OHIO intel)
SATE intel

UNIVERSITY

CAFTL: A Content-Aware Flash Translation Layer Enhancing
the Lifespan of Flash Memory based Solid State Drives

Feng Chen! Tian Luo? Xiaodong Zhang?
1 Circuits and Systems Research 2 Dept. Of Computer Science & Eng.
Intel Labs The Ohio State University

feng.a.chen@intel.com {luot,zhang}@cse.ohio-state.edu

Flash Memory based Solid State Drives

Solid State Drive (SSD)

* A semiconductor device built on NAND flash memory

* Mechanical components free

Technical merits

 High performance (e.g. 250MB/sec, 75us)
 Low power consumption (e.g. 0.06—2w)
 Shock resistance

 Decreasing price (e.g. $150 for 32GB)

A wide scope of usage
 Mobile computers (e.g. Asus EeePC, Dell Inspiron Mini)
 High-performance desktops (e.g. gaming machines)

Limited lifespan-
Achilles’ heel of Solid State Drives

Limited program/erase (P/E) cycles of flash memory
« Multi-level Cell (MLC) — 5,000 — 10,000
 Single-level Cell (SLC) — 100,000 — 1,000,000

Limited lifespan of SSDs
 Naturally limited by the lifetime constraint of flash memory
 Most prior research work focused on wear-leveling technigues™

« SSD manufacturers — SSDs can sustain “routine usages” for years

* Gale and Toledo, “Algorithms and data structures for flash memories”, ACM Computing Survey, 2005, vol. 37(2), pp. 138-163 3

SSD Endurance Remains a Serious Concern Sstls

Technical trend of flash memory
* Bit density increases - price decreases, endurance decreases
e Sharp drop of program/erase cycles from 10,000 to 5,000 [Anderson’10]

Redundancy-based solution (e.g. RAID) is less effective
 RAID solutions (e.g. 0,1,5) evenly distribute accesses across devices
 High risk of correlated device failures in SSD-based RAID [Balakrishnan’10]

Limited public info on SSD endurance in the field
e Both positive/neg. results reported in prior work [Boboila’10, Grupp’09, Mohan’10]
 “Endurance and retention (of SSDs) not yet proven in the field” [Barroso’10]

Commercial systems are sensitive to reliability issues
 Undergoes highly intensive write traffic than client systems
e Permanent data loss is unacceptable (e.g. financial systems)

SSD endurance remains a serious issue, and solutions effectively

enhancing the lifespan of SSDs is highly desirable in practice

Lifespan of Solid State Drives

Limited by flash Wear-leveling/GC
memory technology Techniques™

Limited lifespan of SSDs
e C — program/erase Cycles

« E — Efficiency of FTL designs
« V — write Volume per day

« S — available flash memory Space

Designated during
manufacturing time

Endurance 5CxS) /(V xE)

Determined by usage model
e C — Increasing P/E cycles of flash and workload property

Optimization factors

« E — Improving efficiency of FTL designs, e.g. GC and wear-leveling
« V — reducing the amount of incoming write traffic

e S —increasing the size of over-provisioned space (e.g. 6—25%)

In this talk, we will show this goal can be achieved based on our

observation of a widely existing phenomenon - data duplication

Data Duplication is Common

Data redundancy in storage
 Duplicate data rate — up to 85.9% over 15 disks in CSE/OSU
A good extension to over-provisioned space (only 6—~25%)

—~ 100 ———7——7—1

o B Duplicate blks

> W Zero blks

5 80r s
O

m

© 60r s
o

|_

© 40L- i
0}

)

8

S 20- s
o

)

-0

1 2 3 4 5 6 7 8 9 10111213 14 15
Servers (1-4); Experimental (5-11); Office (12-15)

Data Duplication is Common

Write redundancy in workloads
 Duplicate writes — 5.8 ~ 28.1% in 11 workloads

30

29 -

20
15 |- -
10 - -
WhilLd
0

d2 h1 h2 h3 h4 hd h6 h7
d — desktop; h — hadoop; t - transaction

Percentage of Duplicate Writes (%)

Making FTL Content Aware

Flash Translation Layer (FTL)

« Emulating a hard drive with an LBA interface at the device level
Content-aware Flash Translation Layer (CAFTL)
 Eliminating duplicate writes

e Coalescing redundant data

Potential benefits

« Removing duplicate writes into flash memory - reducing V

« Extending available flash memory space - increasing S

Technical Challenges

Information constraint

* Block-level information only = no file-level semantic hints can be used

Resource constraint

* Limited on-device resource - resource usage must be minimized

Workload constraint

* Regular file system workloads - relatively low duplication level

Overhead constraint

* Stringent requirement on runtime latencies - high access performance

Outline

e Introduction

« Hashing and Fingerprint Store
* Indirect mapping

e Acceleration methods
 Evaluation

e Conclusion

Overview of CAFTL

Incoming write Fingerprint Flash
Store —_— Find a match? —— | Memory
1 2 3 4 Segment #0 (5) If no match
(4) If match, write to flash
(1) Buffering Segment #1 update
mapping tables
*' | B W |
Buffer Segment #1024
N Mapping Tables
1|12]| 3 - |23
(3) Lookup
Primary
; Pt Mapping
(2) Fingerprinting l Table Mas;::i_ng
- 0x743728fd43 Table
[Hash Engine] — ° (160-bit SHA-1)

An incoming write arrives ...
* Dirty data is temporarily cached in an on-device buffer
» Computing a SHA-1 hash value (fingerprint) for each page
 Lookup against a fingerprint store to search for a match
 If a match is found - update the mapping tables, drop the write
 If no match is found - dispatch the write to flash memory

Outline

Introduction

Hashing and Fingerprint Store
Indirect mapping

Acceleration methods
Evaluation

Conclusion

Hash Function and Fingerprints

Fixed-sized chunking
 Basic hash unit size — a flash page (e.g. 4KB)

A cryptographic hash function
« SHA-1 hash function — low collision probability

Fingerprints
« A 160-bit SHA-1 hash value for a page
 ldentifying duplicate data by comparing fingerprints

Fingerprint Store

Fingerprint Store

:?‘100 ?‘"I N e sespsrerepee

« Maintaining fingerprints in memory£ 80 &

Challenges L 4 o
5 5]

« Memory overhead (25 bytes each) 5 40 S
o 10 —

« Fingerprint store lookup overhead 2 20 1%
% 14

. TrT - S 055 15 20 25 30 5 42}5 45 50
Observations & indications Duplication Level

 Skewed duplicate fingerprint distribution — only 10—~20%
 Most fingerprints are NOT duplicate - a waste of memory space
 Most lookups CANNOT find a match - a waste of lookup latencies

We only need to store the most likely-to-be-duplicate fingerprints in

memory and search them in the fingerprint store

Outline

Introduction

Hashing and Fingerprint Store
Indirect mapping

Acceleration methods
Evaluation

Conclusion

Indirect Mapping Mechanism

Existing Mapping Structure

Essentially 1-to-1 mapping
 Forward mapping: LBA - PBA (1:1)
* Reverse mapping: PBA - LBA (1:1)

Indirect mapping in CAFTL

Essentially N-to-1 mapping
* Forward mapping: LBA - PBA (N:1)
« Reverse mapping: PBA >LBA (1:N)

Challenges — Reverse Mapping

of sharing LBAs can be large/variable

LBAs sharing a PBA can change on the fly

How to keep reverse-mapping info?

Array, list, exhaustive scanning — high cost

Keep/updating info in flash — slow/complex

LBA PBA Flash
20 0 0
A o| 6 | .

X 3 ’»F" ,::-‘.'
NN ’Z‘f e Invalid
‘ lag' e
4’,3\‘) ’,'
—g— 2
/&”'ﬂ'\\
6 ‘f\ 2 NN 3
é ~\4~. x::s\
S
8 \\L\ 9 hﬁ"’““ A
9 SRt ’

19._| 10 ,f’l." c

11 | I
7

12 _ 12) / 5
13 TSmmnfmm==’

14 13 -
15 14

The Mapping Table

Flash Memory

Two-level Indirect Mapping

PBA/
VBA Flash

LBA

Virtual block address (VBA)
e A pseudo address — sharing LBAs

“_.,_...--——i-u...__.m‘“III
-
el
b
Ay
e

Primary mapping table
 Unique pages — LBA - PBA (1:1)

G| P WIN|F|O
n\\
MWAhN|lw|o|o

\\‘

\‘

\
LY
N =

1
« Shared pages — LBA - VBA (N:1) 6 > No need to
. - update t_he 1:N 3
Secondary mapping table mappings
8 2
« VBA - PBA (1:1) 5 a A
Reverse mapping 10 | 2
11 | © 5
 Unique pages — PBA - LBA (1:1) 12 9
« Shared pages — PBA > VBA (1:1) | 13 0]
14 3 .
Invalid
15 3
Primary Secondary
Mapping Table Mapping Table Flash Memory

Outline

Introduction

Hashing and Fingerprint Store

Indirect mapping
e Acceleration methods
e Evaluation

Conclusion

Acceleration Methods

Overhead of fingerprinting
« SHA-1 hash function incurs high overhead
 On-device buffer size is limited and can be overfilled

 Dedicated hash engine increases production cost

Acceleration methods
« Sampling for hashing
« Light-weight pre-hashing

« Dynamic Switch

Sampling for Hashing

Principle - Speeding up the common case

* Most writes are unique - most hashing operations turn out useless eventually

Intuition

« If a page in a write is a duplicate page, the other pages are likely to be duplicate too

Sampling

e Select one page in a write request as a sample

* If the sample page is duplicate, hash and examine the other pages

« Otherwise, we stop fingerprinting the whole request at the earliest time

Technical Challenges
* No file-level info available - e.g. we cannot use the first page in a file
* Overhead concerns - e.g. we cannot rely on hashing to select samples

Selecting Sample Pages

Potential candidate solutions

* Request-based Sampling = requests may not repeat

* LBN-based Sampling - written locations may not repeat

Content-based Sampling

e Selecting/comparing first four bytes in each page

* The page with the largest sample bytes is the sample page

e Sample bytes — the first four bytes are the best choice

Request-based Sampling

1 2 3 4

14*02
~

1

2 3

LBN-based Sampling

4

N

The first page
In a request

1

Xo

2

1

The page with
LBN % 4 ==

I
1

Content-based Sampling

2 3 4
HEEEEE

4 0] 2
X

N

The page with
maximum sample byte

Selecting Sample Pages

o § e
Potential candidate solutions
* Request-based Sampling = requests may not repeat
* LBN-based Sampling - written locations may not repeat
Content-based Sampling
e Selecting/comparing first four bytes in each page
* The page with the largest sample bytes is the sample page
e Sample bytes — the first four bytes are the best choice
(112134 1 Conttint-bazsed gamjl)ling
r————— —— —
[T [T 111
-\/ X 114|002
L.
112|134 4 \
First 4 bytes Last 4 bytes Sparse 4 bytes The page with

maximum sample byte

Outline

e Introduction

« Hashing and Fingerprint Store
e Indirect mapping

* Acceleration methods
 Evaluation

e Conclusion

Performance Evaluation

SSD simulator

 Microsoft® Research SSD extension for DiskSim simulator™
- Indirect mapping, wear-leveling, garbage collection, etc.

« Simulator augmented with CAFTL design and an on-device buffer

SSD configurations
« Default configuration numbers

 Estimated latencies of hashing code on ARM simulator

Configurations Description Latency

Flash page size 4KB Flash Read 25ps
Pages / block 64 Flash write 200pus
Blocks / plane 2048 Flash Erase 1.5ms
Num of pkgs 10 SHA-1 hashing 47,548 cycles

Over-provisioning 15% CRC32 hashing 4,120 cycles

* MSR, http://research.microsoft.com/en-us/downloads/b41019e2-1d2b-44d8-b512-ba35ab814cd4/

Workloads

Desktop (d1, d2)
 Office workloads — Web surfing, emailing, word editing (12 and 19 hours)

« Workloads feature irregular idle intervals and small read/writes

TPC-H queries (h1-h7)
e TPC-H queries — Query 1,6,14,15,16,20 (Scale factor of 1)
« Workloads run on Hadoop distributed system platform (2—40 min)

« Workloads feature intensive large writes of temp data

Transaction processing (t1, t2)

« TCP-C workloads — Transaction processing on PostgreSQL 8.4.3 database
systems (1,3 warehouses, 10 terminals)

« Workloads run for 30 min and 4 hours with intensive write operations

Effectiveness of De-duplication

Removing duplicate writes

 Deduplication Rate: (n-m)/n
 n — total number of pages of incoming write requests
« m — total number of pages being actually written into flash memory

Experimental Results
 Deduplication Rate: 4.6% (t1) — 24.2% (h6)

e Up to 86.2% of the duplicate writes in offline (optimal case)

35 I | | |
5 offline i
_ no-samplin _
30+ g 138kB Y

o o NN
o o o o

Perc. of Removed Writes (%)
a1

o

dl1 d2 h1 h2 h3 h4 hdS h6 h7 t1 t2

d — desktop; h - hadoop; t - transaction

Effectiveness of De-duplication

Extending flash space

« Space Saving Rate: (n-m)/n
« n —total number of occupied erase blocks of flash memory w/o CAFTL
« m —total number of occupied erase blocks of flash memory w/ CAFTL

Experimental Results
« Space Saving Rate: up to 31.2% (hl)

« Small workloads (h2, h5) receive less benefits
— 35

w
o
|

o o NN
(@] (&) (@] (&)
[[[[

Perc. of Save Flash Space (%
&)
l

o

d1

d — desktop; h - hadoop; t - transaction

Effectiveness of Sampling

Response Time Speedup Pz
S 30 E 24.2%->19.8% .
e Read — up to 110.6x S o5 |H 1
© E
« Write — up to 6.9x E 207 |
‘:rg 15 - N
Deduplication Rate Reduction S 0 l
. Dedup Rate — 24.2% -> 19.8% (h6) S 5/ .
0

d1 d2 h1 h2 h3 h4 hd he h7 t1

d — desktop; h — hadoop; t - transaction

t2

X120 ——— =

s [E S

© 100 - B 30KB 13 i
2 B 4 _
%) 30_. 4l o

()] Q

= §= .
= 60F - :

o 40+ 4 8 |
Q D

4 O

Q

@ 20F 4 4
5 2

¥y O 41 d2 h'1 h'2 h'3 h‘4 h'5 b6 h7 11 10 = dl d2 h1 h2 h3 hd h5 h6 h7 t1 t2

Read (d - desktop: h - hadoop: t — transaction) Write (d — desktop; h — hadoop; t — transaction)

Outline

e Introduction

« Hashing and Fingerprint Store
e Indirect mapping

e Acceleration methods

e Evaluation

e Conclusion

Conclusion

« SSD endurance would remain a serious concern in reality

e Data duplication is common in regular file systems, which provides unique
opportunities for improving SSD lifespan via deduplication on the device

« We present a unique Content-Aware Flash Translation Layer (CAFTL) to
remove duplicate writes and coalesce redundant data in SSDs on the fly

« We show that CAFTL can effectively improve SSD lifespan via on-device
deduplication while retaining low performance overhead

Thank You !

Feng Chen
><: feng.a.chen@intel.com

3

0]

