Just-In-Time Analytics on
Large File Systems

H. Howie Huang, Nan Zhang, Wei Wang George Washington University
Gautam Das University of Texas at Arlington
Alexander S. Szalay Johns Hopkins University

FAST 2011
February 17, 2011

Outline

Introduction

Aggregate Query Processing
Evaluation

Related VWork

Conclusion

Motivations

* Large file systems are common

* Users are interested in performing Just-In-Time analytics
— Must be completed within a short amount of time

— Has no prior knowledge of file system being analyzed

* Border patrol
— E.g., check a traveler’s laptop for

pirated movies and software ISO

Data Analytics

* Aggregate Query
— E.g.,"“What is the total size of various types of documents?”
— SELECT SUM(file.size) FROM filesystem
WHERE file.extension IN { ‘txt’,‘doc’};
[/ AVG and COUNT are also in this category

* Top-k Query
— E.g., “Which are the 100 largest files that belong to John?”
— SELECT TOP 100 files FROM filesystem
WHERE file.owner = ‘John’ ORDER BY file.size DESC;

Current Approaches

* Scan file system for each query
— E.g.,, find command in Linux
— Inefficient

— Growing gap between storage

performance and capacity

* Utilize pre-built indexes that are regularly updated
— E.g., Google Desktop and Beagle
— Undesirable when the metadata indexes are not available
— The queries are scarcely needed

Ata Glance

Tradeoff between query accuracy and cost

— Provide approximate (i.e., statistically accurate) answers that reside close
from the precise answer

Glance, a just-in-time query processing system

— Produce answers based on a small number of samples (files or folders)

File system agnostic

— Works seamlessly with the tree structure of the system
— Can be applied instantly over any new file system

Remove the need of disk crawling and index building

— Without a priori knowledge or pre-processing of file system

Glance Architecture

* Consists of two algorithms

* FS_Agg for approximate processing of aggregate queries

— FS_Agg Basic:a random descent technique for unbiased
aggregate estimations

— Two enhancements to reduce the error and performance
overhead

* FS_TopK for approximate processing of top-k queries
— A pruning-based technique

FS_Agg Basic - Random Descent

Estimate the COUNT of —*
all files in the system

h 1—1
n = E fl . H SJ
1=0 7=0 b

f: number of files &

S number of subfolders

* Solid

File Branch

Subfolder Branch () File
I
I

T l[e] ®D [n

root

A

:

[] Folder

8@10

A0, fl, f2)= (2,2,2) and {(s0,s1,s2) = (4,1,0) Estimationof 2+ 8 + 8 = |8

* Dotted

d0,f1,,2) = (2,0,1> and {(s0,s1,s2) = (4,2,0) Estimationof 2+ 0+ 8 =10

Unbiased Estimation

* The estimation produced by each random
descent process is completely unbiased

* The expected value of the estimation is exactly
equal to the total number of files in the system

= (i) = X (e 5675) =

Vi—1

— |v.4|: the number of (i-level) files in the folder v, ,

— p(v-1): the probability for v,_; to be reached in the
i—2 1

random descent pviy) = [

j:O Sj (z‘l —1)

Processing of Aggregate Queries

* SUM: similar to COUNT, but set f. as the SUM
of a meta attribute over all files

* AVG: compute as SUM/COUNT

— Such an estimation is no longer unbiased

* Selection conditions: only evaluate f. over the
files that satisfy the conditions

Disadvantages of Basic Algorithm

* Two types of folders may lead to extremely high
estimation variance
— High-level leaf-folders, i.e.,“shallow” folders with no subfolders

— Deep-level folders which reside at much lower levels

——e@ File Branch [] Folder

Subfolder Branch

T ¢

11

FS_Agg Improvements

* High-level crawling for level i and above

— Eliminate the negative impact of high-level leaf-
folders on estimation variance

* Breath-first descent instead of depth-first

— At any level of the tree, randomly selects a set of
folders to access at the next level

— Significantly increase the selection probability for a
deep folder

Evaluation Setup

* A prototype in C code for Linux/ext3

— FS_Agg has three parameters

* h - the number of (highest) levels for crawling

* P, - the selection probability

* S,;,- the minimum number of selections

* P and s_. determine how many subfolders to be selected
— FS_TopK has a parameter

* Y - the (estimation) enlargement ratio

e Hardware

— Intel Core 2 Duo processor, 4GB RAM, and | TB Samsung
/200RPM hard drive

* Report the average of five runs

Test File Systems

Windows file systems from Microsoft trace

— m100K (largest with <100K), m1M, m10M (largest in the
trace)

— m100M (largest 33 systems),and m1B

Plan 9 (Unix-like) systems from Bell Lab (~2M files)
NFS from Harvard trace (2.3M files)

Synthetic file systems generated by Impressions
—E.g,i10K,i100K,i1M

Welcome large real-world file systems

Metrics

* Query accuracy

— For aggregate queries, the relative error of the
approximate answer apx compared with the precise
one ans - i.e., |[apx — ans| / |ans|

— For top-k queries, the percentage of items that are
common in the approximate and precise top-k lists

* Query efficiency
— Query time, i.e., the runtime of query processing

— Query cost, i.e., the ratio of the number of directories
visited by Glance to that of crawling the file system

Relative estimation

1.4 —— 1
1.3 —
1.2 - | 0.8 == =
1.1 — - "
o 0.6 - =

1.0 O T % S L =
0.9 - B 04 _
0.8 - = = —
07 \ \ \ \ | 02 \ \ \ \ |

m100K m1M m10M pb pe Mm100Km1M m10M pb pe

Aggregate Queries

* Glance consistently generates accurate query answers

— E.g., for m10M, sampling 30% of directories produces an
answer with 2% average error

Aggregate Queries - Accuracy and Costs

1.0
> 0.8
0.6
0.4
0.2
0.0

1.0
0.8
0.6
0.4
0.2
0.0

Accurac
T T T

T

Cost

T

m100K m1M m10M m100M m1B pb pe nfs i10K i100K i1M
File Systems

h - Smin
£3-3E23-6 @4-3 m4-6 m5-3 m5-6

* For all file systems, Glance produces the answers with <10% relative error

* The performance of Glance is independent of the type of the file system
— Achieves over 90% accuracy for NFS, Plan 9,and NTFS (m10M to m|B)

— The cost ranges from less than 12% of crawling for large systems with |B files and 80% for the small
00K system

* The algorithm scales well to large file systems

17

Aggregate Query Runtimes

o -
o o

Accuracy
o
(o]

0 50 100 150 200 250 300 350 400 450
Time (sec)

o
N

+ m100K>X m1M X m10M K pb B pe © NFS

* For different values of h from 3 to 5, query runs slightly longer but the
accuracy improves
* The absolute runtime depends heavily on the size of the file system

— A few seconds for mI00K, several minutes for nfs (2.3M files), and 1.2 hours
for m100M (not shown in the figure)

Top-k Queries on File Size

3 10 . TOp50 I TOp100 P e —
E 08 e —
ia T e i H ______________ i
o . L B B o —
RS B 111 _

03 .

1.0

08 U]
B 0.6 | |
8 0_4 IO OSSO RSO U UUUUUUURUUUVURUUUUURUUUIURUUUUURUORN B USRI —]

0.2 b] " ____________________________ _

0_0 | —

m100K m1M m10M pb pe

File Systems

* For all but one case (mIM), Glance is capable of locating at least
50% of all top-k files (for pb, more than 95% are located)

* The cost is as little as 4% of crawling (for m|0M)

Top-k Query Runtime

10' """"""""""""" % """""""" =
>

§08_i """"""""""""" - """"""" -
306

g !
O [g oo e i

0 100 200 300 400 500 600
Time (sec)
[+ m100K>X m1M ¥ m10M F pb Hpe |

* The runtime is correlated to the size of the file system

— The first point of each line stands for top-50 and the second for
top-100

— The queries take only a few seconds for small file systems, and
up to ten minutes for large systems (e.g., m|OM)

Related Work

* Metadata query on file systems
— Spyglass [Leung et al 2009]

— SmartStore [Hua et al 2009]

— Utilize multi-dimensional structures (e.g., K-D
trees and R-trees) to build indexes upon subtree
partitions or semantic groups

* Database sampling and query processing
— Random sampling [Cochran 1977]

— Sampling of hidden web databases [Dasgupta et al
2010]

Future Directions

* Glance is not yet an any-time algorithm and
cannot be stopped in the middle of the execution

— Be predictive about the run-time and self-adjust the
work flow based on the real-time requirements

* Currently employs a static” strategy over file
systems and queries

— Leverage the results from the previous queries to
significantly expedite the future ones

— Utilize the semantic knowledge of a file system

Summary

Just-in-time analytics over a large-scale file system through
its tree- or DAG-like structure

A random descent technique to produce unbiased
estimations for SUM and COUNT queries and accurate
estimations for other aggregate queries

A pruning-based technique for the approximate processing
of top-k queries

A comprehensive set of experiments that demonstrate the
effectiveness of our approach over real-world file systems

R

'-; OCI, CISE

