space

Problem: Recursive updates
• Writes propagate to reflect physical address
• Ordering needs to be enforced
• Multiple metadata writes for a data write

Solution: Two segments of address space

Physical address space
• Nameless write, physical read
• Contain data blocks

Virtual address space
• Traditional (virtual) read/write
• Small indirection table in device
• Contain metadata blocks (typically ~1% [2])

• One level of ordering writes
• Reduce additional metadata writes

Building Nameless-Writing
Device and Ext3

Nameless-writing SSD
• Nameless write interfaces support
• Flexible allocation
• Small indirection table
• Control of garbage collection and wear leveling

Nameless-writing ext3
• Ordered journaling mode
• Segmented address space
• Nameless write and physical read
• Free/trim
• Callback

Associated Metadata

Problem
• Locating metadata structures efficiently
• During callbacks and recovery
• Naive approach: traversing all metadata

Solution: Associated Metadata
• Small amount of metadata used to locate metadata
• E.g. Inode number, inode gen number, block offset
• Send with nameless writes and migration callbacks
• Stored adjacent to data pages on device

Nameless Write Interfaces

Nameless Write
• Writes only data and no logical address

Nameless Overwrite
• Writes data and old physical address

Physical Read
• Reads using physical address

Free/Trim
• Invalidates block at physical address

Virtual Write

Virtual Read

Migration Callbacks

Problem
• SSDs migrate physical pages because of wear leveling
• FS needs to be informed about physical address change

Solution: Migration Callbacks
• Device sends migration callbacks to FS
• Small remapping table during callback
• Reads and overwrites remapped
• FS acknowledges device
• Device removes remapping entries

