
OS Support for High-Performance NVMs using Vector
Interfaces

Vijay Vasudevan∗, David G. Andersen, Michael Kaminsky1

Carnegie Mellon University, 1Intel Labs

Abstract
The move to many-core systems and the emergence of
new non-volatile memories will require that we rethink
and redesign systems for high-performance I/O. Individ-
ual core speeds are not increasing in sequential execu-
tion speed as quickly as non-volatile memories such as
flash, PCM, and memristor technologies are improving
speed. The formerly increasing CPU-I/O gap will there-
fore shrink considerably: what used to be I/O-bound will
become CPU-bound with our existing I/O interfaces. Re-
cent research by the authors and others has already ob-
served that the system overhead for small I/O requests can
cripple the performance of fast SSDs [2, 9]. These system
overheads exist across the stack, including the filesystem,
block device, device driver and interrupt handling layers.

Simultaneously, modern NVMs require a large number
of outstanding requests to saturate device throughput be-
cause the devices are composed of a set of independently-
addressable chips [5]. Some flash devices today already
require maintaining at least ten in-flight requests, and
future systems may require hundreds to cope with the
increasing chip parallelism that helps improve device
throughput and capacity. Providing tens to hundreds of
in-flight requests from applications today requires either
asynchronous I/O or extremely high thread counts us-
ing synchronous I/O, both of which can be difficult for
applications to adapt to.

So we ask: How can we eliminate many of the system
overheads observed in today’s I/O stack, ensure that we
can saturate the queue depth of modern highly-parallel
NVM devices, all while providing a simple and under-
standable interface for developers?

In this work-in-progress, we argue that applications
must be able to issue I/O requests to the operating sys-
tem using a “vector interface” in order to give the OS the
information it needs to satisfy these demands efficiently.
Vector interfaces differ from today’s existing interfaces
because they must accept vectors of resources: For ex-
ample, whereas today’s read() interface accepts only
a single file descriptor, buffer, and offset, we argue for

∗Student author and presenter

having a vec read() system call that takes in multiple
file descriptors, buffers, and offsets as arguments. The OS
can then issue this bundle of requests efficiently through
the I/O stack for the following reasons:

First, vector interfaces can help eliminate redundant
code execution in the I/O code path common across a
batch of requests. For example, when opening several
files in a single directory, the filesystem path resolution up
until the parent need only be performed once, rather than
once for every file. Second, these interfaces can provide
opportunities for leveraging vector hardware (such as SSE
and GPU hardware) when appropriate. Last, vector inter-
faces provide the basis for automatic interrupt mitigation
through batched I/O completion, which in turn substan-
tially reduces overhead in returning vectors of completed
I/O events to applications.

This work-in-progress presents two major challenges
for which we seek input from the community. The first
involves understanding how applications should be ex-
posed to these vector interfaces. Should they explicitly
use raw vector interfaces, or should they be hidden be-
hind libraries? Both approaches have their benefits and
drawbacks: Raw vector interfaces provide ultimate con-
trol to the programmer to decide when and how to batch
work together before submitting a call to the OS, whereas
libraries hide the complexity of batching system calls
but force applications to place more trust in the OS to
decide how to schedule I/O. Prior work on batching sys-
tem calls has taken multiple different forms: collective
I/O, multicalls, asynchronous system calls, and compiler
binary rewriting [3, 7, 10, 6]. These techniques differ
significantly in how they expose vector interfaces to appli-
cations. Systems like FlexSC hide the asynchrony of its
system calls behind backwards-compatible threading li-
braries, allowing unmodified applications to benefit from
batched system call execution. The HPC community has
proposed both “Multicollective I/O” [4] and HEC POSIX
extensions (readx/writex) [8] as a way to batch I/O
requests together and optimize access to shared storage,
and its integration into MPI-IO demonstrates that HPC ap-
plication writers are willing to embrace an explicit vector
interface. We hope to explore the benefits and drawbacks

1



of both the explicit and implicit interface approaches as
part of our ongoing work.

Second, do we need hardware interface support at the
storage level to take advantage of software vector inter-
faces? For example, requiring hardware to process vectors
of commands could make interrupt scheduling more ef-
ficient: A set of related but discontiguous I/O requests
sent to a storage device as a vector of commands can
trigger an interrupt only when results for the entire set are
available. In contrast, triggering one interrupt for each
I/O increases interrupt load, and the OS must wait for the
last interrupt from the set before delivering the results to
the application. Vector storage interfaces also can provide
opportunities for smarter I/O scheduling in NVMs [1],
allowing a device to optimally re-order commands given
a known batch of requests. Lastly, SSDs that require
multiple in-flight commands will require algorithms and
implementations that keep the device’s queues occupied,
and we believe networking and queuing theory ideas may
apply well for these storage devices.

References
[1] S. Boboila and P. Desnoyers. Write endurance in flash drives:

Measurements and analysis. In Proc. USENIX Conference on File
and Storage Technologies, Feb. 2010.

[2] A. M. Caulfield, A. De, J. Coburn, T. Mollov, R. Gupta, and
S. Swanson. Moneta: A high-performance storage array architec-
ture for next-generation, non-volatile memories. In Proceedings of
the 37th International Symposium on Microarchitecture (MICRO),
Dec. 2010.

[3] K. Coloma, A. Ching, A. Chouhary, W. Liao, R. Ross, R. Thakur,
and L. Ward. A new flexible MPI collective I/O implementation.
In Proceedings of the IEEE Conference on Cluster Computing,
Sept. 2006.

[4] G. Memik, M. T. Kandemir, W. Liao, and A. Choudhary. Multi-
collective i/o: A technique for exploiting inter-file access patterns.
volume 2, Aug. 2006.

[5] M. Polte, J. Simsa, and G. Gibson. Enabling enterprise solid state
disks performance. In Proc. Workshop on Integrating Solid-state
Memory into the Storage Hierarchy, Mar. 2009.

[6] A. Purohit, C. P. Wright, J. Spadevcchia, and E. Zadok. Cosy:
Develop in user-land, run in kernel-mode. In Proc. HotOS IX,
May 2003.

[7] M. Rajagopalan, S. K. Debray, M. A. Hiltunen, and R. D. Schlict-
ing. Cassyopia: Compiler assisted system optimization. In Proc.
HotOS IX, May 2003.

[8] R. Ross. HEC POSIX I/O API Extensions.
http://www.pdsi-scidac.org/docs/sc06/
hec-posix-extensions-sc2006-workshop.pdf.

[9] E. Seppanen, M. T. O’Keefe, and D. J. Lilja. High performance
solid state storage under linux. In 26th IEEE Symposium on
Massive Storage Systems and Technologies, May 2010.

[10] L. Soares and M. Stumm. FlexSC: Flexible system call scheduling
with exception-less system calls. In Proc. 9th USENIX OSDI, Oct.
2010.

2

http://www.pdsi-scidac.org/docs/sc06/hec-posix-extensions-sc2006-workshop.pdf
http://www.pdsi-scidac.org/docs/sc06/hec-posix-extensions-sc2006-workshop.pdf

