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Motivations

* Large file systems are common

* Users are interested in performing Just-In-Time analytics
— Must be completed within a short amount of time

— Has no prior knowledge of file system being analyzed

* Border patrol
— E.g., check a traveler’s laptop for

pirated movies and software ISO



Data Analytics

* Aggregate Query
— E.g.,"“What is the total size of various types of documents?”
— SELECT SUM(file.size) FROM filesystem
WHERE file.extension IN { ‘txt’,‘doc’};
[/ AVG and COUNT are also in this category

* Top-k Query
— E.g., “Which are the 100 largest files that belong to John?”
— SELECT TOP 100 files FROM filesystem
WHERE file.owner = ‘John’ ORDER BY file.size DESC;



Current Approaches

* Scan file system for each query
— E.g.,, find command in Linux
— Inefficient

— Growing gap between storage

performance and capacity

* Utilize pre-built indexes that are regularly updated
— E.g., Google Desktop and Beagle
— Undesirable when the metadata indexes are not available
— The queries are scarcely needed



Ata Glance

Tradeoff between query accuracy and cost

— Provide approximate (i.e., statistically accurate) answers that reside close
from the precise answer

Glance, a just-in-time query processing system

— Produce answers based on a small number of samples (files or folders)

File system agnostic

— Works seamlessly with the tree structure of the system
— Can be applied instantly over any new file system

Remove the need of disk crawling and index building

— Without a priori knowledge or pre-processing of file system



Glance Architecture

* Consists of two algorithms

* FS_Agg for approximate processing of aggregate queries

— FS_Agg Basic:a random descent technique for unbiased
aggregate estimations

— Two enhancements to reduce the error and performance
overhead

* FS_TopK for approximate processing of top-k queries
— A pruning-based technique



FS_Agg Basic - Random Descent
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Unbiased Estimation

* The estimation produced by each random
descent process is completely unbiased

* The expected value of the estimation is exactly
equal to the total number of files in the system

= (i) = X (e 5675) =

Vi—1

— |v.4|: the number of (i-level) files in the folder v, ,

— p(v-1): the probability for v,_; to be reached in the
i—2 1

random descent pviy) = [

j:O Sj (z‘l —1 )




Processing of Aggregate Queries

* SUM: similar to COUNT, but set f. as the SUM
of a meta attribute over all files

* AVG: compute as SUM/COUNT

— Such an estimation is no longer unbiased

* Selection conditions: only evaluate f. over the
files that satisfy the conditions



Disadvantages of Basic Algorithm

* Two types of folders may lead to extremely high
estimation variance
— High-level leaf-folders, i.e.,“shallow” folders with no subfolders

— Deep-level folders which reside at much lower levels
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FS_Agg Improvements

* High-level crawling for level i and above

— Eliminate the negative impact of high-level leaf-
folders on estimation variance

* Breath-first descent instead of depth-first

— At any level of the tree, randomly selects a set of
folders to access at the next level

— Significantly increase the selection probability for a
deep folder



Evaluation Setup

* A prototype in C code for Linux/ext3

— FS_Agg has three parameters

* h - the number of (highest) levels for crawling

* P, - the selection probability

* S,;,- the minimum number of selections

* P and s_. determine how many subfolders to be selected
— FS_TopK has a parameter

* Y - the (estimation) enlargement ratio

e Hardware

— Intel Core 2 Duo processor, 4GB RAM, and | TB Samsung
/200RPM hard drive

* Report the average of five runs



Test File Systems

Windows file systems from Microsoft trace

— m100K (largest with <100K), m1M, m10M (largest in the
trace)

— m100M (largest 33 systems),and m1B

Plan 9 (Unix-like) systems from Bell Lab (~2M files)
NFS from Harvard trace (2.3M files)

Synthetic file systems generated by Impressions
—E.g,i10K,i100K,i1M

Welcome large real-world file systems



Metrics

* Query accuracy

— For aggregate queries, the relative error of the
approximate answer apx compared with the precise
one ans - i.e., |[apx — ans| / |ans|

— For top-k queries, the percentage of items that are
common in the approximate and precise top-k lists

* Query efficiency
— Query time, i.e., the runtime of query processing

— Query cost, i.e., the ratio of the number of directories
visited by Glance to that of crawling the file system



Relative estimation
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Aggregate Queries

* Glance consistently generates accurate query answers

— E.g., for m10M, sampling 30% of directories produces an
answer with 2% average error



Aggregate Queries - Accuracy and Costs
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*  For all file systems, Glance produces the answers with <10% relative error

* The performance of Glance is independent of the type of the file system
— Achieves over 90% accuracy for NFS, Plan 9,and NTFS (m10M to m|B)

— The cost ranges from less than 12% of crawling for large systems with |B files and 80% for the small
00K system

*  The algorithm scales well to large file systems
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Aggregate Query Runtimes
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* For different values of h from 3 to 5, query runs slightly longer but the
accuracy improves
* The absolute runtime depends heavily on the size of the file system

— A few seconds for mI00K, several minutes for nfs (2.3M files), and 1.2 hours
for m100M (not shown in the figure)



Top-k Queries on File Size
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* For all but one case (mIM), Glance is capable of locating at least
50% of all top-k files (for pb, more than 95% are located)

* The cost is as little as 4% of crawling (for m|0M)



Top-k Query Runtime
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* The runtime is correlated to the size of the file system

— The first point of each line stands for top-50 and the second for
top-100

— The queries take only a few seconds for small file systems, and
up to ten minutes for large systems (e.g., m|OM)




Related Work

* Metadata query on file systems
— Spyglass [Leung et al 2009]

— SmartStore [Hua et al 2009]

— Utilize multi-dimensional structures (e.g., K-D
trees and R-trees) to build indexes upon subtree
partitions or semantic groups

* Database sampling and query processing
— Random sampling [Cochran 1977]

— Sampling of hidden web databases [Dasgupta et al
2010]



Future Directions

* Glance is not yet an any-time algorithm and
cannot be stopped in the middle of the execution

— Be predictive about the run-time and self-adjust the
work flow based on the real-time requirements

* Currently employs a static” strategy over file
systems and queries

— Leverage the results from the previous queries to
significantly expedite the future ones

— Utilize the semantic knowledge of a file system



Summary

Just-in-time analytics over a large-scale file system through
its tree- or DAG-like structure

A random descent technique to produce unbiased
estimations for SUM and COUNT queries and accurate
estimations for other aggregate queries

A pruning-based technique for the approximate processing
of top-k queries

A comprehensive set of experiments that demonstrate the
effectiveness of our approach over real-world file systems
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