
Deduplication in SSD for Reducing Write Amplification Factor*

Jonghwa Kim(student)1, Ikjoon Son(student)1, Jongmoo Choi1, Sungroh Yoon2, Sooyong Kang3, Youjip Won3, Jaehyuk Cha3
1{zcbm4321, ikjoon, choijm}@dankook.ac.kr, Dankook University, Korea

2sryoon@korea.ac.kr, Korea University, Korea
3{sykang, yjwon, chajh}@hanyang.ac.kr, Hanyang University, Korea

*One of the recent trends of SSDs (Solid State Drives)
is applying a multichip/multibus architecture to make
use of chip/bus interleaving for archiving high
performance. Another trend is employing flash chips
based on MLC (Multi Level Cell) technology that
can store two or more bits per cell for providing high
capacity. However, MLC flash has a notorious
drawback, that is a limit on the number of erasures,
typically rated at 5K to 10K cycles per block, which
is less than a tenth compared to that of SLC (Single
Level Cell) flash. As flash memory manufacturers
continue to increase bits per cell, the endurance limit
is expected to deteriorate as well, becoming a critical
problem about the reliability of SSDs [1, 2].

To mitigate the problem, several techniques are
investigated in SSDs such as wear-leveling and
writeless techniques. Wear-leveling is a technique
that erases blocks evenly to reduce premature wear
for prolonging the lifetime of flash memory.
Writeless is a set of techniques including write buffer,
compression, and deduplication for reducing WAF
(Write Amplification Factor) in flash memory.

In this study, we are focusing on the issues of the
deduplication technique in SSDs. Deduplication is a
popularly used technique in archival storage [3],
virtualization environments [4] and inline backup
servers [5] for improving storage utilization and I/O
throughputs. The previous studies are all based on
servers with disks while our study is based on SSDs
with flash memory. Compared with the server
environments, deduplication in SSDs raises different
research issues in terms of workloads and resource
limitations. Besides, how to integrate deduplication
with FTL (Flash Translation Layer) is another
interesting issue that gives an opportunity to improve
not only performance but also reliability of SSDs.

To explore the issues about deduplication in SSDs,
we have developed an experimental system as shown
in Fig. 1 that can emulate the operations of SSDs.
The three main components of the system are an SSD
controller, an SATA interface, and an array of flash
chips. The controller consists of 400MHz ARM9
CPU, 64MB SDRAM and embedded peripherals.
The SATA interface is a software module that issues

* This work was supported by the IT R&D program of
MKE/KEIT No. KI10035202, Development of Core Technologies
for Next Generation Hyper MLC NAND Based SSD.

a sequence of SATA commands based on the traces
gathered from a host during the execution of
workloads considered in this paper. Finally, the array
of flash chips is a software module that emulates the
multichip/multibus architecture in SSDs.

On the SSD controller, we have implemented
deduplication software, consisting of three software
modules: 1) dedup_engine, 2) FP_manager, and 3)
dedup_map. The dedup_engine generates a
fingerprint using SHA-1 hash function for each
SATA command that a host issues to store. The
FP_manager maintains a set of fingerprints and
detects duplication by comparing the current
generated fingerprint with the maintained ones. The
dedup_map is a mapping table that translates the
logical address of the deduplicated data into the
physical address. In this experiments, we set the size
of deduplication unit as 4KB, the same size of a page
in flash memory. Therefore, a SATA command whose
requested data size is larger or smaller than 4KB, the
engine divides it or fills zero to adjust 4KB unit. Also,
we set the maximum number of fingerprints in the
FP_manager as a control parameter and use the LRU
policy to choose a victim fingerprint for replacement.

The first issue we want to explore is about
workloads. Many previous researches have shown
that workloads for servers and archival storage have
plenty of redundancies that can be exploited usefully
in deduplication. To analyze the redundancies of SSD
workloads, we have executed six workloads, namely
MS windows install, MS office install, MS windows
update, httracks, outlook sync, and wayback machine,
as shown in Fig. 2, with the different numbers of
fingerprints. The figure shows that the SSD
workloads considered in this study provide the
deduplication ratio ranging from 6% to 33%. Note
that when we take into consideration about the
garbage collection overheads per each write in SSDs,
the WAF can be reduced larger than the reported ratio.

One interesting observation in Fig. 2 is that the
SSD workloads have a strong temporal locality.
When we set the number of fingerprints as 100, we
can obtain the 50%~90% deduplication ratio of those
obtained with the number of fingerprints as 4000. It
implies that we can capture the large portion of
redundancies with the small size of SDRAM,
considering the memory limitation of the SSD
controller.

The second issue is about the deduplication
overheads in SSDs. Fig. 3 shows the average
processing overhead for deduplication measured on
ARM 9, the most popular CPU used in SSDs. The
results show that the average processing overhead is
around 120 μs per deduplication unit, where roughly
100 μs is consumed by the dedup_engine while
others by the FP_manager and dedup_map. The
figure also presents that as the number of
deduplicated pages increases, the overhead of the
dedup_map increases as well. For the comparison
purpose, we have executed the same deduplication
software on Intel i7 CPU where the average
processing overhead is measured as 11.5 μs.

By comparing the deduplication overhead with the
elapsed time for writing a 4KB page in flash memory,
we can estimate the minimum deduplication ratio to
obtain performance gains by applying deduplication.
In general, the elapsed time is 500~2000 μs in MLC
flash [5]. So, if we assume it as 1200 μs, the
minimum deduplication ratio becomes 10%. The
figure also shows that when we utilize a hardware
accelerator for the dedup_engine, we can drop the
deduplication overhead significantly. In addition, we
can eliminate the dedup_map overhead, which
become serious as the number of deduplicated pages
increases, by utilizing FTL’s mapping table discussed
in the next paragraph.

 The final issue is how to integrate deduplication
into FTL in SSDs. FTL is a software layer that takes
charge of address translation, garbage collection,
wear-leveling and bad block handling. When we
integrate the deduplication software into FTL, we can
exploit several cross-layer optimizations. For
example, we can make use of FTL’s mapping table as
the dedup_map, so that we can remove the
dedup_map overhead completely. Another example is
that, the duplication information can be utilized to
differentiate hot/cold pages for enhancing garbage
collection and wear-leveling performance. In other
words, incorporating the deduplication software into
FTL seamlessly might not only provide the reduction
of WAF but also enhance the performance of FTL.

Reference

[1] M. Balakrishnan, A. Kadav, V. Prabhakarani and

D. Malkhi, “Differential RAID: Rethinking RAID
for SSD Reliability”, In Proceeding of the
Eurosys 2010 Conference, 2010.

[2] V. Prabhakaran, M. Balakrishnan, J. Davis and T.
Wobber, “Depletable Storage Systems”, In Hot
Topics in Storage (HotStorage’09), 2009.

[3] S. Quinlan and S. Dorward, “Venti: A New
Approach to Archival Storage”, In Proceeding of
the USENIX Conference on file and Storage
Technologies (FAST’02), 2002.

[4] A. Clements, I. Ahmad, M. Vilayannur and J. Li,
“Decentralized Deduplication in SAN Cluster
File Systems”, In Proceeding of the USENIX
Annual Technical Conference (ATC’09), 2009.

[5] B. Debnath, S. Sengupta and Jin Li. “ChunkStash:
Speeding Up Inline Storage Deduplication using
Flash Memory”, In Proceeding of the USENIX
Annual Technical Conference (ATC’10), 2010.

Fig. 1 Deduplication software architecture in SSDs

Fig. 2 Deduplication ratio for SSD workloads with

various number of fingerprints

Fig. 3 Deduplication overhead analysis in SSDs

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

Windows
Install
(1.8G)

Office
Install
(1.5G)

Windows
Update
(4.3G)

httrack
(330M)

outlook
sync

(500M)

wayback
machine
(160M)

Number of Fingerprints 100

Number of Fingerprints 1000

Number of Fingerprints 4000

0

20

40

60

80

100

120

140

0 5000 10000 15000

us
ec

Number of deduplicated pages

dedup_engine overhead FP_manager overhead

dedup_map overhead

