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Abstract1 

Recently, NAND flash Memory based SSD (solid state 
drive) is widely used in desktop and enterprise severs 
as well as portable devices. SSD, which already has 
hundreds of gigabyte of capacity, is expected to has 
tera-scale capacity in a near future. Since contempo-
rary high-end SSDs use page mapped FTL for better 
performance, they require tens or hundreds of mega-
byte of DRAM for mapping table store. However, since 
tera-scale SSDs need gigabytes of DRAM for mapping 
table store, the mapping table management itself is a 
new challenge for tera-scale SSDs. In this paper, we 
propose a novel caching-based mapping scheme, Pol-
ymorphic Mapping, for tera-scale SSDs, which sub-
sumes wide range of mapping granularities from page 
to block or range. 

1. Introduction  

Since SSD, unlike HDD, has no mechanical parts, it 
has many merits such as low power consumption, low 
noise, high speed and shock resistance. Because of the-
se characteristics, it is widely used in desktop PCs and 
enterprise servers as well as portable devices. Recently, 
due to the improved packing density and new types of 
NAND flash chip such as MLC, TLC and QLC, the 
capacity of SSDs increases continuously. Assuming the 
subsequent capacity improvement, it is expected that 
the tera-scale SSDs will be introduced to the market in 
a near future. 
SSD requires a special software layer, FTL, which en-

ables users to use SSD as an ordinary block device such 
as a hard disk. Lots of FTLs have been developed for a 
decade, which can be categorized into block mapping, 
hybrid mapping and page mapping FTLs. Among them, 
contemporary SSDs mainly use page-mapped FTL to 
increase the random write performance. However, orig-
inal page-mapped FTL requires a large-sized DRAM 
for mapping table store [1]. For example, 128 GB SSD 
needs at least 128 MB DRAM for mapping table, 
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which makes it easy to project the required DRAM 
space for future tera-scale SSDs. To remedy this prob-
lem, DFTL[2] proposed to caching only part of the 
mapping table in a fast volatile memory and store the 
entire mapping table in the Flash memory. DFTL uses a 
small-sized SRAM for caching space and exploits tem-
poral locality of workload to maintain high cache hit 
ratio. However, it does not consider either the spatial 
locality of write accesses or caching space scalability. 
If the spatial locality is high, large number of mapping 
entries can be merged into much smaller number of 
entries, which can be more efficiently managed like in 
huge page table of operating systems or extents map in 
file systems. When the spatial locality is low, updated 
entries can be logged, as in database system, instead of 
updating mapping table entries in flash memory pages, 
instantaneously. Also, since the SRAM is such an ex-
pensive memory, it cannot be used for tera-scale SSDs 
which may require large sized cache space for entire 
working set store. Even if we use DFTL for large sized 
DRAM, instead of SRAM, its caching structure is not 
practical because of large search overhead.  
 
2. Polymorphic Mapping  
 
In this paper, we propose a novel mapping scheme for 

tera-scale SSDs, Polymorphic mapping, which exploits 
both the spatial locality of write accesses and cache 
space scalability. Figure 1 shows the data structures of 
Polymorphic mapping. Polymorphic mapping uses dif-
ferent mapping granularities according to the write pat-
tern: Direct mapping, Extents mapping, and Page map-
ping. The entire logical address space of SSD is parti-
tioned into a set of contiguous fixed-sized (4MB) 
regions of which mapping information is stored in a 
root data structure, Global Table Directory (GTD). If a 
region is written sequentially, the PPN field of the cor-
responding entry in GTD directly points to the physical 
address of its first data page in the flash memory, and 
the state bits are set to 00 (Direct mapping). For non-
sequentially written regions, a mapping table (of which 
the address is stored in the PPN field) is assigned to 
each of them, and the state bits in GTD are set to 01. 
The initial form of the mapping table is Extents map-
ping. The number of entries in the Extents map increas-



es whenever random write occurs to the region. If the 
size of Extents map table becomes larger than the pre-
defined threshold (half of a page), the region trans-
forms to a Page-mapped region, in which case the state 
bits in GTD becomes 10. In this way, Polymorphic 
mapping maintains three kinds of mapping structures 
according to the write pattern (sequential: Direct map-
ping, random: Page mapping, mixed: Extents mapping).  
In pursuit of caching scalability, CP (cache pointer) 

which points either cached PMT (Page Mapping Table) 
or cached EMT (Extents Mapping Table) is used. CP 
field helps to translate address within O(1) regardless 
of the cache size. For update of a mapping entry, we 
use map log. An updated mapping entry is logged into a 
fixed location of flash memory, which is updated to the 
original mapping table, periodically. 
 
3. Performance Evaluation  
 

We performed trace-driven simulation to evaluate the 
performance of the Polymorphic mapping. We used 
four kinds of real world workloads: WI, WU-1, WU-2, 
and OLTP. WI was collected during installing windows 
and programs. WU-1 and WU-2 were extracted while 
running windows applications during one month. WI, 
WU-1 and WU-2 show high sequentiality while OLTP 
generates mainly random requests. We measured cache 
hit ratio and flash access overhead during address trans-
lation phase and normalized them to that of the DFTL.    
In Figure 2, line graphs show cache hit ratio when 

cache size varies from 32KB to 2MB, and bar graphs 
represent flash read/write overhead when cache size is 
512KB. As we can see from the figure, Polymorphic 
mapping outperforms DFTL in most cases. In particular, 
Polymorphic mapping shows far better performance 
than DFTL in sequential workloads. They show little 
performance difference in random workload, in which 
Polymorphic mapping behaves like a mere page map-
ping with caching. As cache miss invokes flash 
read/write operations, the cache hit ratio is inverse pro-
portional to the address translation overhead. 

Figure 3 shows the characteristics of the Polymorphic 
mapping in WU-1 and OLTP. In WU-1, 40% of data 
are accessed through only 20% of mapping entries (di-
rect mapping). It shows why Polymorphic mapping 
outperforms DFTL in sequential workloads.  
 
4. Conclusion  
 
In this paper, we propose a Polymorphic mapping, 

which exploits different mapping granularities for dif-
ferent access patterns, for tera-scale SSDs. It naturally 
adapts well to the workload characteristics and outper-
forms by up to 67% in comparison to the DFTL during 
address translation phase.     
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