
CAFTL: A Content-Aware Flash Translation Layer Enhancing the Lifespan

of Flash Memory based Solid State Drives

Feng Chen∗ Tian Luo Xiaodong Zhang

Dept. of Computer Science & Engineering

The Ohio State University

Columbus, OH 43210, USA

{fchen,luot,zhang}@cse.ohio-state.edu

Abstract

Although Flash Memory based Solid State Drive (SSD)

exhibits high performance and low power consumption,

a critical concern is its limited lifespan along with the

associated reliability issues. In this paper, we propose to

build a Content-Aware Flash Translation Layer (CAFTL)

to enhance the endurance of SSDs at the device level.

With no need of any semantic information from the host,

CAFTL can effectively reduce write traffic to flash mem-

ory by removing unnecessary duplicate writes and can

also substantially extend available free flash memory

space by coalescing redundant data in SSDs, which fur-

ther improves the efficiency of garbage collection and

wear-leveling. In order to retain high data access per-

formance, we have also designed a set of acceleration

techniques to reduce the runtime overhead and mini-

mize the performance impact caused by extra computa-

tional cost. Our experimental results show that our solu-

tion can effectively identify up to 86.2% of the duplicate

writes, which translates to a write traffic reduction of up

to 24.2% and extends the flash space by a factor of up

to 31.2%. Meanwhile, CAFTL only incurs a minimized

performance overhead by a factor of up to 0.5%.

1 Introduction

The limited lifespan is the Achilles’ heel of Flash Mem-

ory based Solid State Drives (SSDs). On one hand, SSDs

built on semiconductor chips without any moving parts

have exhibited many unique technical merits compared

with hard disk drives (HDDs), particularly high random

access performance and low power consumption. On the

other hand, the limited lifespan of SSDs, which are built

on flash memories with limited erase/program cycles, is

still one of the most critical concerns that seriously hin-

der a wide deployment of SSDs in reliability-sensitive

environments, such as data centers [10]. Although SSD

manufacturers often claim that SSDs can sustain rou-

tine usage for years, the technical concerns about the en-

durance issues of SSDs still remain high. This is mainly

∗Currently working at the Intel Labs in Hillsboro, OR.

due to three not-so-well-known reasons. First, as bit den-

sity increases, flash memory chips become more afford-

able but, at the same time, less reliable and less durable.

In the last two years, for high-density flash devices, we

have seen a sharp drop of erase/program cycle ratings

from ten thousand to five thousand cycles [7]. As tech-

nology scaling continues, this situation could become

even worse. Second, traditional redundancy solutions

such as RAID, which have been widely used for battling

disk failures, are considered less effective for SSDs, be-

cause of the high probability of correlated device failures

in SSD-based RAID [9]. Finally, although some prior

research work [13, 22, 33] has presented empirical and

modeling-based studies on the lifespan of flash memo-

ries and USB flash drives, both positive and negative re-

sults have been reported. In fact, as a recent report from

Google® points out, “endurance and retention (of SSDs)

not yet proven in the field” [10].

All these aforesaid issues explain why commercial

users hesitate to perform a large-scale deployment of

SSDs in production systems and why integrating SSDs

into commercial systems is proceeding such “painfully

slowly” [10]. In order to integrate such a “frustrating

technology”, which comeswith equally outstandingmer-

its and limits, into the existing storage hierarchy timely

and reliably, solutions for effectively improving the lifes-

pan of SSDs are highly desirable. In this paper, we pro-

pose such a solution from a unique and viable angle.

1.1 Background of SSDs
1.1.1 Flash memory and SSD internals

NAND flash memory is the basic building block of most

SSDs on the market. A flash memory package is usu-

ally composed of one or multiple dies (chips). Each die

is segmented into multiple planes, and a plane is further

divided into thousands (e.g. 2048) of erase blocks. An

erase block usually consists of 64-128 pages. Each page

has a data area (e.g. 4KB) and a spare area (a.k.a. meta-

data area). Flash memories support three major opera-

tions. Read and write (a.k.a. program) are performed in

units of pages, and erase, which clears all the pages in an

erase block, must be conducted in erase blocks.

Flash memory has three critical technical constraints:

(1) No in-place overwrite – the whole erase block must

be erased before writing (programming) any page in this

block. (2)No randomwrites – the pages in an erase block

must be written sequentially. (3) Limited erase/program

cycles – an erase block can wear out after a certain num-

ber of erase/program cycles (typically 10,000-100,000).

As a critical component in the SSD design, the Flash

Translation Layer (FTL) is implemented in the SSD con-

troller to emulate a hard disk drive by exposing an array

of logical block addresses (LBAs) to the host. In order

to address the aforesaid three constraints, the FTL de-

signers have developed several sophisticated techniques:

(1) Indirect mapping – A mapping table is maintained

to track the dynamic mapping between logical block ad-

dresses (LBAs) and physical block addresses (PBAs).

(2) Log-like write mechanism – Each write to a logical

page only invalidates the previously occupied physical

page, and the new content data is appended sequentially

in a clean erase block, like a log, which is similar to the

log-structured file system [41]. (3) Garbage collection

– A garbage collector (GC) is launched periodically to

recycle invalidated physical pages, consolidate the valid

pages into a new erase block, and clean the old erase

block. (4) Wear-leveling – Since writes are often con-

centrated on a subset of data, which may cause some

blocks to wear out earlier than the others, a wear-leveling

mechanism tracks and shuffles hot/cold data to even out

writes in flash memory. (5) Over-provisioning – In or-

der to assist garbage collection and wear-leveling, SSD

manufacturers usually include a certain amount of over-

provisioned spare flash memory space in addition to the

host-usable SSD capacity.

1.1.2 The lifespan of SSDs

As flash memory has a limited number of erase/program

cycles, the lifespan of SSDs is naturally constrained. In

essence, the lifespan of SSDs is a function of three fac-

tors: (1) The amount of incoming write traffic – The less

data written into an SSD, the longer the lifespan would

be. In fact, the SSD manufacturers often advise commer-

cial users, whose systems undergo intensive write traffic

(e.g. an email server), to purchase more expensive high-

end SSDs. (2) The size of over-provisioned flash space

– A larger over-provisioned flash space provides more

available clean flash pages in the allocation pool that can

be used without triggering a garbage collection. Aggres-

sive over-provisioning can effectively reduce the average

number of writes over all flash pages, which in turn im-

proves the endurance of SSDs. For example, the high-

end Intel® X25-E SSD is aggressively over-provisioned

with about 8GB flash space, which is 25% of the labeled

SSD capacity (32GB) [25]. (3) The efficiency of garbage

collection and wear-leveling mechanisms – Having been

extensively researched, the garbage collection and wear-

leveling policies can significantly impact the lifespan of

SSDs. For example, static wear-leveling, which swaps

active blocks with randomly chosen inactive blocks, per-

forms better in endurance than dynamic wear-leveling,

which only swaps active blocks [13].

Most previous research work [21] focuses on the third

factor, garbage collection and wear-leveling policies. A

survey [21] summarizes these techniques. In contrast,

little study has been conducted on the other two aspects.

This may be because incoming write traffic is normally

believed to be workload dependent, which cannot be

changed at the device level, and the over-provisioning

of flash space is designated at the manufacturing process

and cannot be excessively large (due to the production

cost). In this paper we will show that even at the SSD

device level, we can still effectively extend the SSD lifes-

pan by reducing the amount of incoming write traffic and

squeezing available flash memory space during runtime,

which has not been considered before. This goal can be

achieved based on our observation of a widely existing

phenomenon – data duplication.

1.2 Data Duplication is Common

In file systems data duplication is very common. For ex-

ample, kernel developers can have multiple versions of

Linux source code for different projects. Users can cre-

ate/delete the same files multiple times. Another exam-

ple is word editing tools, which often automatically save

a copy of documents every few minutes, and the content

of these copies can be almost identical.

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P
e

rc
e

n
ta

g
e

 o
f

T
o

ta
l
B

lo
c
k
s
 (

%
)

Servers (1−4); Experimental (5−11); Office (12−15)

Duplicate blks
Zero blks

Figure 1: The percentage of redundant data in disks.

To make a case here, we have studied 15 disks in-

stalled on 5 machines in the Department of Computer

Science and Engineering at the Ohio State University.

Three file systems can be found in these disks, namely

Ext2, Ext3, and NTFS. The disks are used in different en-

vironments, 4 disks from Database/Web Servers, 7 disks

from Experimental Systems for kernel development, and

the other 4 disks from Office Systems. We slice the disk

space into 4KB blocks and use the SHA-1 hash func-

tion [1] to calculate a 160-bit hash value for each block.

We can identify duplicate blocks by comparing the hash

values. Figure 1 shows the duplication rates (i.e. the

percentage of duplicate blocks in total blocks).

In Figure 1, we find that the duplication rate ranges

from 7.9% to 85.9% across the 15 disks. We also find

that in only one disk with NTFS, the duplicate blocks

are dominated by ‘zero’ blocks. The duplicate blocks

on the other disks are mostly non-zero blocks, which

means that these duplicate blocks contain ‘meaningful’

data. Considering the fact that a typical SSD has an over-

provisioned space of only 1-20% of the flash memory

space, removing the duplicate data, which accounts for

7.9-85.9% of the SSD capacity, can substantially extend

the available flash space that can be used for garbage col-

lection and wear-leveling. If this effort is successful, we

can raise the performance comparable to that of high-end

SSDs with no need of extra flash space.

 0

 5

 10

 15

 20

 25

 30

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2P
e

rc
e

n
ta

g
e

 o
f

D
u

p
lic

a
te

 W
ri
te

s
 (

%
)

d − desktop; h − hadoop; t − transaction

Figure 2: The perc. of duplicate writes in workloads.

Besides the static analysis of the data redundancy in

storage, we have also collected I/O traces and analyzed

the data accesses of 11 workloads from three categories

(see more details in Section 4). For each workload, we

modified the Linux kernel by intercepting each I/O re-

quest and calculating a hash value for each requested

block. We analyzed the I/O traces off-line. Figure 2

shows the percentage of the duplicate writes in each

workload. We can find that 5.8-28.1% of the writes are

duplicated. This finding suggests that if we remove these

duplicate writes, we can effectively reduce the write traf-

fic into flash medium, which directly improves the en-

durance accordingly, not to mention the indirect effect of

reducing the number of extra writes caused by less fre-

quently triggered garbage collections.

1.3 Making FTL Content Aware

Based on the above observations and analysis, we pro-

pose a Content-Aware Flash Translation Layer (CAFTL)

to integrate the functionality of eliminating duplicate

writes and redundant data into SSDs to enhance the lifes-

pan at the device level.

CAFTL intercepts incoming write requests at the SSD

device level and uses a collision-free cryptographic hash

function to generate fingerprints summarizing the con-

tent of updated data. By querying a fingerprint store,

which maintains the fingerprints of resident data in the

SSD, CAFTL can accurately and safely eliminate dupli-

cate writes to flash medium. CAFTL also uses a two-

level mapping mechanism to coalesce redundant data,

which effectively extends available flash space and im-

proves GC efficiency. In order to minimize the perfor-

mance impact caused by computing hash values, we have

also designed a set of acceleration methods to speed up

fingerprinting. With these techniques, CAFTL can effec-

tively reduce write traffic to flash, extend available flash

space, while retaining high data access performance.

CAFTL is an augmentation, rather than a complete re-

placement, to the existing FTL designs. Being content-

aware, CAFTL is orthogonal to the other FTL policies,

such as the well researched garbage collection and wear-

leveling policies. In fact, the existing mechanisms in the

SSDs provide much needed facilities for CAFTL and

make it a perfect fit in the existing SSD architecture.

For example, the indirect mapping mechanism naturally

makes associating multiple logical pages to one physical

page easy to implement; the periodic scanning process

for garbage collection and wear-leveling can also carry

out an out-of-line deduplication asynchronously; the log-

like write mechanismmakes it possible to re-validate the

‘deleted’ data without re-writing the same content; and

finally, the semiconductor nature of flash memory makes

reading randomly remapped data free of high latencies.

CAFTL is also backward compatible and portable.

Running at the device level as a part of SSD firmware,

CAFTL does not need to change the standard host/device

interface for passing any extra information from the

upper-level components (e.g. file system) to the device.

All of the design of CAFTL is isolated at the device level

and hidden from users. This guarantees CAFTL as a

drop-in solution, which is highly desirable in practice.

1.4 Our Contributions

We have made the following contributions in this paper:

(1) We have studied data duplications in file systems and

various workloads, and assessed the viability of improv-

ing endurance of SSDs through deduplication. (2) We

have carefully designed a content-aware FTL to extend

the SSD lifespan by removing duplicate writes (up to

24.2%) and redundant data (up to 31.2%) with minimal

overhead. To the best of our knowledge, this is the first

study using effective deduplication in SSDs. (3) We have

also designed a set of techniques to accelerate the in-line

deduplication in SSD devices, which are particularly ef-

fective with small on-device buffer spaces (e.g. 2MB)

and make performance overhead nearly negligible. (4)

We have implemented CAFTL in the DiskSim simula-

tor and comprehensively evaluated its performance and

shown the effectiveness of improving the SSD lifespan

through extensive trace-driven simulations.

The rest of this paper is organized as follows. In Sec-

tion 2, we discuss the unique challenges in the design of

CAFTL. Section 3 introduces the design of CAFTL and

our acceleration methods. We present our performance

evaluation in Section 4. Section 5 gives the related work.

The last section discusses and concludes this paper.

2 Technical Challenges

CAFTL shares the same principle of removing data re-

dundancy with Content-Addressable Storage (CAS), e.g.

[11,24,30,45,47],which is designed for backup/archival

systems. However, we cannot simply borrow CAS poli-

cies in our design due to four unique and unaddressed

challenges: (1) Limited resources – CAFTL is designed

for running in an SSD device with limited memory space

and computing power, rather than running on a dedi-

cated powerful enterprise server. (2) Relatively lower re-

dundancy – CAFTL mostly handles regular file system

workloads, which have an impressive but much lower

duplication rate than that of backup streams with high

redundancy (often 10 times or even higher). (3) Lack of

semantic hints – CAFTL works at the device level and

only sees a sequence of logical blocks without any se-

mantic hints from host file systems. (4) Low overhead

requirement – CAFTL must retain high data access per-

formance for regular workloads, while this is a less strin-

gent requirement in backup systems that can run during

out-of-office hours.

All of these unique requirements make deduplication

particularly challenging in SSDs and it requires non-

trivial efforts to address them in the CAFTL design.

3 The Design of CAFTL

The design of CAFTL aims to reach the following three

critical objectives.

• Reducing unnecessary write traffic – By examining the

data of incoming write requests, we can detect and re-

move duplicate writes in-line, so that we can effec-

tively filter unnecessary writes into flash memory and

directly improve the lifespan of SSDs.

• Extending available flash space – By leveraging the

indirect mapping framework in SSDs, we canmap log-

ical pages sharing the same content to the same phys-

ical page. The saved space can be used for GC and

wear-leveling, which indirectly improves the lifespan.

• Retaining access performance – A critical requirement

to make CAFTL truly effective in practice is to avoid

significant negative performance impacts. We must

minimize runtime overhead and retain high data ac-

cess performance.

3.1 Overview of CAFTL

CAFTL eliminates duplicate writes and redundant data

through a combination of both in-line and out-of-line

(a.k.a post-processing or out-of-band) deduplication. In-

line deduplication refers to the case where CAFTL

proactively examines the incoming data and cancels du-

plicate writes before committing a write request to flash.

As a ‘best-effort’ solution, CAFTL does not guarantee

that all duplicate writes can be examined and removed

immediately (e.g. it can be disabled for performance pur-

poses). Thus CAFTL also periodically scans the flash

memory and coalesces redundant data out of line.

Figure 3: An illustration of CAFTL architecture.

Figure 3 illustrates the process of handling a write re-

quest in CAFTL – When a write request is received at

the SSD, (1) the incoming data is first temporarily main-

tained in the on-device buffer; (2) each updated page in

the buffer is later computed a hash value, also called fin-

gerprint, by a hash engine, which can be a dedicated

processor or simply a part of the controller logic; (3)

each fingerprint is looked up against a fingerprint store,

which maintains the fingerprints of data already stored in

the flash memory; (4) if a match is found, which means

that a residing data unit holds the same content, the map-

ping tables, which translate the host-viewable logical ad-

dresses to the physical flash addresses, are updated by

mapping it to the physical location of the residing data,

and correspondingly the write to flash is canceled; (5)

if no match is found, the write is performed to the flash

memory as a regular write.

3.2 Hashing and Fingerprint Store

CAFTL attempts to identify and remove duplicate writes

and redundant data. A byte-by-byte comparison is exces-

sively slow. A common practice is to use a cryptographic

hash function, e.g. SHA-1 [1] or MD5 [40], to compute a

collision-free hash value as a fingerprint. Duplicate data

can be determined by comparing fingerprints. Here we

explain how we produce and manage fingerprints.

3.2.1 Choosing hashing units

CAFTL uses a chunk-based deduplication approach. Un-

like most CAS systems, which often use more compli-

cated variable-sized chunking, CAFTL adopts a fixed-

sized chunking approach for two reasons. First, the

variable-sized chunking is designed for segmenting a

long I/O stream. In CAFTL, we handle a sequence of

individual requests, whose size can be very small (a few

kilobytes) and vary significantly. Thus variable-sized

chunking is inappropriate for CAFTL. Second, the basic

operation unit in flash is a page (e.g. 4KB), and the inter-

nal management policies in SSDs, such as the mapping

policy, are also designed in units of pages. Thus, using

pages as the fixed-sized chunks for hashing is a natural

choice and also avoids unnecessary complexity.

3.2.2 Hash function and fingerprints

In order to identify duplicate data, a collision-free hash

function is used for summarizing the content of pages.

We use the SHA-1 [1], a widely used cryptographic hash

function, and rely on its collision-resistant properties to

index and compare pages. For each page, we calculate

a 160-bit hash value as its fingerprint and store it as the

page’s metadata in flash. The SHA-1 hash function has

been proven computationally infeasible to find two dis-

tinct inputs hashing to the same value [32]. We can safely

determine if two pages are identical using fingerprints.

3.2.3 The fingerprint store

 0

 20

 40

 60

 80

 100

 5 10 15 20 25 30 35 40 45 50

P
e

rc
e

n
ta

g
e

 o
f

T
o

ta
l
F

in
g

e
rp

ri
n

ts
 (

%
)

Duplication Level

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Figure 4: The CDF figure of duplicate fingerprints.

In order to locate quickly the physical page with a spe-

cific fingerprint, CAFTL manages an in-memory struc-

ture, called Fingerprint Store. Apparently, keeping all

fingerprints and related information (25 bytes each) in

memory is too costly and unnecessary. We have stud-

ied the distribution of fingerprints in the 15 disks and

we plot a Cumulative Distribution Function (CDF) fig-

ure in Figure 4. We can see that the distribution of dupli-

cated fingerprints is skewed – only 10-20% of the finger-

prints are highly duplicated (more than 2). This finding

provides two implications. First, most fingerprints are

unique and never have a chance to match any queried

fingerprint. Second, a complete search in the fingerprint

store would incur high lookup latencies, and even worse,

most lookups eventually turn out to be useless (no match

found). Thus, we should only store and search in the

most likely-to-be-duplicated fingerprints in memory.

We first logically partition the hash value space into

N segments. For a given fingerprint, f , we can map it

to segment (f mod N), and the random nature of the

hash function guarantees an even distribution of finger-

prints among the segments. Each segment contains a list

of buckets. Each bucket is a 4KB page in memory and

consists of multiple entries, each of which is a key-value

pair, {fingerprint, (location, reference)}. The 160-bit fin-
gerprint indexes the entry; the 32-bit location denotes

where we can find the data, either the PBA of a physi-

cal flash page or the VBA of a secondary mapping entry

(see Section 3.3); the 8-bit reference denotes the hotness

of this fingerprint (i.e. the number of referencing logical

pages). The entries in each bucket are sorted in the as-

cending order of their fingerprint values to facilitate a fast

in-bucket binary search. The total numbers of buckets

and segments are designated by the SSD manufacturers.

The fingerprint store maintains the most highly refer-

enced fingerprints in memory. During the SSD startup

time, after the mapping tables are built up (to be dis-

cussed in Section 3.3), the fingerprint store is also recon-

structed by scanning the mapping tables and the meta-

data in flash to load the key value pairs of {fingerprint,
(location, reference)} into memory. Initially no bucket

is allocated in the fingerprint store. Upon inserting a fin-

gerprint, an empty bucket is allocated and linked into a

bucket list of the corresponding segment. This bucket

holds the fingerprints inserted into the corresponding

segment until the bucket is filled up, then we allocate

another bucket. We continue to allocate buckets in this

way until there are no more free buckets available. If that

happens, the newly inserted fingerprint will replace the

fingerprint with the smallest reference counter (i.e. the

coldest one) in the bucket, unless its reference counter is

smaller than any of the resident fingerprints. Note that

we choose the inserting bucket in a round-robin manner

to ensure a relatively even distribution of hot/cold finger-

prints across the buckets in a segment. It is also worth

mentioning here that a 8-bit reference counter is suffi-

ciently large for distinguishing the hot fingerprints, be-

cause most fingerprints have a reference counter smaller

than 255 (see Figure 4). We consider fingerprints with

a reference counter larger than 255 as highly referenced

and do not further distinguish their difference in hotness.

In this way, we can include the most highly referenced

fingerprints in memory. Although we may miss some

opportunities of identifying the duplicates whose finger-

prints are not resident in memory, this probability is con-

sidered low (as shown in Figure 4), and we are not pursu-

ing a perfect in-line deduplication. Our out-of-line scan-

ning can still identify these duplicates later.

Searching a fingerprint can be very simple. We com-

pute the mapping segment number and scan the corre-

sponding list of buckets one by one. In each bucket,

we use binary search to speed up the in-bucket lookup.

However, for a segment with a large set of buckets,

this method is still improvable. We have designed three

optimization techniques to further accelerate fingerprint

lookups. (1) RangeCheck – before performing the binary

search in a bucket, we first compare the fingerprint with

the smallest and the largest fingerprints in the buckets. If

the fingerprint is out of the range, we quickly skip over

this bucket. (2) Hotness-based Reorganization – the fin-

gerprints in the linked buckets can be reorganized in the

descending order of their reference counters. This moves

the hot fingerprints closer to the list head and potentially

reduces the number of the scanned buckets. (3) Bucket-

level Binary Search – the fingerprints across the buckets

can be reorganized in the ascending order of the finger-

print values by using a merge sort. For each segment

we maintain an array of pointers to the buckets in the

list. We can perform a binary search at the bucket level

by recursively selecting the bucket in the middle to do a

Range Check. In this way we can quickly locate the tar-

get bucket and skip over most buckets. Although reorga-

nizing the fingerprints requires performing an additional

merge sort, our experiments show that these optimiza-

tions can significantly reduce the number of comparisons

of fingerprint values. In Section 4.3.3 we will show and

compare the effectiveness of the three techniques.

3.3 Indirect Mapping

Indirect mapping is a core mechanism in the SSD archi-

tecture. SSDs expose an array of logical block addresses

(LBAs) to the host, and internally, a mapping table is

maintained to track the physical block address (PBA) to

which each LBA is mapped. For CAFTL, the existing

indirect mapping mechanism in SSDs provides a basic

framework for deduplication and avoids rebuilding the

whole infrastructure from scratch.

On the other hand, the existing 1-to-1mappingmecha-

nism in SSDs cannot be directly used for CAFTL, which

is essentially N-to-1 mapping, because of two new chal-

lenges. (1) When a physical page is relocated to an-

other place (e.g. in garbage collection), we must be able

to identify quickly all the logical pages mapped to this

physical page and update their mapping entries to point

to the new location. (2) Since a physical page could be

shared by multiple logical pages, it cannot be recycled

by the garbage collector until all the referencing logical

pages are demapped from it, which means that we must

track the number of referencing logical pages.

3.3.1 Two-level indirect mapping

Figure 5: An illustration of the indirect mapping.

We have designed a new indirect mapping mechanism

to address these aforementioned issues. As shown in Fig-

ure 5, a conventional FTL uses a one-level indirect map-

ping, from LBAs to PBAs. In CAFTL, we create another

indirect mapping level, called Virtual Block Addresses

(VBAs). A VBA is essentially a pseudo address name

to represent a set of LBAs mapped to the same PBA.

In this two-level indirect mapping structure, we can lo-

cate the physical page for a logical page either through

LBA→PBA or LBA→VBA→PBA.

We maintain a primary mapping table and a secondary

mapping table in memory. The primary mapping table

maps a LBA to either a PBA, if the logical page is unique,

or a VBA, if it is a duplicate page. We differentiate PBAs

and VBAs by using the most significant bit in the 32-bit

page address. For a page size of 4KB, using the remain-

ing 31 bits can address 8,192 GB storage space, which is

sufficiently large for an SSD. The secondary mapping ta-

ble maps a VBA to a PBA. Each entry is indexed by the

VBA and has two fields, {PBA, reference}. The 32-bit

PBA denotes the physical flash page, and the 32-bit ref-

erence tracks the exact number of logical pages mapped

to the physical page. Only physical pages without any

reference can be recycled for garbage collection.

This two-level indirect mapping mechanism has sev-

eral merits. First, it significantly simplifies the reverse

updates to the mapping of duplicate logical pages. When

relocating a physical page during GC, we can use its

associated VBA to quickly locate and update the sec-

ondary mapping table by mapping the VBA to the new

location (PBA), which avoids exhaustively searching for

all the referencing LBAs in the huge primary mapping

table. Second, the secondary mapping table can be

very small. Since CAFTL handles regular file system

workloads, most logical pages are unique and directly

mapped through the primary table. We can also ap-

ply an approach similar to DFTL [23] to further re-

duce the memory demand by selectively maintaining the

most frequently accessed entries of the mapping tables in

memory. Finally, this incurs minimal additional lookup

overhead. For unique pages, it performs identically to

conventional FTLs; for duplicate pages, only one extra

memory access is needed for the lookup operation.

3.3.2 The mapping tables in flash

The mapping relationship is also maintained in flash

memory. We keep an in-flash copy of the primary and

secondary mapping tables along with a journal in ded-

icated flash space in SSD. Both in-flash structures are

organized as a list of linked physical flash pages. When

updating the in-memory tables (e.g. remapping a LBA

to a new location), the update record is logged into a

small in-memory buffer. When the buffer is filled, the

log records are appended to the in-flash journal. If power

failure happens, a capacitor (e.g. a SuperCap [46]) can

provide sufficient current to flush the unwritten logs into

the journal and secure the critical mapping structures in

persistent storage. Periodically the in-memory tables are

synced into flash and the journal is reinitialized. Dur-

ing the startup time, the in-flash tables are first loaded

into memory and the logged updates in the journal are

applied to reconstruct the mapping tables.

3.3.3 The metadata pages in flash

Unlike much prior work, which writes the metadata (e.g.

LBA and fingerprint) in the spare area of physical flash

pages, we reserve a dedicated number of flash pages, also

called metadata pages, to store the metadata, and keep a

metadata page array for tracking PBAs of the metadata

pages. The spare area of a physical page is only used for

storing the Error Correction Code (ECC) checksum. If

each physical page is associated with 24 bytes of meta-

data (a 160-bit fingerprint and a 32-bit LBA/VBA), for a

32GB SSDwith 4KB flash pages, we need about 0.6% of

the flash space for storing metadata and a 192KB meta-

data page array. In this way, we can detach the data pages

and the metadata pages, which allows us to manage flex-

ibly the metadata for physical flash pages.

3.4 Acceleration Methods

Fingerprinting is the key bottleneck of the in-line dedu-

plication in CAFTL, especially when the on-device

buffer size is limited. Here we present three effective

techniques to reduce its negative performance impact.

3.4.1 Sampling for hashing

In file system workloads, as we discussed previously, du-

plicate writes are not a ‘common case’ as in backup sys-

tems. This means that most time we spend on fingerprint-

ing is not useful at all. Thus, we selectively pick only one

page as a sample page for fingerprinting, and we use this

sample fingerprint to query the fingerprint store to see if

we can find a match there. If this is true, the whole write

request is very likely to be a duplicate, and we can further

compute fingerprints for the other pages to confirm that.

Otherwise, we assume the whole request would not be a

duplicate and abort fingerprinting at the earliest time. In

this way, we can significantly reduce the hashing cost.

The key issue here is which page should be chosen as

the sample page. It is particularly challenging in CAFTL,

since CAFTL only sees a sequence of blocks and cannot

leverage any file-level semantic hints (e.g. [11]). We pro-

pose to use Content-based Sampling – We select the first

four bytes, called sample bytes, from each page in a re-

quest, and we concatenate the four bytes into a 32-bit

numeric value. We compare these values and the page

with the largest value is the sample page. The rationale

behind this is that if two requests carry similar content,

the pages with the largest sample bytes in two requests

would be very likely to be the same, too. We deliberately

avoid selecting the sample pages based on hash values

(e.g. [11, 30]), because in CAFTL, hashing itself incurs

high latency. Thus relying on hash values for sampling is

undesirable, so we directly pick sample pages based on

their unprocessed content data. We have also examined

choosing other bytes (Figure 6) as the sample bytes and

found that using the first four bytes performs constantly

well across different workloads.

Figure 6: An illustration of four choices of sample bytes.

In our implementation of sampling, we divide the se-

quence of pages in a write request into several sampling

units (e.g. 32 pages), and we pick one sample page from

each unit. We also note that sampling could affect dedu-

plication – the larger a sampling unit is, the better per-

formance but the lower deduplication rate would be. We

will study the effect of unit sizes in Section 4.4.1.

3.4.2 Light-weight pre-hashing

 0

 20

 40

 60

 80

 100

160bits 80bits 64bits 32bits 24bits 16bits

C
o

n
d

e
n

s
e

 R
a

te
 (

%
)

Hash Bits

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Figure 7: Condense rates vs. hash bits.
Computing a light-weight hash function often incurs

lower computational cost. For example, producing a 32-

bit CRC32 hash value is over 10 times faster than com-

puting a 160-bit SHA-1 hash value. More importantly,

our study shows that reducing the hash strength would

not incur a significant increase of false positives for a

typical SSD capacity. We can see in Figure 7 that us-

ing only 32 bits can achieve nearly the same condense

rate as using 160 bits. Plus, many SSDs integrate a ded-

icated ECC engine to compute checksum and detect er-

rors, which can also be leveraged to speed up hashing.

We propose a technique, called light-weight pre-

hashing. We maintain an extra 32-bit CRC32 hash value

for each fingerprint in the fingerprint store. For a page,

we first compute a CRC32 hash value and query the fin-

gerprint store. If a match is found, which means the page

is very likely to be a duplicate, then we use the SHA-

1 hash function to generate a fingerprint and confirm it

in the fingerprint store; otherwise, we abort the high-

cost SHA-1 fingerprinting immediately and perform the

write to flash. Although maintaining CRC32 hash val-

ues demands more fingerprint store space, the significant

performance benefit well justifies it, as shown in Sec-

tion 4.4.2. We have also considered using a Bloom fil-

ter [12] for pre-screening, like in the DataDomain® file

system [47], but found it inapplicable to CAFTL, be-

cause it requires multiple hashings and the summary vec-

tor cannot be updated when a fingerprint is removed.

3.4.3 Dynamic switches

In some extreme cases, incoming requests may wait for

available buffer space to be released by previous re-

quests. CAFTL provides dynamic switch as the last line

of defense for performance protection in such cases.

We set a high watermark and a low watermark to turn

the in-line deduplication off and on, respectively. If the

percentage of the occupied cache space hits a high water-

mark (95%), we disable the in-line deduplication to flush

writes quickly to flash and release buffer space. Once

the low watermark (50%) is hit, we re-enable the in-line

deduplication. Although this remedy solution would re-

duce the deduplication rate, we still can perform out-of-

line deduplication at a later time, so it is an acceptable

tradeoff for retaining high performance.

3.5 Out-of-line Deduplication

As mentioned previously, CAFTL does not pursue a per-

fect in-line deduplication, and an internal routine is pe-

riodically launched to perform out-of-line fingerprinting

and out-of-line deduplication during the device idle time.

Out-of-line fingerprinting is simple. We scan the

metadata page array (Section 3.3.3) to find physical

pages not yet fingerprinted. If one such a page is found,

we read the page out, compute the fingerprint, and up-

date its metadata. To avoid unnecessarily scanning the

metadata of pages already fingerprinted, we use one bit

in an entry of the metadata page array to denote if all of

the fingerprints in the corresponding metadata page have

already been computed, and we skip over such pages.

Out-of-line deduplication is more complicated due to

the memory space constraint. We adopt a solution similar

to the widely used external merge sort [39] in database

systems. Supposing we have M fingerprints in total and

the available memory space can accommodate N finger-

prints, where M > N. We scan the metadata page array

from the beginning, each time N fingerprints are loaded

and sorted in memory, and temporarily stored in flash,

then we load and sort the next N fingerprints, and so on.

This process is repeated for K times (K = ⌈M
N
⌉) until all

the fingerprints are processed. Then we can merge sort

these K blocks of fingerprints in memory and identify the

duplicate fingerprints.

Out-of-line fingerprinting and deduplication can be

performed together with the GC process or indepen-

dently. Since there is no harm in leaving duplicate or un-

fingerprinted pages in flash, these operations can be per-

formed during idle period and immediately aborted upon

incoming requests, and the perceivable performance im-

pact to foreground jobs is minimal.

4 Performance Evaluation

4.1 Experimental Systems

We have implemented and evaluated our design of

CAFTL based on a comprehensive trace-driven simula-

tion. In this section we will introduce our simulator, trace

collection, and system configurations.

4.1.1 SSD Simulator

CAFTL is a device-level design running in the SSD con-

troller. We have implemented it in a sophisticated SSD

simulator based on the Microsoft® Research SSD exten-

sion [5] for the DiskSim simulation environment [14].

This extension was also used in prior work [6].

The Microsoft extension is well modularized and im-

plements the major components of FTL, such as the indi-

rect mapping, garbage collection and wear-leveling poli-

cies, and others. Since the current version lacks an on-

device buffer, which is becoming a standard component

in recent generations of SSDs, we augmented the current

implementation and included a shared buffer for han-

dling incoming read and write requests. When a write

request is received at the SSD, it is first buffered in the

cache, and the SSD immediately reports completion to

the host. Data processing and flash operations are con-

ducted asynchronously in the background [16]. A read

request returns back to the host once the data is loaded

from flash into the buffer. We should note that this simu-

lator follows a general FTL design [6], and the actual im-

plementations of the SSD on the market can have other

specific features.

4.1.2 SSD Configurations

Description Configuration

Flash Page Size 4KB

Pages per Block 64

Blocks per Plane 2048

Planes per Package 8

of Packages 10

Mapping policy Full striping

Over-provisioning 15%

Garbage Collection Threshold 5%

Table 1: Configurations of the SSD simulator.

In our experiments, we use the default configurations

from the SSD extension, unless denoted otherwise. Table

1 gives a list of the major config parameters.

Description Latency

Flash Read/Write/Erase 25 µs/200µs/1.5ms

SHA-1 hashing (4KB) 47,548 cycles

CRC32 hashing (4KB) 4,120 cycles

Table 2: Latencies configured in the SSD simulator.

Table 2 gives the parameters of latencies used in our

experiments. For the flash memory, we use the default la-

tencies in our experiments. For the hashing latencies, we

first cross compile the hash function code to the ARM®

platform and run it on the SimpleScalar-ARM simula-

tor [4] to extract the total number of cycles for executing

a hash function. We assume a processor similar to ARM®

Cortex R4 [8] on the device, which is specifically de-

signed for high-performance embedded devices, includ-

ing storage. Based on its datasheet, the ARM processor

has a frequency from 304MHz to 934MHz [8], and we

can estimate the latency for hashing a 4KB page by divid-

ing the number of cycles by the processor frequency. It

is also worth mentioning here that according to our com-

munications with SSD manufacturer [3], high-frequency

(600+ MHz) processors, such as the Cortex processor,

are becoming increasingly normal in high-speed storage

devices. Leveraging such abundant computing power on

storage devices can be a research topic for further inves-

tigation.

4.1.3 Workloads and trace collection

We have selected 11 workloads from three representative

categories and collected their data access traces.

• Desktop (d1,d2) – Typical office workloads, e.g. In-

ternet surfing, emailing, word editing, etc. The work-

loads run for 12 and 19 hours, respectively, and feature

irregular idle intervals and small reads and writes.

• Hadoop (h1-h7)–We execute seven TPC-H data ware-

house queries (Query 1,6,11,14,15,16,20) with scale

factor of 1 on a Hadoop distributed system platform

[2]. These workloads run for 2-40 minutes and gener-

ate intensive large writes of temp data.

• Transaction (t1,t2) –We execute TPC-Cworkloads (1-

3 warehouses, 10 terminals) for transaction processing

on PostgreSQL 8.4.3 database system. The two work-

loads run for 30 minutes and 4 hours, respectively, and

feature intensive write operations.

The traces are collected on a DELL® Dimension 3100

workstation with an Intel® Pentium™4 3.0GHz proces-

sor, a 3GB main memory, and a 160GB 7,200 RPM

Seagate® hard disk drive. We use Ubuntu 9.10 with the

Ext3 file system. We modified the Linux kernel 2.6.32

source code to intercept each I/O request and compute a

SHA-1 hash value as a fingerprint for each 4KB page of

the request. These fingerprints, together with other re-

quest information (e.g. offset, type), are transferred to

another machine via netconsole [35]. This avoids the

possible interference caused by tracing. The collected

trace files are analyzed offline and used to drive the sim-

ulator for our experimental evaluation.

4.2 Effectiveness of Deduplication

CAFTL intends to remove duplicate writes and extend

flash space. In this section, we perform two sets of ex-

periments to show the effectiveness of deduplication in

CAFTL. In both experiments, we use an SSD with a

934MHz processor and a 16MB buffer.

4.2.1 Removing duplicate writes

CAFTL identifies and removes duplicate writes via in-

line deduplication. Denoting the total number of pages

requested to be written as n, and the total number of

pages being actually written into flash medium as m, the

deduplication rate is defined as n−m
n

. Figure 8 shows

the deduplication rate of the 11 workloads running on

CAFTL. In this figure, offline refers to the optimal case,

where the traces are examined and deduplicated offline.

We also show CAFTL without sampling and with a sam-

pling unit size of 128KB (32 pages), denoted as no-

sampling and 128KB, respectively.

 0

 5

 10

 15

 20

 25

 30

 35

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2

P
e

rc
.

o
f

R
e

m
o

v
e

d
 W

ri
te

s
 (

%
)

d − desktop; h − hadoop; t − transaction

offline
no−sampling
128KB

Figure 8: Perc. of removed duplicate writes.

As we see in Figure 8, duplication is highly work-

load dependent. Across the 11 workloads, the rate of

duplicate writes in the workloads ranges from 5.8% (t1)

to 28.1% (h6). CAFTL can achieve deduplication rates

from 4.6% (t1) to 24.2% (h6) with no sampling. Com-

pared with the optimal case (offline), CAFTL identifies

up to 86.2% of the duplicate writes in offline. We also can

see that with a larger sampling unit (128KB), CAFTL

achieves a lower but reasonable deduplication rate. In

Section 4.4.1, we will give more detailed analysis on the

effect of sampling unit sizes.

4.2.2 Extending flash space

 0

 5

 10

 15

 20

 25

 30

 35

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2

P
e

rc
.

o
f

S
a

v
e

 F
la

s
h

 S
p

a
c
e

 (
%

)

d − desktop; h − hadoop; t − transaction

no−sampling
128KB

Figure 9: Perc. of extended flash space.

Besides directly removing duplicate writes to the flash

memory, CAFTL also reduces the amount of occupied

flash memory space and increases the number of avail-

able clean erase blocks for garbage collection and wear-

leveling. Figure 9 shows the percentage of extended flash

space in units of erase blocks, compared to the baseline

case (without CAFTL). We show CAFTL without sam-

pling (no-sampling) and with sampling (128KB).

As shown in Figure 9, CAFTL can save up to 31.2%

(h1) of the occupied flash blocks for the 11 workloads.

The worst cases are h2 and h5, in which no space saving

is observed. This is because the two workloads are rela-

tively smaller, the total number of occupied erase blocks

is only 176. Although the number of pages being written

is reduced by 16.6% (h2) and 15% (h5), the saved space

in units of erase blocks is very small.

4.3 Performance Impact

To make CAFTL truly effective in practice, we must

retain high performance and minimize negative impact.

Here we study three key factors affecting performance,

cache size, hashing speed, and fingerprint searching.

The acceleration methods are not applied in experiments.

4.3.1 Cache size

In Figure 10, we show the percentage of the increase

of average read/write latencies with various cache sizes

(2MB to 16MB). We compare CAFTL with the baseline

case (without CAFTL). In the experiments, we config-

ure an SSD with a 934MHz processor. We can see that

with a small cache space (2MB), the read and write la-

tencies can increase by a factor of up to 34% (t1). With a

moderate cache size (8MB), the latency increases are re-

duced to less than 4.5%. With a 16MB cache, a rather

standard size, the latency increases become negligible

(less than 0.5%). For some workloads (d2, h3, h5, h7,

t1, t2), we can even see a slight performance improve-

ment (0.2-0.5%), because CAFTL removes unnecessary

writes, which reduces the probability of being blocked

by an in-progress flash write operation. In this case we

see a negative performance impact with a small cache

space, and we will show how to mitigate such a problem

through our acceleration methods in Section 4.4.

4.3.2 Hashing speed

Computing fingerprints is time consuming and affects ac-

cess performance. The hashing speed depends on the ca-

pability of processors. Using a more powerful processor

can effectively reduce the latency for digesting pages and

generating fingerprints. To study the performance im-

pact caused by hashing speed, we vary the processor fre-

quency from 304MHz to 934MHz, based on the Cortex

datasheet [8]. We configure an SSD with a 16MB cache

space and show the increase of read latencies compared

to the baseline case (without CAFTL) in Figure 11. We

did not observe an increase of write latencies, since most

writes are absorbed in the buffer.

 0

 20

 40

 60

 80

 100

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2

R
e

a
d

 L
a

te
n

c
y
 I

n
c
re

a
s
e

 (
%

)

d − desktop; h − hadoop; t − transaction

304MHz
392MHz
619MHz
934MHz

Figure 11: Perf. impact of hashing Speeds.

In Figure 11, we can see that most workloads are

insensitive to hashing speed. With a 304MHz proces-

sor, the performance overhead is less than 8.5% (t2),

which has more intensive larger writes. At 934MHz,

the performance overhead is merely observable (up to

0.5%). There are two reasons. First, the 16MB on-device

buffer absorbs most incoming writes and provides a suf-

ficient space for accommodating incoming reads. Sec-

ond, the incoming read requests are given a higher pri-

ority than writes, which reduces noticeable delays in the

critical path. These optimizations make reads insensitive

to hashing speed and reduces noticeable latencies. Also

 0

 20

 40

 60

 80

 100

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2

R
e
a
d
 L

a
te

n
c
y
 I
n
c
re

a
s
e
 (

%
)

Read (d − desktop; h − hadoop; t − transaction)

2MB
4MB
8MB
16MB

 0

 20

 40

 60

 80

 100

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2

W
ri
te

 L
a
te

n
c
y
 I
n
c
re

a
s
e
 (

%
)

Write (d − desktop; h − hadoop; t − transaction)

2MB
4MB
8MB
16MB

Figure 10: Performance impact of cache sizes (2-16MB).

note that if a dedicated hashing engine is used on the de-

vice, the hashing latency could be further reduced.

4.3.3 Fingerprint searching

 0

 20

 40

 60

 80

 100

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2P
e
rc

.
o
f
R

e
d
u
c
e
d
 C

o
m

p
a
ri
s
o
n
s
 (

%
)

d − desktop; h − hadoop; t − transaction

Range Check (RC)
Hotness−based Reorg w/ RC
Bucket−level Binary Search w/ RC

Figure 12: Optimizations on fingerprint searching.

We have proposed three techniques to accelerate fin-

gerprint searching. Figure 12 shows the percentage

of reduced fingerprint comparisons compared with the

baseline case. We configure the fingerprint store with

256 segments to hold the fingerprints for each work-

load. We can see that using Range Check can effec-

tively reduce the comparisons of fingerprints by up to

23.7% (t2). However,Hotness-based Reorganization can

provide little further improvement (less than 1%), be-

cause it essentially accelerates lookups for fingerprints

that are duplicated, which is relatively an uncommon

case. As expected, Bucket-level Binary Search can sig-

nificantly reduce the average number of comparisons

for each lookup. In d2, for example, Bucket-level Bi-

nary Search can effectively reduce the average number

of comparisons by a factor of 85.5%. Thus we would

suggest applying Bucket-level Binary Search and Range

Check to speed up fingerprint lookups.

4.4 Acceleration Methods

With a small on-device buffer, the high computational

latency caused by hashing could be significant and per-

ceived by the users. We have developed three techniques

to accelerate fingerprinting. In this section, we will show

the effectiveness of each individual technique and then

show the effects in aggregate. We configure an SSD with

a 934MHz processor and a small 2MB buffer.

4.4.1 Sampling

 0

 5

 10

 15

 20

 25

 30

 35

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2

D
e

d
u

p
lic

a
ti
o

n
 R

a
te

 (
%

)

d − desktop; h − hadoop; t − transaction

no−sampling
8KB
16KB
32KB
64KB
128KB

Figure 14: Dedup. with Sampling

As shown in Figure 13 and Figure 14, sampling can

significantly improve performance. With the increase

of sampling unit size, fewer fingerprints need to be cal-

culated, which translates into a manifold reduction of

observed read and write latencies. For example, h7

achieves a speedup by a factor of 94.1 times for reads and

3.5 times for writes, because of the significantly reduced

waiting time for the buffer. Meanwhile, the deduplica-

tion rate is only reduced from 18% to 15.4%. Consider-

ing such a significant speedup, the minor loss of dedupli-

cation rate is acceptable. The maximum speedup, 110.6

times (read), is observed in t1, and its deduplication rate

drops from 4.6% to 1.3%. This is mostly because for

workloads with low duplication rate, the probability of

sampling right pages is also relatively low.

4.4.2 Light-weight pre-hashing

Light-weight pre-hashing uses a fast CRC32 hash func-

tion to filter most unlikely-to-be-duplicated pages before

performing high-cost fingerprinting. Figure 15 shows the

speedup of reads and writes by using CRC32 for pre-

hashing, compared with CAFTL without pre-hashing.

Only pre-hashing is enabled here. We can see that in

the best case (t1), pre-hashing can reduce the latencies

by a factor of up to 148.3 times for reads and 3.9 times

for writes. This is because, as mentioned previously,

 0

 20

 40

 60

 80

 100

 120

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2R
e

a
d

 R
e

s
p

o
n

s
e

 T
im

e
 S

p
e

e
d

u
p

 (
x
)

Read (d − desktop; h − hadoop; t − transaction)

8KB
16KB
32KB
64KB
128KB

 0

 1

 2

 3

 4

 5

 6

 7

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2W
ri
te

 R
e
s
p
o
n
s
e
 T

im
e
 S

p
e
e
d
u
p
 (

x
)

Write (d − desktop; h − hadoop; t − transaction)

8KB
16KB
32KB
64KB
128KB

Figure 13: Performance speedup with Sampling (unit size: 8-128KB).

 0

 20

 40

 60

 80

 100

 120

 140

 160

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2

S
p

e
e

d
u

p
 (

x
)

d − desktop; h − hadoop; t − transaction

Read
Write

Figure 15: Speedup with pre-hashing.

this workload is write intensive and has a long waiting

queue, which makes the queuing effect particularly sig-

nificant. Similar to sampling, writes receive relatively

smaller benefit, because the buffer absorbs the writes

with low latency and diminishes the effect of speeding

up writes. Meanwhile, we also found negligible differ-

ence in deduplication rates, which is consistent with our

analysis shown in Figure 7.

4.4.3 Dynamic switch

 0

 50

 100

 150

 200

 250

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2

S
p

e
e

d
u

p
 (

x
)

d − desktop; h − hadoop; t − transaction

Read
Write

Figure 16: Speedup with dynamic switch.

CAFTL also provides dynamic switch to dynamically

turn on/off the in-line deduplication, depending on the

usage of the on-device buffer. We configure the high

watermark as 95% (off) and the low watermark as 50%

(on). Figure 16 shows the speedup of reads and writes

in the workloads. Again, t1 receives the most significant

performance speedup by a factor of 200.6 times. Some

workloads (h1-h5) receive no benefits, because they are

less I/O intensive. For the other workloads, we can ob-

serve a speedup of 2.1 times to 94.6 times.

4.4.4 Putting it all together

 0

 10

 20

 30

 40

 50

d1 d2 h1 h2 h3 h4 h5 h6 h7 t1 t2

P
e

rc
e

n
ta

g
e

 (
%

)

d − desktop; h − hadoop; t − transaction

Increase of Read Latencies
Increase of Write Latencies
Dedupcation Rate

Figure 17: Three acceleration tech. combined

In Figure 17, we enable all the three acceleration tech-

niques and show the increase of read and write latencies,

compared with the baseline case (without CAFTL), and

the corresponding deduplication rate. We can see that by

combining all the three techniques, we can almost com-

pletely remove the performance overhead with only a

2MB on-device buffer. In the meantime, we can achieve

a deduplication rate of up to 19.9%.

5 Other Related Work

Flash memory based SSDs have received a lot of in-

terest in both academia and industry. There is a large

body of research work on flash memory and SSDs (e.g.

[6,9,13,15–18,20,23,26–29,31,34,37,38,42,44]). Con-

cerning lifespan issues, most early work focuses on de-

signing garbage collection and wear-leveling policies. A

survey [21] summarizes these techniques. Here we only

present the papers most related to this work.

Recently Grupp et al. [22] have presented an empiri-

cal study on the performance, power, and reliability of

flash memories. Their results show that flash memories,

particularly MLC devices, exhibit significant error rates

after or even before reaching the rated lifetime, which

makes using high density SSDs in commercial systems a

difficult choice. Another report [13] has studied the write

endurance of USB flash drives with a more optimistic

conclusion that the endurance of flash memory chips

is better than expected, but whole-device endurance is

closely related to the FTL designs. A modeling based

study on the endurance issues has also been presented

in [33]. These studies provide much needed information

about the lifespan of flash memory and small-size flash

devices. However, so far the endurance of state-of-the-

art SSDs has not yet been proven in the field [10].

Early studies on SSDs mainly focus on performance.

Some recent studies have begun to look at reliability is-

sues. Differential RAID [9] tries to improve reliability

of an SSD-based RAID storage by distributing parity

unevenly across SSDs to reduce the probability of cor-

related multi-device failure. Griffin [42] extends SSD

lifetime by maintaining a log-structured HDD cache and

migrating cached data periodically. A recent work [36]

considers write cycles in addition to storage space as a

constrained resource in depletable storage systems and

suggests attribute depletion to users in systems like cloud

computing. ChunkStash [19] uses flash memory to speed

up index lookups for inline storage deduplication. An-

other work [43] proposes to integrate phase changemem-

ory into SSDs to improve the performance, energy con-

sumption, and also lifetime. Our study has made its

unique contributions to enhancing the lifespan of SSDs

by removing duplicate writes and coalescing redundant

data at the device level, as a more general solution.

6 Conclusion and Discussions

Enhancing the SSD lifespan is crucial to a wide deploy-

ment of SSDs in commercial systems. In this paper, we

have proposed a solution, called CAFTL, and shown that

by removing duplicate writes and coalescing redundant

data, we can effectively enhance the lifespan of SSDs

while retaining high data access performance.

A potential concern about CAFTL is the volatility of

the on-device RAM buffer – the buffered data could be

lost upon power failure. However, this concern is not

new to SSDs. A hard disk drive also has an on-device

buffer, but it provides users an option (e.g. using sdparm

tool) to flexibly enable/disable the buffer on their needs.

Similarly, if needed, the users can choose to disable the

in-line deduplication and the buffer in an SSD, and the

out-of-line deduplication can still be effective.

Although we have striven to minimize memory usage,

CAFTL demands more space for storing fingerprints and

the secondary mapping table, compared with traditional

FTLs. According to our communications with SSDman-

ufacturer [3], memory actually only accounts for a small

percentage of the total production cost, and the most

expensive component is flash memory. Thus we con-

sider this tradeoff is worthwhile to extend available flash

space, and SSD lifespan. If budget allows, we would

suggest maintaining the fingerprint store fully in mem-

ory, which not only improves deduplication rate but also

simplifies designs.

Further improvements are also possible. One is to re-

lax the stringent “one-time programming” requirement.

According to the specification, each flash page in a clean

erase block should be programmed (written) only once.

In practice, flash chips can allow multiple programs to

a page and the risk of “program disturb” is fairly low

[7]. We can leverage this feature to simplify many de-

signs. For example, we can write multiple versions of

LBA/VBA and fingerprints into the spare area of a phys-

ical page, which can largely remove the need for meta-

data pages. Another consideration is to integrate a byte-

addressable persistent memory (e.g. PCM) into the SSDs

to maintain the metadata, which can remove much de-

sign complexity. We are also considering the addition of

on-line compression into SSDs to better utilize the high-

speed processor on the device. This can further extend

available flash space but may require more changes to

the FTL design, which will be our future work.

As SSD technology becomes increasingly mature and

delivers satisfactory performance, we believe, the en-

durance issue of SSDs, particularly high-density MLC

SSDs, opens many new research opportunities and

should receive more attention from researchers.

Acknowledgments

We are grateful to our shepherd Dr. Christos Karamano-

lis fromVMware® and the anonymous reviewers for their

constructive comments. We also thank our colleague Bill

Bynum for reading this paper and his suggestions. This

research was partially supported by the NSF under grants

CCF-0620152, CCF-072380, and CCF-0913150.

References

[1] FIPS 180-1, Secure Hash Standard, April 1995.

[2] Hadoop. http://hadoop.apache.org/, 2010.

[3] Personal communications with an SSD architect, 2010.

[4] SimpleScalar 4.0. http://www.simplescalar.com/v4test.html,

2010.

[5] SSD extension for DiskSim simulation environment.

http://research.microsoft.com/en-us/downloads/b41019e2-

1d2b-44d8-b512-ba35ab814cd4/, 2010.

[6] AGRAWAL, N., PRABHAKARAN, V., WOBBER, T., DAVIS,

J. D., MANASSE, M., AND PANIGRAHY, R. Design tradeoffs

for SSD performance. In Proceedings of USENIX’08 (Boston,

MA, June 2008).

[7] ANDERSEN, D. G., AND SWANSON, S. Rethinking flash in the

data center. In IEEE Micro (July/Aug 2010).

[8] ARM. Cortex R4. http://www.arm.com/products/

processors/cortex-r/cortex-r4.php, 2010.

[9] BALAKRISHNAN, M., KADAV, A., PRABHAKARAN, V., AND

MALKHI, D. Differential RAID: Rethinking RAID for SSD Reli-

ability. In Proceedings of EuroSys’10 (Paris, France, April 2010).

[10] BARROSO, L. A. Warehouse-scale computing. In Keynote in the

SIGMOD’10 conference (Indianapolis, IN, June 2010).

[11] BHAGWAT, D., ESHGHI, K., LONG, D. D. E., AND LILLIB-

RIDGE, M. Extreme binning: Scalable, parallel deduplication for

chunk-based file backup. In Proceedings of MASCOTS’09 (Lon-

don, UK, September 2009).

[12] BLOOM, B. H. Space/time trade-offs in hash coding with allow-

able errors. In Communications of the ACM (1970), vol. 13(7),

pp. 422–426.

[13] BOBOILA, S., AND DESNOYERS, P. Write endurance in flash

drives: Measurements and analysis. In Proceedings of FAST’10

(San Jose, CA, February 2010).

[14] BUCY, J., SCHINDLER, J., SCHLOSSER, S., AND GANGER, G.

DiskSim 4.0. http://www.pdl.cmu.edu/DiskSim, 2010.

[15] CHEN, F., JIANG, S., AND ZHANG, X. SmartSaver: Turning

flash drive into a disk energy saver for mobile computers. In

Proceedings of ISLPED’06 (Tegernsee, Germany, October 2006).

[16] CHEN, F., KOUFATY, D. A., AND ZHANG, X. Understand-

ing intrinsic characteristics and system implications of flash

memory based solid state drives. In Proceedings of SIGMET-

RICS/Performance’09 (Seattle, WA, June 2009).

[17] CHEN, F., LEE, R., AND ZHANG, X. Essential roles of exploit-

ing internal parallelism of flash memory based solid state drives

in high-speed data processing. In Proceedings of HPCA’11 (San

Antonio, TX, Feb 2011).

[18] CHEN, S. FlashLogging: Exploiting flash devices for syn-

chronous logging performance. In Proceedings of SIGMOD’09

(Providence, RI, June 2009).

[19] DEBNATH, B., SENGUPTA, S., AND LI, J. ChunkStash: Speed-

ing up inline storage deduplication using flash memory. In Pro-

ceedings of USENIX’10 (Boston, MA, June 2010).

[20] DIRIK, C., AND JACOB, B. The performance of PC solid-state

disks (SSDs) as a function of bandwidth, concurrency, device,

architecture, and system organization. In Proceedings of ISCA’09

(Austin, TX, June 2009).

[21] GAL, E., AND TOLEDO, S. Algorithms and data structures for

flash memories. In ACMComputing Survey’05 (2005), vol. 37(2),

pp. 138–163.

[22] GRUPP, L. M., CAULFIELD, A. M., COBURN, J., SWANSON,

S., YAAKOBI, E., SIEGEL, P. H., AND WOLF, J. K. Character-

izing flash memory: Anomalies, observations, and applications.

In Proceedings of MICRO’09 (New York, NY, December 2009).

[23] GUPTA, A., KIM, Y., AND URGAONKAR, B. DFTL: a flash

translation layer employing demand-based selective caching of

page-level address mappings. In Proceedings of ASPLOS’09

(Washington, D.C., March 2009).

[24] GUPTA, D., LEE, S., VRABLE, M., SAVAGE, S., SNOEREN,

A. C., VARGHESE, G., VOELKER, G. M., AND VAHDAT, A.

Difference Engine: Harnessing memory redundancy in virtual

machines. In Proceedings of OSDI’08 (San Diego, CA, 2008).

[25] INTEL. Intel X25-E extreme SATA solid-state drive.

http://www.intel.com/design/flash/nand/extreme, 2008.

[26] JOSEPHSON, W. K., BONGO, L. A., FLYNN, D., AND LI, K.

DFS: A file system for virtualized flash storage. In Proceedings

of FAST’10 (San Jose, CA, February 2010).

[27] KAWAGUCHI, A., NISHIOKA, S., AND MOTODA, H. A flash-

memory based file system. In Proceedings of USENIX Winter

(New Orleans, LA, Jan 1995), pp. 155–164.

[28] KIM, H., AND AHN, S. BPLRU: A buffer management scheme

for improving random writes in flash storage. In Proceedings of

FAST’08 (San Jose, CA, February 2008).

[29] LEE, S., AND MOON, B. Design of flash-based DBMS: An in-

page logging approach. In Proceedings of SIGMOD’07 (Beijing,

China, June 2007).

[30] LILLIBRIDGE, M., ESHGHI, K., BHAGWAT, D., DEOLALIKAR,

V., TREZISE, G., AND CAMBLE, P. Sparse indexing: Large

scale, inline deduplication using sampling and locality. In Pro-

ceedings of FAST’09 (San Jose, CA, 2009).

[31] MAKATOS, T., KLONATOS, Y., MARAZAKIS, M., FLOURIS,

M. D., AND BILAS, A. Using transparent compression to im-

prove SSD-based I/O caches. In Proceedings of EuroSys’10

(Paris, France, April 2010).

[32] MENEZES, A. J., V. OORSCHOT, P. C., AND VANSTONE, S. A.

Handbook of applied cryptography. In CRC Press (1996).

[33] MOHAN, V., SIDDIQUA, T., GURUMURTHI, S., AND STAN,

M. R. How I learned to stop worrying and love flash endurance.

In Proceedings of HotStorage’10 (Boston, MA, June 2010).

[34] NARAYANAN, D., THERESKA, E., DONNELLY, A., ELNIKETY,

S., AND ROWSTRON, A. Migrating enterprise storage to SSDs:

analysis of tradeoffs. In Proceedings of EuroSys’09 (Nuremberg,

Germany, March 2009).

[35] NETCONSOLE. http://www.kernel.org/doc/Documentation/ net-

working/netconsole.txt, 2010.

[36] PRABHAKARAN, V., BALAKRISHNAN, M., DAVIS, J. D., AND

WOBBER, T. Depletable storage systems. In Proceedings of

HotStorage’10 (Boston, MA, June 2010).

[37] PRABHAKARAN, V., RODEHEFFEER, T. L., AND ZHOU, L.

Transactional flash. In Proceedings of OSDI’08 (San Diego, CA,

December 2008).

[38] PRITCHETT, T., AND THOTTETHODI, M. SieveStore: A highly-

selective, ensemble-level disk cache for cost-performance. In

Proceedings of ISCA’10 (Saint-Malo, France, June 2010).

[39] RAMAKRISHNAN, R., AND GEHRKE, J. Database managment

systems. McGraw-Hill, 2030.

[40] RIVEST, R. The MD5 message-digest algorithm.

http://www.ietf.org/rfc/rfc1321.txt, April 1992.

[41] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and

implementation of a log-structured file system. In ACM Transac-

tions on Computer Systems (1992), vol. 10(1):26-52.

[42] SOUNDARARAJAN, G., PRABHAKARAN, V., BALAKRISHNAN,

M., AND WOBBER, T. Extending SSD lifetimes with disk-based

write caches. In Proceedings of FAST’10 (San Jose, CA, February

2010).

[43] SUN, G., JOO, Y., CHEN, Y., NIU, D., XIE, Y., CHEN, Y.,

AND LI, H. A hybrid solid-state storage architecture for the per-

formance, energy consumption, and lifetime improvement. In

Proceedings of HPCA’10 (Bangalore, India, Jan 2010).

[44] TSIROGIANNIS, D., HARIZOPOULOS, S., AND SHAH, M. A.

Query processing techniques for solid state drives. In Proceed-

ings of SIGMOD’09 (Providence, RI, June 2009).

[45] UNGUREANU, C., ATKIN, B., ARANYA, A., GOKHALE, S.,

RAGO, S., CALKOWSKI, G., DUBNICKI, C., AND BOHRA,

A. HydraFS: A high-throughput file system for the HYDRAstor

content-addressable storage system. In Proceedings of FAST’10

(San Jose, CA, 2010).

[46] WIKIPEDIA. Battery or supercap. http://en.wikipedia.org/wiki/

Solid-state-drive#Battery or SuperCap, 2010.

[47] ZHU, B., LI, K., AND PATTERSON, H. Avoiding the disk bottle-

neck in the data domain deduplication file system. In Proceedings

of FAST’08 (San Jose, CA, 2008).

