De-indirection for Flash-based SSDs

ey with Nameless Writes

MADIS ON

Yiying Zhang, Leo Prasath Aruraj, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

Indirection: De-indirection with
Too Much of a Good Thing? Nameless Writes

All problems in computer science can be solved ...but that usually will create another problem.** Nameless Write

by another level of indirection.* * Writes only data and no logical address
De-indirection

Indirection « Remove excess indirection Nameless Overwrite

* Mapping between different objects * The Turtles project [1] * Writes data and old physical address

* Flexibility, simplicity, modularity

Nameless Write Interfaces

New interface: Nameless Write Physical Read
Excess indirection » Write without a name (logical address) * Reads using physical address
 Redundant levels of indirection in a system * Device allocates and returns physical address

* Space and performance cost * File system stores physical address Free/Trim
* |nvalidates block at physical address

Indirection in Flash-based SSDs Advantages _ .
* File offset -> logical address -> physical address * Reduces space and performance cost Virtual Write

 Hides erase-before-program and wear leveling * Device maintains critical controls

Virtual Read

* Usually attributed to Butler Lampson ** Original quote by David Wheeler

Segmented Address Space Migration Callbacks Evaluation
Problem: Recursive updates Problem SSD emulator
. Writes propagate to reflect physical address * SSDs migrate physical pages because of wear leveling * Linux pseudo block device
* Ordering needs to be enforced * FS needs to be informed about physical address change e Data stored in RAM
 Multiple metadata writes for a data write
Directory Inode Data Solution: Migration Callbacks FTLs studied
FS L ﬂ | Device sends migration callbacks to FS E e Page-level mapping: Performance upper bound
: ° R Small remapping table during callback i * Hybrid mapping: Models real SSDs
5 A Pz,;\ 5 A Reads and overwntes remapped P1->P2 j__i_ « Nameless-writing
15 ________ EOE ___________________ FS acknowledges device
E : ! Device removes remapping entries _ Mapping Table Space Cost
>SD Journal P, | P, P) 1024
E 1000 -
: N 800
Solution: Two segments of address space)
@ 600
. O
Physical address space Associated Metadata = 400
 Nameless write, physical read .g 2001 100 118
* Contain data blocks Problem Q 0.2 7 2.2 [
* Locating metadata structures efficiently = 100GB 1TB
Virtual address space * During callbacks and recovery Page M NamelessM Hybrid
e Traditional (virtual) read/write * Naive approach: traversing all metadata Micro-benchmarks
 Small indirection table in device 50 -
* Contain metadata blocks (typically ~1% [2]) Solution: Associated Metadata A
* Small amount of metadata used to locate metadata % 40
Virtualaddress space Physical address space * E.g. Inode number, inode gen number, block offset X a3
et 5 LD T e e B * Send with nameless writes and migration callbacks ‘g
 Stored adjacent to data pages on device 5, 201
Data + logical address Data é 10 -
|_
FTL allocates physical addresses 0
Sequential Random

Page M NamelessM Hybrid

Building Nameless-Writing

Macro-benchmarks

‘ Device and Ext3 600,
SSD physical flash memory E 500
Nameless-writing SSD S 400
. . Nameless write interfaces support =
* One level of ordering writes e Flexible allocation 2 300
* Reduce additional metadata writes « Small indirection table 3 200-
. . c
. e Control of garbage collection and wear leveling — 100
Directory Inode Data —L
0
FS P _ - H Varmail FileServer WebServer
L . Nameless wrltlng ext3 Page M Nameless M Hybrid
__ InodeDatatla ... Ordered journaling mode
Pg Segmented address space
| . .
| Nameless write and physical read References
<D | ; ' Free/trim [1] M. Ben-Yehuda,M. D. Day, Z. Dubitzky,M. Factor, N. Har’El, A. Gordon, A.
] | P P, Liguori, O. Wasserman, and B.-A. Yassour. The Turtles Project: Design and
ourna P, | Callback
Implementation of Nested Virtualization. OSDI ’10. Vancouver, Canada,

December 2010.
[2] N. Agrawal, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Generating

Realistic Impressions for File-System Benchmarking. FAST 09, San Francisco,
California, February 2009.

