Making the Common Case
the Only Case with
Anticipatory Memory Allocation

Swaminathan Sundararaman, Yupu Zhang, Sriram Subramanian,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

Common Case Code

Why do file systems not crash all the time?
Bad things rarely happen

Common case code: frequently run code
Well tested — run all the time by users
“"Hardened” code — lower failure probability

Ideal: if everything was common case code
We can significantly reduce the occurrence of bugs

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation

Recovery Code

Code to handle exceptions/errors/failures

Worst property: rarely run but when executed
must run absolutely correctly

Prior work uncovered bugs in recovery code
Memory allocation (englerospi‘oo, Yang 05DI 04, Yang 0SDI"06]
Error propagation [Gunawi FAST 08, Rubio-Gonzalez PLDI ‘0g]
Missing recovery code [engler 0SDI ‘o0, Swift SOSP ‘03]

Focus on memory allocation failures

/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 3
3 g Y p Y Y

Why Memory Allocation?

Memory is a limited resource
Virtualization, cloud computing (data centers)
Buggy components slowly leak memory

Memory is allocated throughout the OS

Core kernel code, file systems, device drivers, etc.
Allocation requests may not succeed

Memory can be allocated deep inside the stack
Deep recovery is difficult [Gunawi FAST <08, Rubio-Gonzalez PLDI *09]

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 4

Are Allocation Failures an Issue?

Fault injection during memory allocation calls

15 runs of pbenchmark
_ ’ Error Abort Unusable Inconsistent
.1, .5faI|Ure prob. ------------- s o eap o ea» o ea» o ea» o @a» o @a» o ea» o a» o =
D S A - A S - DA o . _.
Error - good _____ el S L R SO N e S
Btrfs_, 0 14 15 0
Abort, unusable, or | Btrfs, O S - S o
inconsistent - bad jfs 15 0 2 5
LS . S S S S I
xfs_, 13 1 0 3
xfs, 10 5 0 5

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 5

Why Not Retry Until Success?

Deadlocks

Requests need not make progress

Not always possible
Critical sections, interrupt handlers

What about GFP_NOFAIL flag?

“"GFP_NOFAIL should only be used when we have no way of
recovering from failure. ... GFP_NOFAIL is there as a marker
which says ‘we really shouldn’t be doing this but we don't
know how to fix it"” - Andrew Morton

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 6

Key Idea

Mantra:
Most robust recovery code is recovery code that never runs at all

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 7

Our Solution (AMA)

Attempt to make common case the ONLY case

Pre-allocate memory inside OS (context of file systems)

[Application]

Cleanup ,'
|

5
Y

[Block Driver]

Vanilla Kernel

3/11/11

[Application]

[Block E)river]

AMA Kernel

® Memory Allocation

Kernel

Advantages

* Recovery code not scattered
* Shallow recovery

* Code naturally written

FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 8

Results

We have evaluated AMA with ext2 file system
ext2-mfr (memory failure robust ext2)

Robustness
Recovers from all memory allocation failures

Performance
Low overheads for most user workloads

Memory overheads
Most cases: we do really well
Few cases: we perform badly

/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 9
3 g Y p Y Y

Outline

Introduction

Challenges

Anticipatory Memory Allocation (AMA)
Reducing memory overheads
Evaluation

Conclusions

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 10

Types of Memory Allocation

Different types of memory allocation calls
kmalloc(size, flag)
vmalloc(size, flag)
kmem_cache_alloc(cachep, flag)
alloc_pages(order, flag)

Need: to handle all memory allocation calls

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation

Types of Invocation

Hard to determine the number of objects
allocated inside each function

Simple calls

Parameterized & conditional calls

LOOpS \ struct dentry *d alloc(..., struct gqstr *name)
{

Function calls

Recursions if (name—len > DNAME INLINE LEN-1) {
dname = kmalloc(name—len + 1, ...);
if ({dname) return NULL;

#

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 12

Outline

Introduction

Challenges

Anticipatory Memory Allocation (AMA)
Reducing memory overheads

Evaluation

Conclusions

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 13

AMA: Overview

5 [5
Input Arguments Input Arguments l Legend
Y Vs i | MM
el ‘ ’ Memory Allocation Calls
¥ ¥ o S
g tj X :) Pre-allocate :} ‘GE,
X N Memory) A4
How much to allocate? Static analysis
How to use the pre-allocated objects? Runtime support
Vanilla Kernel | AMA Kernel

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 14

AMAlyzer [Static Analysis]

. ?
£ (o) ¢ 1. |dent|fy |Oop5 Slen Before? Is KMA:
Al Geneer:tIe and recursions. \ l
: ocation Relevant _

LDOPS Recursio
Kernel code Graph »» ,
CIL Nodes: 400 : E\J)
[Necula CC'02] LOC: gk /gg R
Syscall : e
Nodes: 2k : Pi
Edges: 7k =
LOC: 180k R
T
Memory allocation
functions - — —_—
o: Call graph recursions backtracking
3/11/11

FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 15

AMAlyzer - Slicing

struct dentry *d alloc(..., struct qstr *name)

{...
100 if (name—len > DNAME INLINE LEN-1) {

102 if ('dname) return NULL;
o 4f

Output of slicing:

Function: d_alloc()

dname = kmalloc(name->len +1, ...);
kmalloc size = name->len+1;

If (name->len > DNAME_INLINE_LEN-1)

size =

d_alloc
name->len+1

arg N: name

3: Slicing &
backtracking

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 16

AMAlyzer - Backtracking

2
1 Ml |
B . cache_alloc(inode_cache)

O@{H(x(nameolenﬂ)

A kmalloc(name->len+1) name
B kmalloc(name->len+1) name
C cache_alloc(lnode_cache)

F kmalloc(...) + cache_alloc(inode_cache) name
G kmalloc(...)+cache_alloc(inode_cache) name

Allocation equation
for each system call

3: Slicing &
backtracking

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 17

AMA Runtime
[Application] [Application]
N Syscall | Attached CJ

System state
to the process v
Input Function c
parameters 17 obj = kmalloc(..)
1
Allocation Func\tlion
descriptor —>' Pre-allocate Pre-allocated 9
objects Objects pg = alloc_page(..)

Phase 1: Pre-allocation Phase 2: Using pre-allocated memory ' Phase 3: Cleanup

loff t pos = file pos read(file);

If (err) return err;

ret = vfs read(file, buf, count, &pos);
file pos write(file, pos);

AMA CLEANUP();

VFS read example
FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 18

4
|
\

3/11/11

Failure Policies

What if pre-allocation fails?
Shallow recovery: beginning of a system call

No actual work gets done inside the file system
Less than 20 lines of code [~-Mantra]

Flexible recovery policies
Fail-immediate
Retry-forever (w/ and w/o back-off)

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 19

Outline

Introduction

Challenges

Anticipatory Memory Allocation (AMA)
Reducing memory overheads
Evaluation

Conclusions

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 20

Limitations of Static Analysis

Hard to accurately predict memory
requirements

Depends on current fs state (e.g., bitmaps)

Conservative estimate
Results in over allocation

Infeasible under memory pressure

Need: ways to transform worst case to near exact

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 21

Cache Peeking

Static analysis ignores cached objects

Read: file 1 pages 1 to 4
LI
LI

Page Cache

AMA

Normal Mode

Read: filex pa

(o
¢ & &
G’H G‘H G‘H

AMA

2 Ppin

Appllcatlon

gesitoy4 !

Page Cache

Cache Peeking

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 22

Page Recycling

Data need not always be cached in memory
Upper bound for searching entries are high

Té Entry could be in any of the N pages
2 We always need to allocate max. pages
) .; :gn _______ o Allocate a page and recycle it inside loop
E T;} u 9 9 ® Other examples: searching for a free block,
& 2 truncating a file

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 23

Outline

Introduction

Challenges

Anticipatory Memory Allocation (AMA)
Reducing memory overheads
Evaluation

Conclusions

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 24

Evaluation

Case study: ext2
AMA version: ext2-mfr (memory failure robust)

Questions that we want to answer:
How robust is AMA to memory allocation failures?
Space and performance overheads during user workloads?

Setup:
2.2 GHz Opteron processor & 2 GB RAM
Linux 2.6.32
Two 80 GB western digital disk

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 25

Robustness

Error Abort Unusable Inconsistent
(> (>
ext2, 10 ! 5 | : 5 0
| |
exta,, ol A0] AER T - S o |
Ext2-mfr, 0 0 o 0
-
+ | Ext2-mfr o) o) 0 0
& 4 _= -50- L B B BN BB B B B B S B BB B B B B B b B B B B B B BB B B B B B B -~
_ | Ext2-mfr,, 115 | o o 0
o) I :
S -
= Ext2-mfr, 115) 0 0 0
Ext2-mfr, 15 | 0 0 o

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 26

Performance Overheads

160 146 .15

137

140 130

120

[
@)
o

. Less than 7% overhead for all workloads

60

Elapsed Time (s)

48 50
40
20 13.5 13.7 11.611.7

Seq. Write Seq.Read Rnd.Write Rnd. Read Sort OpenSSH PostMark

£6 60

)

M ext2 W ext2-mfr

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 27

Memory Overheads

(GB) Overhead (GB) Overhead
Sequential Read 1.00 6.98 [r6—8;;<-: 1.00 [_1.;)o_x_:
Sequential Write 1.01 1.01 _1.;(;x_ 1.01 I.(;o_x_
Random Read 0.26 0.63 2.14X 0.39 1.50X

_RandomWrite | o0 | o0 | ___ voox o LOoX

PostMark 3.15 5.88 1.87x 3.28 1.04X
Sort 0.10 0.10 1.00X 0.10 1.00X
OpenSSH 0.02 1.56 lr 83_2_9;: 0.07 I, _3.750_x—:

Less than 4% overhead for most workloads

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 28

Outline

Introduction

Challenges

Anticipatory Memory Allocation (AMA)
Reducing memory overheads
Evaluation

Conclusions

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 29

Summary

AMA: pre-allocation to avoid recovery code
All recovery is done inside a function
Unified and flexible recovery policies

Reduce memory overheads
Cache peeking & page recycling

Evaluation
Handles all memory allocation failures
< 10% (memory & performance) overheads

/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 30
3 g Y p Y Y

Conclusions

"Act as if it were impossible to fail”— Dorothea Brande

Mantra:
Most robust recovery code is
recovery code that never runs at all

3/11/11 FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation 31

Thanks!

Advanced Systems Lab (ADSL)
University of Wisconsin-Madison

THE UNIVERSITY

WISCONSIN http://www.cs.wisc.edu/adsl|

3/11/11

MADISON

FAST '11: Making the Common Case the Only Case with Anticipatory Memory Allocation

@

A D S L

32

