
Just-­‐In-­‐Time	
 Analy1cs	
 on	
 	

Large	
 File	
 Systems	

H.	
 Howie	
 Huang,	
 Nan	
 Zhang,	
 Wei	
 Wang	
 	
 	
 	
 	
 George	
 Washington	
 University	

Gautam	
 Das	
 	
 	
 	
 	
 	
 	
 	
 	
 University	
 of	
 Texas	
 at	
 Arlington	

Alexander	
 S.	
 Szalay	
 	
 	
 	
 	
 	
 	
 Johns	
 Hopkins	
 University	
 	

FAST	
 2011	

February	
 17,	
 2011	

Outline
•  Introduction	

•  Aggregate Query Processing	

•  Evaluation	

•  Related Work	

•  Conclusion	

2	

Motivations
•  Large file systems are common	

•  Users are interested in performing Just-In-Time analytics	

–  Must be completed within a short amount of time	

–  Has no prior knowledge of file system being analyzed	

•  Border patrol	

–  E.g., check a traveler’s laptop for 	

	

pirated movies and software ISO 	

3	

Data Analytics
•  Aggregate Query	

–  E.g., “What is the total size of various types of documents?”	

–  SELECT SUM(file.size) FROM filesystem 	

	

WHERE file.extension IN { ‘txt’, ‘doc’}; 	

	

// AVG and COUNT are also in this category	

•  Top-k Query	

–  E.g., “Which are the 100	
 largest files that belong to John?”	

–  SELECT TOP 100	
 files FROM filesystem 	

	

WHERE file.owner = ‘John’ ORDER BY file.size DESC;	

4	

Current Approaches
•  Scan file system for each query 	

–  E.g., find command in Linux	

–  Inefficient	

– Growing gap between storage 	

	

performance and capacity	

•  Utilize pre-built indexes that are regularly updated	

–  E.g., Google Desktop and Beagle	

– Undesirable when the metadata indexes are not available	

– The queries are scarcely needed	

5	

At a Glance
•  Tradeoff between query accuracy and cost 	

–  Provide approximate (i.e., statistically accurate) answers that reside close
from the precise answer	

•  Glance, a just-in-time query processing system 	

–  Produce answers based on a small number of samples (files or folders) 	

•  File system agnostic	

–  Works seamlessly with the tree structure of the system	

–  Can be applied instantly over any new file system 	

•  Remove the need of disk crawling and index building	

–  Without a priori knowledge or pre-processing of file system	

6	

Glance Architecture
•  Consists of two algorithms 	

•  FS_Agg for approximate processing of aggregate queries	

–  FS_Agg_Basic: a random descent technique for unbiased

aggregate estimations	

–  Two enhancements to reduce the error and performance
overhead	

•  FS_TopK for approximate processing of top-k queries	

–  A pruning-based technique	

7	

FS_Agg_Basic - Random Descent

• 	
 Solid	

⟨f0, f1, f2⟩= ⟨2,2,2⟩ and ⟨s0,s1,s2⟩ = ⟨4,1,0⟩ Estimation of 2 + 8 + 8 = 18	

•  Dotted	

⟨f0,f1,f2⟩ = ⟨2,0,1⟩ and ⟨s0,s1,s2⟩ = ⟨4,2,0⟩ Estimation of 2 + 0 + 8 = 10	

8	

3 Aggregate Query Processing

In this section, we develop FS Agg, our algorithm

for processing aggregate queries. We first describe

FS Agg Basic, a vanilla algorithm which illustrates our

main idea of aggregate estimation without bias through a

random descent process within a file system. Then, we

describe two ideas to make the vanilla algorithm practical

over very large file systems: high-level crawling lever-

ages the special properties of a file system to reduce the

standard error of estimation, and breadth-first implemen-
tation improves both accuracy and efficiency of query

processing. Finally, we combine all three techniques to

produce FS Agg.

3.1 FS Agg Basic
A Random Descent Process: In general, the folder or-

ganization of a file system can be considered as a tree or a

directed acyclic graph (DAG), depending on whether the

file system allows hard links to the same file. The random

descent process we are about to discuss can be applied to

both cases with little change. For the ease of understand-

ing, we first focus on the case of tree-like folder structure,

and then discuss a simple extension to DAG at the end of

this subsection.

Figure 1: Random descents on a tree-like structure

Figure 1 depicts a tree structure with root correspond-

ing to the root directory of a file system, which we shall

use as a running example throughout the paper. One can

see from the figure that there are two types of nodes in

the tree: folders (directories) and files. A file is always

a leaf node. The children of a folder consist of all sub-

folders and files in the folder. We refer to the branches

coming out of a folder node as subfolder-branches and

file-branches, respectively, according to their destination

type. We refer to a folder with no subfolder-branches

as a leaf-folder. Note that this differs from a leaf in the

tree, which can be either a file or a folder containing nei-

ther subfolder nor file. The random descent process starts

from the root and ends at a leaf-folder. At each node,

we choose a subfolder branch of the node uniformly at

random for further exploration. During the descent pro-

cess, we evaluate all file branches encountered at each

node along the path, and generate an aggregate estima-

tion based on these file branches.

To make the idea more concrete, consider an exam-

ple of estimating the COUNT of all files in the system.

At the beginning of random descent, we access the root

to obtain the number of its file- and subfolder-branches

f0 and s0, respectively, and record them as our evalua-

tion for the root. Then, we randomly choose a subfolder-

branch for further descent, and repeat this process until

we arrive at a folder with no subfolder. Suppose that the

numbers we recorded during such a descent process are

f0, s0, f1, s1, . . . , fh, sh, where sh = 0 because each de-

scent ends at a leaf-folder. We estimate the COUNT of

all files as

ñ =
h�

i=0



fi ·
i−1�

j=0

sj



 , (1)

where
�i−1

j=0 sj is assumed to be 1 when i = 0. Two ex-

amples of such a random descent process are marked in

Figure 1 as red solid and blue dotted lines, respectively.

The solid descent produces �f0, f1, f2� = �2, 2, 2� and

�s0, s1, s2� = �4, 1, 0�, leading to an estimation of 2 +

8 + 8 = 18. The dotted one produces �f0, f1, f2� =
�2, 0, 1� and �s0, s1, s2� = �4, 2, 0�, leading to an esti-

mation of 2 + 0 + 8 = 10. The random descent process

can be repeated multiple times (by restarting from the

root) to produce a more accurate result (by taking the av-

erage of estimations generated by all descents).

Unbiasedness: Somewhat surprisingly, the estimation

produced by each random descent process is completely

unbiased - i.e., the expected value of the estimation is

exactly equal to the total number of files in the system.

To understand why, consider the total number of files at

the i-th level (with root being Level 0) of the tree (e.g.,

Files 1 and 2 in Figure 1 are at Level 3), denoted by Fi.

According to the definition of a tree, each i-level file be-

longs to one and only one folder at Level i − 1. For

each (i − 1)-level folder vi−1, let |vi−1| and p(vi−1) be

the number of (i-level) files in vi−1 and the probability

for vi−1 to be reached in the random descent process,

respectively. One can see that |vi−1|/p(vi−1) is an unbi-

ased estimation for F (i) because

E

�
|vi−1|
p(vi−1)

�
=

�

vi−1

�
p(vi−1) ·

|vi−1|
p(vi−1)

�
= Fi. (2)

With our design of the random descent process, the prob-

ability p(vi−1) is

p(vi−1) =
i−2�

j=0

1

sj(vi−1)
, (3)

4

Estimate the COUNT of
all files in the system	

fi: number of files	

sj: number of subfolders	

Unbiased Estimation
•  The estimation produced by each random

descent process is completely unbiased	

•  The expected value of the estimation is exactly
equal to the total number of files in the system	

–  	

 |vi-­‐1|:	
 the number of (i-level) files in the folder vi-­‐1	

–  	

 p(v-­‐1): the probability for vi-­‐1	
 to be reached in the

random descent	

9	

3 Aggregate Query Processing

In this section, we develop FS Agg, our algorithm

for processing aggregate queries. We first describe

FS Agg Basic, a vanilla algorithm which illustrates our

main idea of aggregate estimation without bias through a

random descent process within a file system. Then, we

describe two ideas to make the vanilla algorithm practical

over very large file systems: high-level crawling lever-

ages the special properties of a file system to reduce the

standard error of estimation, and breadth-first implemen-
tation improves both accuracy and efficiency of query

processing. Finally, we combine all three techniques to

produce FS Agg.

3.1 FS Agg Basic
A Random Descent Process: In general, the folder or-

ganization of a file system can be considered as a tree or a

directed acyclic graph (DAG), depending on whether the

file system allows hard links to the same file. The random

descent process we are about to discuss can be applied to

both cases with little change. For the ease of understand-

ing, we first focus on the case of tree-like folder structure,

and then discuss a simple extension to DAG at the end of

this subsection.

Figure 1: Random descents on a tree-like structure

Figure 1 depicts a tree structure with root correspond-

ing to the root directory of a file system, which we shall

use as a running example throughout the paper. One can

see from the figure that there are two types of nodes in

the tree: folders (directories) and files. A file is always

a leaf node. The children of a folder consist of all sub-

folders and files in the folder. We refer to the branches

coming out of a folder node as subfolder-branches and

file-branches, respectively, according to their destination

type. We refer to a folder with no subfolder-branches

as a leaf-folder. Note that this differs from a leaf in the

tree, which can be either a file or a folder containing nei-

ther subfolder nor file. The random descent process starts

from the root and ends at a leaf-folder. At each node,

we choose a subfolder branch of the node uniformly at

random for further exploration. During the descent pro-

cess, we evaluate all file branches encountered at each

node along the path, and generate an aggregate estima-

tion based on these file branches.

To make the idea more concrete, consider an exam-

ple of estimating the COUNT of all files in the system.

At the beginning of random descent, we access the root

to obtain the number of its file- and subfolder-branches

f0 and s0, respectively, and record them as our evalua-

tion for the root. Then, we randomly choose a subfolder-

branch for further descent, and repeat this process until

we arrive at a folder with no subfolder. Suppose that the

numbers we recorded during such a descent process are

f0, s0, f1, s1, . . . , fh, sh, where sh = 0 because each de-

scent ends at a leaf-folder. We estimate the COUNT of

all files as

ñ =
h�

i=0



fi ·
i−1�

j=0

sj



 , (1)

where
�i−1

j=0 sj is assumed to be 1 when i = 0. Two ex-

amples of such a random descent process are marked in

Figure 1 as red solid and blue dotted lines, respectively.

The solid descent produces �f0, f1, f2� = �2, 2, 2� and

�s0, s1, s2� = �4, 1, 0�, leading to an estimation of 2 +

8 + 8 = 18. The dotted one produces �f0, f1, f2� =
�2, 0, 1� and �s0, s1, s2� = �4, 2, 0�, leading to an esti-

mation of 2 + 0 + 8 = 10. The random descent process

can be repeated multiple times (by restarting from the

root) to produce a more accurate result (by taking the av-

erage of estimations generated by all descents).

Unbiasedness: Somewhat surprisingly, the estimation

produced by each random descent process is completely

unbiased - i.e., the expected value of the estimation is

exactly equal to the total number of files in the system.

To understand why, consider the total number of files at

the i-th level (with root being Level 0) of the tree (e.g.,

Files 1 and 2 in Figure 1 are at Level 3), denoted by Fi.

According to the definition of a tree, each i-level file be-

longs to one and only one folder at Level i − 1. For

each (i − 1)-level folder vi−1, let |vi−1| and p(vi−1) be

the number of (i-level) files in vi−1 and the probability

for vi−1 to be reached in the random descent process,

respectively. One can see that |vi−1|/p(vi−1) is an unbi-

ased estimation for F (i) because

E

�
|vi−1|
p(vi−1)

�
=

�

vi−1

�
p(vi−1) ·

|vi−1|
p(vi−1)

�
= Fi. (2)

With our design of the random descent process, the prob-

ability p(vi−1) is

p(vi−1) =
i−2�

j=0

1

sj(vi−1)
, (3)

4

Processing of Aggregate Queries

•  SUM: similar to COUNT, but set fi as the SUM
of a meta attribute over all files	

•  AVG: compute as SUM/COUNT	

– Such an estimation is no longer unbiased	

•  Selection conditions: only evaluate fi over the
files that satisfy the conditions	

10	

Disadvantages of Basic Algorithm

•  Two types of folders may lead to extremely high
estimation variance	

–  High-level leaf-folders, i.e., “shallow” folders with no subfolders	

–  Deep-level folders which reside at much lower levels	

11	

FS_Agg Improvements
•  High-level crawling for level i and above	

– Eliminate the negative impact of high-level leaf-

folders on estimation variance	

•  Breath-first descent instead of depth-first	

– At any level of the tree, randomly selects a set of

folders to access at the next level 	

– Significantly increase the selection probability for a
deep folder	

12	

Evaluation Setup
•  A prototype in C code for Linux/ext3	

–  FS_Agg has three parameters	

•  h - the number of (highest) levels for crawling	

•  Psel - the selection probability	

•  Smin- the minimum number of selections	

•  psel and smin determine how many subfolders to be selected 	

–  FS_TopK has a parameter	

•  γ - the (estimation) enlargement ratio	

•  Hardware	

–  Intel Core 2 Duo processor, 4GB RAM, and 1TB Samsung

7200RPM hard drive	

•  Report the average of five runs	

13	

Test File Systems
•  Windows file systems from Microsoft trace	

–  m100K (largest with <100K), m1M, m10M (largest in the

trace)	

–  m100M (largest 33 systems), and m1B	

•  Plan 9 (Unix-like) systems from Bell Lab (~2M files)	

•  NFS from Harvard trace (2.3M files)	

•  Synthetic file systems generated by Impressions	

– E.g., i10K, i100K, i1M	

•  Welcome large real-world file systems	

14	

Metrics
•  Query accuracy	

–  For aggregate queries, the relative error of the

approximate answer apx compared with the precise
one ans - i.e., |apx − ans| / |ans|	

–  For top-k queries, the percentage of items that are
common in the approximate and precise top-k lists	

•  Query efficiency	

– Query time, i.e., the runtime of query processing	

– Query cost, i.e., the ratio of the number of directories
visited by Glance to that of crawling the file system	

15	

Aggregate Queries

16	

•  Glance consistently generates accurate query answers	

–  E.g., for m10M, sampling 30% of directories produces an

answer with 2% average error	

Aggregate Queries – Accuracy and Costs

•  For all file systems, Glance produces the answers with <10% relative error	

•  The performance of Glance is independent of the type of the file system	

–  Achieves over 90% accuracy for NFS, Plan 9, and NTFS (m10M to m1B)	

–  The cost ranges from less than 12% of crawling for large systems with 1B files and 80% for the small

100K system	

•  The algorithm scales well to large file systems	

17	

Aggregate Query Runtimes

18	

•  For different values of h from 3 to 5, query runs slightly longer but the
accuracy improves	

•  The absolute runtime depends heavily on the size of the file system	

–  A few seconds for m100K, several minutes for nfs (2.3M files), and 1.2 hours

for m100M (not shown in the figure)	

Top-k Queries on File Size

19	

•  For all but one case (m1M), Glance is capable of locating at least
50% of all top-k files (for pb, more than 95% are located)	

•  The cost is as little as 4% of crawling (for m10M)	

Top-k Query Runtime

•  The runtime is correlated to the size of the file system	

–  The first point of each line stands for top-50 and the second for

top-100	

–  The queries take only a few seconds for small file systems, and

up to ten minutes for large systems (e.g., m10M)	

20	

Related Work
•  Metadata query on file systems	

– Spyglass [Leung et al 2009]	

– SmartStore [Hua et al 2009]	

– Utilize multi-dimensional structures (e.g., K-D

trees and R-trees) to build indexes upon subtree
partitions or semantic groups	

•  Database sampling and query processing	

– Random sampling [Cochran 1977]	

– Sampling of hidden web databases [Dasgupta et al

2010]	

21	

Future Directions
•  Glance is not yet an any-time algorithm and

cannot be stopped in the middle of the execution	

–  Be predictive about the run-time and self-adjust the

work flow based on the real-time requirements	

•  Currently employs a ”static” strategy over file
systems and queries	

–  Leverage the results from the previous queries to

significantly expedite the future ones	

– Utilize the semantic knowledge of a file system	

22	

Summary
•  Just-in-time analytics over a large-scale file system through

its tree- or DAG-like structure 	

•  A random descent technique to produce unbiased
estimations for SUM and COUNT queries and accurate
estimations for other aggregate queries	

•  A pruning-based technique for the approximate processing
of top-k queries	

•  A comprehensive set of experiments that demonstrate the
effectiveness of our approach over real-world file systems	

23	

OCI, CISE	

