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Flash Memory based Solid State Drives

Solid State Drive (SSD)

* A semiconductor device built on NAND flash memory

* Mechanical components free

Technical merits

 High performance (e.g. 250MB/sec, 75us)
 Low power consumption (e.g. 0.06—2w)
 Shock resistance

 Decreasing price (e.g. $150 for 32GB)

A wide scope of usage
 Mobile computers (e.g. Asus EeePC, Dell Inspiron Mini)
 High-performance desktops (e.g. gaming machines)




Limited lifespan-
Achilles’ heel of Solid State Drives

Limited program/erase (P/E) cycles of flash memory
« Multi-level Cell (MLC) — 5,000 — 10,000
 Single-level Cell (SLC) — 100,000 — 1,000,000

Limited lifespan of SSDs
 Naturally limited by the lifetime constraint of flash memory
 Most prior research work focused on wear-leveling technigues™

« SSD manufacturers — SSDs can sustain “routine usages” for years

* Gale and Toledo, “Algorithms and data structures for flash memories”, ACM Computing Survey, 2005, vol. 37(2), pp. 138-163 3



SSD Endurance Remains a Serious Concern Sstls

Technical trend of flash memory
* Bit density increases - price decreases, endurance decreases
e Sharp drop of program/erase cycles from 10,000 to 5,000 [Anderson’10]

Redundancy-based solution (e.g. RAID) is less effective
 RAID solutions (e.g. 0,1,5) evenly distribute accesses across devices
 High risk of correlated device failures in SSD-based RAID [Balakrishnan’10]

Limited public info on SSD endurance in the field
e Both positive/neg. results reported in prior work [Boboila’10, Grupp’09, Mohan’10]
 “Endurance and retention (of SSDs) not yet proven in the field” [Barroso’10]

Commercial systems are sensitive to reliability issues
 Undergoes highly intensive write traffic than client systems
e Permanent data loss is unacceptable (e.g. financial systems)

SSD endurance remains a serious issue, and solutions effectively

enhancing the lifespan of SSDs is highly desirable in practice



Lifespan of Solid State Drives

Limited by flash Wear-leveling/GC
memory technology Techniques™

Limited lifespan of SSDs
e C — program/erase Cycles

« E — Efficiency of FTL designs
« V — write Volume per day

« S — available flash memory Space

Designated during
manufacturing time

Endurance 5CxS) /(V xE)

Determined by usage model
e C — Increasing P/E cycles of flash and workload property

Optimization factors

« E — Improving efficiency of FTL designs, e.g. GC and wear-leveling
« V — reducing the amount of incoming write traffic

e S —increasing the size of over-provisioned space (e.g. 6—25%)

In this talk, we will show this goal can be achieved based on our

observation of a widely existing phenomenon - data duplication



Data Duplication is Common

Data redundancy in storage
 Duplicate data rate — up to 85.9% over 15 disks in CSE/OSU
A good extension to over-provisioned space (only 6—~25%)
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Data Duplication is Common

Write redundancy in workloads
 Duplicate writes — 5.8 ~ 28.1% in 11 workloads
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Making FTL Content Aware

Flash Translation Layer (FTL)

« Emulating a hard drive with an LBA interface at the device level
Content-aware Flash Translation Layer (CAFTL)
 Eliminating duplicate writes

e Coalescing redundant data

Potential benefits

« Removing duplicate writes into flash memory - reducing V

« Extending available flash memory space - increasing S




Technical Challenges

Information constraint

* Block-level information only = no file-level semantic hints can be used

Resource constraint

* Limited on-device resource - resource usage must be minimized

Workload constraint

* Regular file system workloads - relatively low duplication level

Overhead constraint

* Stringent requirement on runtime latencies - high access performance
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Overview of CAFTL

Incoming write Fingerprint Flash
Store —_— Find a match? —— | Memory
1 2 3 4 Segment #0 (5) If no match
(4) If match, write to flash
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mapping tables
*' | B W |
Buffer Segment #1024
N Mapping Tables
1|12 ]| 3 - |23
(3) Lookup
Primary
; Pt Mapping
(2) Fingerprinting l Table Mas;::i_ng
- 0x743728fd43 Table
[ Hash Engine ] — °  (160-bit SHA-1)

An incoming write arrives ...
* Dirty data is temporarily cached in an on-device buffer
» Computing a SHA-1 hash value (fingerprint) for each page
 Lookup against a fingerprint store to search for a match
 If a match is found - update the mapping tables, drop the write
 If no match is found - dispatch the write to flash memory
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Hash Function and Fingerprints

Fixed-sized chunking
 Basic hash unit size — a flash page (e.g. 4KB)

A cryptographic hash function
« SHA-1 hash function — low collision probability

Fingerprints
« A 160-bit SHA-1 hash value for a page
 ldentifying duplicate data by comparing fingerprints



Fingerprint Store

Fingerprint Store
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 Skewed duplicate fingerprint distribution — only 10—~20%
 Most fingerprints are NOT duplicate - a waste of memory space
 Most lookups CANNOT find a match - a waste of lookup latencies

We only need to store the most likely-to-be-duplicate fingerprints in

memory and search them in the fingerprint store
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Indirect Mapping Mechanism

Existing Mapping Structure

Essentially 1-to-1 mapping
 Forward mapping: LBA - PBA (1:1)
* Reverse mapping: PBA - LBA (1:1)

Indirect mapping in CAFTL

Essentially N-to-1 mapping
* Forward mapping: LBA - PBA (N:1)
« Reverse mapping: PBA >LBA (1:N)

Challenges — Reverse Mapping

# of sharing LBAs can be large/variable

LBAs sharing a PBA can change on the fly

How to keep reverse-mapping info?

Array, list, exhaustive scanning — high cost

Keep/updating info in flash — slow/complex
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Two-level Indirect Mapping

PBA/
VBA Flash

LBA

Virtual block address (VBA)
e A pseudo address — sharing LBAs
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Acceleration Methods

Overhead of fingerprinting
« SHA-1 hash function incurs high overhead
 On-device buffer size is limited and can be overfilled

 Dedicated hash engine increases production cost

Acceleration methods
« Sampling for hashing
« Light-weight pre-hashing

« Dynamic Switch



Sampling for Hashing

Principle - Speeding up the common case

* Most writes are unique - most hashing operations turn out useless eventually

Intuition

« If a page in a write is a duplicate page, the other pages are likely to be duplicate too

Sampling

e Select one page in a write request as a sample

* If the sample page is duplicate, hash and examine the other pages

« Otherwise, we stop fingerprinting the whole request at the earliest time

Technical Challenges
* No file-level info available - e.g. we cannot use the first page in a file
* Overhead concerns - e.g. we cannot rely on hashing to select samples



Selecting Sample Pages

Potential candidate solutions

* Request-based Sampling = requests may not repeat

* LBN-based Sampling - written locations may not repeat

Content-based Sampling

e Selecting/comparing first four bytes in each page

* The page with the largest sample bytes is the sample page

e Sample bytes — the first four bytes are the best choice

Request-based Sampling
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Selecting Sample Pages
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Potential candidate solutions
* Request-based Sampling = requests may not repeat
* LBN-based Sampling - written locations may not repeat
Content-based Sampling
e Selecting/comparing first four bytes in each page
* The page with the largest sample bytes is the sample page
e Sample bytes — the first four bytes are the best choice
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Performance Evaluation

SSD simulator

 Microsoft® Research SSD extension for DiskSim simulator™
- Indirect mapping, wear-leveling, garbage collection, etc.

« Simulator augmented with CAFTL design and an on-device buffer

SSD configurations
« Default configuration numbers

 Estimated latencies of hashing code on ARM simulator

Configurations Description Latency

Flash page size 4KB Flash Read 25ps
Pages / block 64 Flash write 200pus
Blocks / plane 2048 Flash Erase 1.5ms
Num of pkgs 10 SHA-1 hashing 47,548 cycles

Over-provisioning 15% CRC32 hashing 4,120 cycles

* MSR, http://research.microsoft.com/en-us/downloads/b41019e2-1d2b-44d8-b512-ba35ab814cd4/




Workloads

Desktop (d1, d2)
 Office workloads — Web surfing, emailing, word editing (12 and 19 hours)

« Workloads feature irregular idle intervals and small read/writes

TPC-H queries (h1-h7)
e TPC-H queries — Query 1,6,14,15,16,20 (Scale factor of 1)
« Workloads run on Hadoop distributed system platform (2—40 min)

« Workloads feature intensive large writes of temp data

Transaction processing (t1, t2)

« TCP-C workloads — Transaction processing on PostgreSQL 8.4.3 database
systems (1,3 warehouses, 10 terminals)

« Workloads run for 30 min and 4 hours with intensive write operations



Effectiveness of De-duplication

Removing duplicate writes

 Deduplication Rate: (n-m)/n
 n — total number of pages of incoming write requests
« m — total number of pages being actually written into flash memory

Experimental Results
 Deduplication Rate: 4.6% (t1) — 24.2% (h6)

e Up to 86.2% of the duplicate writes in offline (optimal case)
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Effectiveness of De-duplication

Extending flash space

« Space Saving Rate: (n-m)/n
« n —total number of occupied erase blocks of flash memory w/o CAFTL
« m —total number of occupied erase blocks of flash memory w/ CAFTL

Experimental Results
« Space Saving Rate: up to 31.2% (hl)

« Small workloads (h2, h5) receive less benefits
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Effectiveness of Sampling
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Conclusion

« SSD endurance would remain a serious concern in reality

e Data duplication is common in regular file systems, which provides unique
opportunities for improving SSD lifespan via deduplication on the device

« We present a unique Content-Aware Flash Translation Layer (CAFTL) to
remove duplicate writes and coalesce redundant data in SSDs on the fly

« We show that CAFTL can effectively improve SSD lifespan via on-device
deduplication while retaining low performance overhead

Thank You !

Feng Chen
><: feng.a.chen@intel.com
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