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elasticity for interactive web apps

Interactivity Service-Level-Obijective:
Over any |-minute interval, 99% of
requests are satisfied in less than |00ms
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web servers

Targeted systems features:

- horizontally scalable

- API for data movement

- backend for interactive apps
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overprovisioning storage system
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contributions

» Cloud computing is mechanism for storage elasticity
Scale up when needed

Scale down to save money

» We address the scaling policy

Challenges of latency-based scaling
Model-based approach for elasticity to deal with stringent SLO

Fine-grained workload monitoring aids in scaling up and down

Show elasticity for both a hotspot and a diurnal workload
pattern



SCADS key/value store

» Features
Partitioning (until some minimum data size)
Replication
Add/remove servers

» Properties
Range-based partitioning
Data maintained in memory for performance

Eventually consistent

(see SCADS: Scale-independent storage for
social computing applications, CIDR’09)



classical closed-loop control for elasticity?
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oscillations from a noisy signal

Noisy signal...
Will smoothing help?
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too much smoothing masks spike

99th %-tile
latency




variation for smoothing intervals
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model-predictive control (MPC)

» MPC instead of classical closed-loop
Upper %-tile latency is a noisy signal
Use per-server workload as predictor of upper %-tile latency

Therefore need a model that predicts SLO violations based on
observed workload

workload w SLO violation

» Reacting with MPC

Use model of the system to determine a sequence of actions
to change state to meet constraint

Execute first steps, then re-evaluate



model-predictive control loop
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building a performance model

» Benchmark SCADS servers
on Amazon’s EC2

» Steady-state model

Single server capacity Violation

Explore space of possible
workload
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how much data to move?
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finer-granularity workload monitoring

» Need fine-grained workload monitoring
Data movement especially impacts tail of latency distribution
Only move enough data to alleviate performance issues
Move data quickly
Better for scaling down later

» Monitor workload on small units of data (bins)

Move/copy bins between servers



summary of approach

» Fine-grained monitoring and performance model
Determine amount of data to move from overloaded server
Estimate how much “extra room” an underloaded server has

Know when safe to coalesce servers

» Replication for predictability and robustness

See paper and/or tonight’s poster session
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experimental results

» Experiment setup
Up to 20 SCADS servers run on ml.small instances on Amazon EC2
Server capacity: 800MB, due to in-memory restriction
5-10 data bins per server
|00ms SLO on read latency

» Workload profiles
Hotspot
|00% workload increase in five minutes on a single data item
Based on spike experienced by CNN.com on 9/1|
Diurnal
Workload increases during the day, decreases at night
Replayed trace at 12x speedup
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extra workload directed to single data item

aggregate request rate
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replicating hot data

22

per-bin
request rate

0 10000
|

99th percentile

latency [ms]

number of servers

per-bin request rate

30000
|

[ I I I |
05:10 05:15 05:20 05:25 05:30

99t %-tile latency (ms)

o
L0 —
—
o
o
—

A

& number of servers
1o}

time [min]



scaling up and down
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cost-risk tradeoff

» Over-provisioning
Allows more time before violation occurs
Cost-risk tradeoff

» Comparing over-provisioning for diurnal experiment
Recall SLO parameters: threshold, percentile, interval
Over-provisioning factor of 30% vs 10%

Interval Max percentile achieved
30% 10%

5 min 99.5 99

| min 99 95

20 sec 95 90
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conclusion

» Elasticity for storage servers possible by leveraging cloud
computing

» Upper percentile too noisy

Model-based approach to build control framework for
elasticity subject to stringent performance SLO

» Finer-grained workload monitoring
Minimize impact of data movement on performance
Quickly responding to workload fluctuations

» Evaluated on EC2 with hotspot and diurnal workloads
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increasing replication

99th percentile latency with varying replication
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