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*One of the recent trends of SSDs (Solid State Drives) 
is applying a multichip/multibus architecture to make 
use of chip/bus interleaving for archiving high 
performance. Another trend is employing flash chips 
based on MLC (Multi Level Cell) technology that 
can store two or more bits per cell for providing high 
capacity. However, MLC flash has a notorious 
drawback, that is a limit on the number of erasures, 
typically rated at 5K to 10K cycles per block, which 
is less than a tenth compared to that of SLC (Single 
Level Cell) flash. As flash memory manufacturers 
continue to increase bits per cell, the endurance limit 
is expected to deteriorate as well, becoming a critical 
problem about the reliability of SSDs [1, 2].  

To mitigate the problem, several techniques are 
investigated in SSDs such as wear-leveling and 
writeless techniques. Wear-leveling is a technique 
that erases blocks evenly to reduce premature wear 
for prolonging the lifetime of flash memory. 
Writeless is a set of techniques including write buffer, 
compression, and deduplication for reducing WAF 
(Write Amplification Factor) in flash memory. 

In this study, we are focusing on the issues of the 
deduplication technique in SSDs. Deduplication is a 
popularly used technique in archival storage [3], 
virtualization environments [4] and inline backup 
servers [5] for improving storage utilization and I/O 
throughputs. The previous studies are all based on 
servers with disks while our study is based on SSDs 
with flash memory. Compared with the server 
environments, deduplication in SSDs raises different 
research issues in terms of workloads and resource 
limitations. Besides, how to integrate deduplication 
with FTL (Flash Translation Layer) is another 
interesting issue that gives an opportunity to improve 
not only performance but also reliability of SSDs.  

To explore the issues about deduplication in SSDs, 
we have developed an experimental system as shown 
in Fig. 1 that can emulate the operations of SSDs. 
The three main components of the system are an SSD 
controller, an SATA interface, and an array of flash 
chips. The controller consists of 400MHz ARM9 
CPU, 64MB SDRAM and embedded peripherals. 
The SATA interface is a software module that issues 
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a sequence of SATA commands based on the traces 
gathered from a host during the execution of 
workloads considered in this paper. Finally, the array 
of flash chips is a software module that emulates the 
multichip/multibus architecture in SSDs.  

On the SSD controller, we have implemented 
deduplication software, consisting of three software 
modules: 1) dedup_engine, 2) FP_manager, and 3) 
dedup_map. The dedup_engine generates a 
fingerprint using SHA-1 hash function for each 
SATA command that a host issues to store. The 
FP_manager maintains a set of fingerprints and 
detects duplication by comparing the current 
generated fingerprint with the maintained ones. The 
dedup_map is a mapping table that translates the 
logical address of the deduplicated data into the 
physical address. In this experiments, we set the size 
of deduplication unit as 4KB, the same size of a page 
in flash memory. Therefore, a SATA command whose 
requested data size is larger or smaller than 4KB, the 
engine divides it or fills zero to adjust 4KB unit. Also, 
we set the maximum number of fingerprints in the 
FP_manager as a control parameter and use the LRU 
policy to choose a victim fingerprint for replacement. 

The first issue we want to explore is about 
workloads. Many previous researches have shown 
that workloads for servers and archival storage have 
plenty of redundancies that can be exploited usefully 
in deduplication. To analyze the redundancies of SSD 
workloads, we have executed six workloads, namely 
MS windows install, MS office install, MS windows 
update, httracks, outlook sync, and wayback machine, 
as shown in Fig. 2, with the different numbers of 
fingerprints. The figure shows that the SSD 
workloads considered in this study provide the 
deduplication ratio ranging from 6% to 33%. Note 
that when we take into consideration about the 
garbage collection overheads per each write in SSDs, 
the WAF can be reduced larger than the reported ratio. 

One interesting observation in Fig. 2 is that the 
SSD workloads have a strong temporal locality. 
When we set the number of fingerprints as 100, we 
can obtain the 50%~90% deduplication ratio of those 
obtained with the number of fingerprints as 4000. It 
implies that we can capture the large portion of 
redundancies with the small size of SDRAM, 
considering the memory limitation of the SSD 
controller. 



The second issue is about the deduplication 
overheads in SSDs. Fig. 3 shows the average 
processing overhead for deduplication measured on 
ARM 9, the most popular CPU used in SSDs. The 
results show that the average processing overhead is 
around 120 μs per deduplication unit, where roughly 
100 μs is consumed by the dedup_engine while 
others by the FP_manager and dedup_map. The 
figure also presents that as the number of 
deduplicated pages increases, the overhead of the 
dedup_map increases as well. For the comparison 
purpose, we have executed the same deduplication 
software on Intel i7 CPU where the average 
processing overhead is measured as 11.5 μs. 

By comparing the deduplication overhead with the 
elapsed time for writing a 4KB page in flash memory, 
we can estimate the minimum deduplication ratio to 
obtain performance gains by applying deduplication. 
In general, the elapsed time is 500~2000 μs in MLC 
flash [5]. So, if we assume it as 1200 μs, the 
minimum deduplication ratio becomes 10%. The 
figure also shows that when we utilize a hardware 
accelerator for the dedup_engine, we can drop the 
deduplication overhead significantly. In addition, we 
can eliminate the dedup_map overhead, which 
become serious as the number of deduplicated pages 
increases, by utilizing FTL’s mapping table discussed 
in the next paragraph.  

 The final issue is how to integrate deduplication 
into FTL in SSDs. FTL is a software layer that takes 
charge of address translation, garbage collection, 
wear-leveling and bad block handling. When we 
integrate the deduplication software into FTL, we can 
exploit several cross-layer optimizations. For 
example, we can make use of FTL’s mapping table as 
the dedup_map, so that we can remove the 
dedup_map overhead completely. Another example is 
that, the duplication information can be utilized to 
differentiate hot/cold pages for enhancing garbage 
collection and wear-leveling performance. In other 
words, incorporating the deduplication software into 
FTL seamlessly might not only provide the reduction 
of WAF but also enhance the performance of FTL.  
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Fig. 1 Deduplication software architecture in SSDs 

 

 
Fig. 2 Deduplication ratio for SSD workloads with 

various number of fingerprints 
 

 
Fig. 3 Deduplication overhead analysis in SSDs 
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