## A study of practical deduplication

**Dutch T. Meyer** 

University of British Columbia Microsoft Research Intern

William Bolosky

Microsoft Research







## A study of practical deduplication

Dutch T. Meyer
University of British Columbia
Microsoft Research Intern
William Bolosky
Microsoft Research

## Why study deduplication?



9ms per seek



\$0.046 per GB





## When do we exploit duplicates?

## It Depends.

- How much can you get back from deduping?
- How does fragmenting files affect performance?
- How often will you access the data?

## Outline

- Intro
- Methodology
- "There's more here than dedup" teaser

(intermission)

- Deduplication Background
- Deplication Analysis
- Conclusion

## Methodology



## There's more here than dedup!

- We update and extend filesystem metadata findings from 2000 and 2004
- File system complexity is growing
- Read the paper to answer questions like:

Are my files bigger now than they used to be?

## Teaser: Histogram of file size



## There's more here than dedup!

How fragmented are my files?

## Teaser: Layout and Organization

- High linearity: only 4% of files fragmented in practice
  - Most windows machines defrag weekly
- One quarter of fragmented files have at least 170 fragments

### Intermission

- Intro
- Methodology
- "There's more here than dedup" teaser

(intermission)

- Deduplication Background
- Deplication Analysis
- Conclusion

## **Dedup Background**

#### Whole file Deduplication



## Dedup Background

#### **Fixed Chunk Deduplication**



## Dedup Background

#### **Rabin Figerprinting**



## The Deduplication Space

| Algorithm             | Parameters            | Cost                           | Deduplication effectiveness |
|-----------------------|-----------------------|--------------------------------|-----------------------------|
| Whole-file            |                       | Low                            | Lowest                      |
| Fixed<br>Chunk        | Chunk Size            | Seeks<br>CPU<br>Complexity     | Middle                      |
| Rabin<br>fingerprints | Average<br>Chunk Size | Seeks More CPU More Complexity | Highest                     |

# What is the relative deduplication rate of the algorithms?

## Dedup by method and chunk size





## Backup dedup over 4 weeks



# How does the number of filesystems influence deduplication?

## Dedup by filesystem count



So what is filling up all this space?

## Bytes by containing file size





## Disk consumption by file type



## Disk consumption by file type



| Which of these types deduplicate w | /ell: |
|------------------------------------|-------|
|------------------------------------|-------|

## Whole-file duplicates

|                 | % of Duplicate | Mean File    | % of        |
|-----------------|----------------|--------------|-------------|
| Extension       | Space          | Size (bytes) | Total Space |
|                 |                |              |             |
| dll             | 20%            | 521K         | 10%         |
| lib             | 11%            | 1080K        | 7%          |
| pdb             | 11%            | 2M           | 7%          |
| <none></none>   | 7%             | 277K         | 13%         |
| exe             | 6%             | 572K         | 4%          |
| cab             | 4%             | 4M           | 2%          |
| msp             | 3%             | 15M          | 2%          |
| msi             | 3%             | 5M           | 1%          |
| iso             | 2%             | 436M         | 2%          |
| <a guid=""></a> | 1%             | 604K         | <1%         |

What files make up the 20% difference between whole file dedup and sparse file, as compared to more aggressive deduplication?

## Where does fine granularity help?



## Last plea to read the whole paper

- ~4x more results in paper!
- Real world filesystem analysis is hard
  - Eight machines months in query processing
  - Requires careful simplifying assumptions
  - Requires heavy optimization

## Conclusion

- The benefit of fine grained dedup is < 20%</li>
  - Potentially just a fraction of that.
- Fragmentation is a manageable problem
- Read the paper for more metadata results

# We're releasing this dataset