DBLK: Deduplication for Primary Block Storage

Yoshihiro Tsuchiya, Takashi Watanabe
Fujitsu Limited
Kanagawa, Japan
{tsuchiya.yoshi,wtnb}@jp.fujitsu.com

Abstract— The Deduplication BLocK device (DBLK)' is
a deduplication and compression system with the block
device interface. It is used as a primary storage and its
block-wise deduplication is done in inline. Since
deduplication for primary storage requires low latency
and choosing block-wise deduplication creates large
amount of metadata, it is necessary to efficiently use the
memory of the system. We solved this problem and
developed the Multilayer Bloom Filter (MBF) to reduce
the size of the data structure in memory to index duplicate
data.

1. DBLK DESIGN

The DBLK is a block-level storage system working as a
backing store of an iSCSI target (Slide 2). Slide 4 shows the
major data structures in the DBLK.

The DBLK splits data into a fixed size (4 KB), computes
SHA-1 hash value of the data, deduplicates and compresses
data, and writes them sequentially as a data log on disk drives.
Metadata are also stored in data log. Logs are kept in chunks,
which is the fixed size unit in disks.

The DBLK must maintain the mapping between hash values
to physical block addresses (PBAs). The DBLK appends hash
information, including a new hash value and the PBA of the
data, to the hash log. Hash information is written sequentially
in the hash log.

The DBLK maintains the mapping between a logical block
number (LBA4) and an SHA-1 hash value in a block map.

The DBLK uses a Bloom filter to check if incoming data
are duplicates of existing data.

Since the size of an entire hash log, which contains the
mapping of hash values and PBAs, will be bigger than the
physical memory of a server, the DBLK requires a hash index
to find locations of hash information in the hash log from hash
values.

The size of the hash index was our problem. If the DBLK
manages an 8 TB RAID, for example, there are 2 billion
blocks (=8TB/4KB) which contains deduplicated data. Each
data log has 40-byte hash log (160-bit SHA-1, PBA etc.) in the
hash log. The size of the hash log will be 80 GB. If a hash
index, the mapping between the 160-bit SHA-1 value to the
address of hash log, is implemented by regular hash table or B-
tree, its size will be more than 56 GB (=2 billion x (160-
bit+PBA)), which will not fit in memory of the DBLK server.

! This work is supported by the Green IT project of New
Energy and Industrial Technology Development Organization
(NEDO).

What is worse, since SHA-1 value does not have locality, if a
hash index is stored in a hard drive, a hash index will be
accessed randomly and cache will not work well.

II. MBF ano MBF-BT

To solve this problem, we extend the Bloom filter from
detecting duplicates for finding the hash log block. Under the
main Bloom filter, we add two more Bloom filters, each half
the size of the first. One corresponds to the left half of the
hash log, and the other filter corresponds to the other half. If
the first Bloom filter is positive, then we check the two child
filters. The area of the hash log can be narrowed down to a
single block by repeating this. We call this idea the Multilayer
Bloom filter (MBF, Slide 5). The lowest layer of the MBF is
associated with the blocks of the hash log.

Slide 5 is an example of a binary MBF, and MBF can be N-
ary, which can reduce the ‘hight’ of the MBF, i.e. less
memory consumption.

The MBF-bitwise transposition (MBF-BT) optimizes the
MBEF. Slide 6 shows an example of a layer of MBF with 64
filters. If there are M bits in each of the 64 filters, the entire
layer can be mapped upon M-64-bit integers by transposition.
The MBF-BT lowers the cost of looking up multiple Bloom
filters by using integer-wise check rather than bit-wise check.

The DBLK implementation use the MMX instruction set
which enables to access 128-bit registers, so the performance
improvement is 128x.

By using the MBF-BT, it is possible to reduce the height by
increasing N of an N-ary MBF. Slide 7 shows the examples of
MBFs. For our system, we choose N=1664 and the height of
the MBF is two, including the top Bloom filter. The top
Bloom filter is a collection of 1664 sub-Bloom filters. The size
of the MBF is 11 GB. Compared to the hash index with a hash
table or B-tree implementation we have discussed previously,
which requires more than 56 GB including the Bloom filter,
11 GB is clearly an improvement.

III. PERFORMANCE

By using the MBF in memory to index metadata on disk
drives, the DBLK is able to lower its latency. The
performance of the DBLK is shown in the graphs. The DBLK
performance is comparable or sometime even better than its
base RAID system, because of the log-structured data layout.

DBLK: Deduplication for Primary Block Storage

Tsuchiya Yoshihiro, Takashi Watanabe

e8]
FUJITSU

{tsuchiya.yoshi,wtnb}@jp.fujitsu.com
Fujitsu Ltd.

Deduplication Background

B Dedupliction: Reduce size of storage by removing redundancy in data
B Backup/Primary storage
B Primary storage

iSCSI
client

« Fileserver or datastore of VMware

rjisu. DBLK iSCSI implementation

W Inline vs. Post-process 8L ¥ network
® Inline: immediately deduplicate and write data
® Post process: write data first, deduplicate later, needs extra storage iSCSI target
® Deduplication unit Volume
u Fixed size block l::tﬂ Chunk
 File = 2
: . Compression
B Variable-sized segment
m Related work & products Logger
= Mostly for backups, Inline or post-process & variable-sized segment

® NetApp: primary storage & post-process
B Exar Bitwakr: primary block storage & inline dedup by hardware accelerator [

sy Bloom Filter FujiTsu

B The Bloom filter (B. H. Bloom, 1970)
™ Find if an element is in the set
= Memory efficient
H False positive
B Example trya)
¥ Existing element: x, y, z)
¥ Three hash functions
¥ New data: w
B False positive rate
¥ The Bloom filter: m-bit
® Number of hash functions: k

S[iTelOTiTe]

Primay block storage
Inline, block-wise deduplication,
thin provisioning and compression

R o\ K
(1 (1 7%)A) ~ (1-em)!
® Number of elements: n
W Useful to detect duplication

o o ® If a fingerprint is in the current set, it is a duplicate
DBLK Data Structure sy Solution: Multilayer Bloom filter FujiTsu
LBA H Layers of Bloom filters
/ / 1BA)) m If it reaches to a lowest filter, read the hash log block
‘ Volume(Block map) ‘ ‘ Volume(Block map) ‘ Spatiaiocality B Binary MBF example
SHA-1 SHA, ® “Height” is adi g
\ / w Height” is adjus.tabl.e changing it to “N-ary’ . .
Bloom filter = Problem B N: number of child filters Hash value of incoming data

Btree does not fit in memory

Pl

l Block address of Hash log
Hash Hash Hash Temporal locality
Hash log PBA PBA PBA Size: 80GB
Data Data Data Temporal locality
Data log compressed | compressed m...premd Size: 8TB

chunk chunk
- Disk D1sk

v

yes
Vi
¥ ~a
| | Lo [w
Address of hash table block l
Hash log ‘ ‘ READ this bloc4

4

Solution: MBF Optimization: MBF-BT

H Key idea

M Bitmap to integer

m Use integer operation rather than bit operation
B Logical structure of a layer of filter

B M-bit bitmap

m Need check for each blocks
B Physical layout

B Bitwise transposition (BT)

o)
FUJITSU

Compute 64 times of
(b1&b2&...&b10)

MBF implementation FUjiTSU

MBF
with smaller memory

Result: 2—-layer MBF

64‘»Mbit ‘Bloom‘ Filter‘s i i L i T
f ; 2 3 4 5 6 .. |64
] | |
Maps M-bit on M-integers AR AR AR AR A AR B A A AR
u |f 64-bit integer is used
speedup: 64x

B MMX(128bit) is used

in the implementation, i.e. 128x

Example:
within M-bits, 10 bits
(b1...b10) need to be
checked

Bitwise transpose to.
M-64bit integers

* "M-integers

® N-ary MBF with MBF-BT)
H large N can be used el e

® We use 1664 for N Compute just once 5% =4

u 2-layers MBF ie. EE R
x1&x2&...&x10 SR

"oAn

1664 filters

N QT

VLT WY

IRIRNRRENERNRNRE DNRRERRRRERERENR
\

K
Hash log blocks

HHHHHHHH\
1664x1664 filters

5.5GB for each layer, i.e. 11GB

7

DBLK throughput: random write DBLK throughput: random read DBLK latency: random write, five threads DBLK latency: random read, five threads
2500 200 90 90
\ o w0 n
I\ e Cw e
oo A “a - wnigao| e 7 gk
N <ok - uniq 60| 2 e / - uniq 60| 7 *° /. — RAID
R —m—uniq 80| £ - uniq 80| £ a0 @ DBLK
1000 S g0 10 s 2 A o uniq 10| 2 o
Azl 30 30 »-
- == i s 7 —— e
s00 =N T~ o ram * el N -
'——g;&‘ \:\\\ = 10
o o 0
K 8K 16K 32 64K 128K 256K E— " o . e e o K 8K oK ek 128K 256K K 8K KK eaK 128K 256K
VO size VO size VO size VO size

	I. DBLK design
	II. MBF and MBF-BT
	III. Performance
	ページ 1

