The SCADS Director: Scaling a Distributed Storage System Under

Scaling a Distributed Storage System Under Stringent Performance Requirements

Beth Trushkowsky, Peter Bodík, Armando Fox, Michael J. Franklin, Michael I. Jordan, David A. Patterson

elasticity for interactive web apps

Interactivity Service-Level-Objective: Over any 1-minute interval, 99% of requests are satisfied in less than 100ms

Targeted systems features:

- horizontally scalable
- API for data movement
- backend for interactive apps

wikipedia workload trace - June 2009

overprovisioning storage system

contributions

- Cloud computing is mechanism for storage elasticity
 - Scale up when needed
 - Scale down to save money
- We address the scaling policy
 - Challenges of latency-based scaling
 - Model-based approach for elasticity to deal with stringent SLO
 - Fine-grained workload monitoring aids in scaling up and down
 - Show elasticity for both a hotspot and a diurnal workload pattern

SCADS key/value store

Features

- Partitioning (until some minimum data size)
- Replication
- Add/remove servers

Properties

- Range-based partitioning
- Data maintained in memory for performance
- Eventually consistent

(see SCADS: Scale-independent storage for social computing applications, CIDR'09)

classical closed-loop control for elasticity?

oscillations from a noisy signal

too much smoothing masks spike

variation for smoothing intervals

model-predictive control (MPC)

MPC instead of classical closed-loop

- Upper %-tile latency is a noisy signal
- Use per-server workload as predictor of upper %-tile latency
- Therefore need a model that predicts SLO violations based on observed workload

Reacting with MPC

- Use model of the system to determine a sequence of actions to change state to meet constraint
- Execute first steps, then re-evaluate

model-predictive control loop

building a performance model

Benchmark SCADS servers on Amazon's EC2

- Steady-state model
 - Single server capacity
 - Explore space of possible workload
 - Binary classifier: SLO violation or not

how much data to move?

finer-granularity workload monitoring

- Need fine-grained workload monitoring
 - Data movement especially impacts tail of latency distribution
 - Only move enough data to alleviate performance issues
 - Move data quickly
 - Better for scaling down later
- Monitor workload on small units of data (bins)
 - Move/copy bins between servers

summary of approach

- Fine-grained monitoring and performance model
 - Determine amount of data to move from overloaded server
 - Estimate how much "extra room" an underloaded server has
 - Know when safe to coalesce servers
- Replication for predictability and robustness
 - See paper and/or tonight's poster session

controller stages

Stage 2: Partition

controller stages

controller stages

experimental results

Experiment setup

- ▶ Up to 20 SCADS servers run on m1.small instances on Amazon EC2
- Server capacity: 800MB, due to in-memory restriction
- ▶ 5-10 data bins per server
- ▶ 100ms SLO on read latency

Workload profiles

- Hotspot
 - ▶ 100% workload increase in five minutes on a single data item
 - Based on spike experienced by CNN.com on 9/11
- Diurnal
 - Workload increases during the day, decreases at night
 - Replayed trace at 12x speedup

extra workload directed to single data item

21

replicating hot data

22

scaling up and down

Number of servers

two experiments close to "ideal"

Over-provisioning tradeoff

Amplify workload by 10%, 30%

Savings

Known peak: 16%

▶ 30% headroom: 41%

cost-risk tradeoff

- Over-provisioning
 - Allows more time before violation occurs
 - Cost-risk tradeoff
- Comparing over-provisioning for diurnal experiment
 - ▶ Recall SLO parameters: threshold, percentile, interval
 - Over-provisioning factor of 30% vs 10%

Interval	Max percentile achieved	
	30%	10%
5 min	99.5	99
I min	99	95
20 sec	95	90

conclusion

- Elasticity for storage servers possible by leveraging cloud computing
- Upper percentile too noisy
 - Model-based approach to build control framework for elasticity subject to stringent performance SLO
- Finer-grained workload monitoring
 - Minimize impact of data movement on performance
 - Quickly responding to workload fluctuations
- Evaluated on EC2 with hotspot and diurnal workloads

increasing replication

99th percentile latency with varying replication

