What makes a good OS page replacement scheme for Smart-Phones?

Hyojun Kim, Moonkyung Ryu, Umakishore Ramachandran
College of Computing, Georgia Institute of Technology

{hyojun.kim, rumuru, rama}@cc.gatech.edu

A significant percentage of the population in the devel-
oped world rely on smart-phones as their primary (and
often the only) source of information access. Smart-
phones are starting to have comparable power to regular
computers; e.g., the latest smart-phone has a dual core 1
GHz processor as well as 1 Gbytes of main memory ca-
pacity already. On the other hand, the technology used
for storage on smart-phones lags significantly behind that
used on regular computers. Inexpensive flash storage is
the norm for smart-phone because of the limitations of
size, cost, and power consumption. Such low-end flash
storage exhibits very different performance characteris-
tics relative to the traditional hard drive; plus the cur-
rent smart-phone operating systems are not engineered
to support flash storage adequately. Consequently, flash
storage is often pointed to as the main source of per-
formance bottleneck on smart-phones. While high-end
flash storages are available and used in enterprise class
machines, adoption of such storage for smart-phones is
infeasible for reasons of cost, size, and energy consump-
tion. Therefore, we argue that operating system level
software support is critically needed for low-end flash
storage to achieve high performance on smart-phones.

Flash storage is based on semiconductor technology,
and hence shows very different performance characteris-
tics when compared to the traditional magnetic disk. A
number of studies have reported on the special perfor-
mance characteristics of flash storage [1,2]. It is well
known that flash storage devices show a relatively low
write-throughput for small, scattered (random) requests
and a higher throughput for large, sequential write re-
quests. At the same time, they are insensitive to the or-
der of read requests, showing almost unchanging perfor-
mance for sequential and random read requests. We our-
selves have performed simple measurements to identify
these differences in performance, and Figure 1 compares
the measured read and write throughput of a hard disk
drive (HDD) and a microSDHC card.

On an HDD, both read and write throughput are highly
influenced by the sequence of the requests. In contrast,
the read throughput of microSDHC card is not much in-
fluenced by request ordering. For the write requests, mi-
croSDHC shows uniformly lower throughput than the
HDD. What is interesting to observe is the disparity in
performance for sequential versus random writes on the

Throughput (KB/sec)

\
3500 }
3000 |
2500 |
2000 |
1500 |
1000 |
500

ol ||

Sorted Read Scattered Read Sorted Write Scattered Write
OHDD 4193.45 411.37 3926.44 672.04
®microSDHC 4169.78 3661.7 416.16 12.42
Figure 1: Comparison of an HDD (2.5” 5400 RPM

HDD) vs. microSDHC (16GB, MLC) performances

flash storage in comparison to the HDD. On the HDD,
this disparity is only a factor of 5.8 (3926 Kbytes/sec.
for sequential versus 672 Kbytes/sec. for random); while
on the flash storage this disparity is a factor of 33 (416.2
Kbytes/sec. for sequential versus 12.4 Kbytes/sec. for
random). This result suggests that write request order-
ing is extremely important on flash storage, and proper
write reordering can effectively enhance the performance
of flash storage.

Even though different level solutions have been pro-
posed related to the write request ordering, surprisingly,
less attention has been given to write ordering at the level
of the operating system page replacement schemes. Ar-
guably, this is a huge missed opportunity since write re-
quests are generated by the virtual memory system when
dirty pages are chosen as victims by the page replace-
ment algorithm. DULO [4] is a page replacement algo-
rithm that exploits both temporal and spatial localities,
but it only cares about request size, not write request
ordering. LRU-WSR (Least Recently Used - Write Se-
quence Reordering) [5] is a page replacement scheme for
flash storage; however, its goal is to reduce the number
of write requests sent to the storage device by protect-
ing (as far as possible) dirty pages from being chosen as
victims. It has no mechanism for write request ordering
when dirty pages are chosen to be written out to the stor-
age device.

In this study, we propose to use new, write ordering
aware page replacement schemes. Our Sorted-Clock al-
gorithm builds on a prior art, namely, Wise Ordering for
Writes (WOW) [3], which was proposed as a write cache
management scheme on enterprise servers with RAID

Number of Pages, Step 1 1 Step 2 Step 3
Page Replacement Scheme 1
1
" 1
g 5| Virtual Memory 1 Disk Access Workload Player
Traces Simulator 1 Traces on Real Storage
1
P
i 1
i . I Amount of
Page Hit-Ratio i Read / Write Elapsed Time

Requests

Figure 2: The Evaluation Framework for Page Replace-
ment Schemes

storage. WOW combines the idea of Circular-SCAN
to exploit spatial locality and Clock to exploit temporal
locality. Despite the fact that WOW was proposed for
the RAID architecture, the core idea of paying attention
to request ordering in WOW is well matched with the
performance characteristics of flash storage. In addition
to ordering writes, reducing the number of writes to the
storage device is important as well. While reducing the
number of write requests may not impact performance
as much (this is attested by our evaluation results), it can
have a huge impact on the longevity of the flash stor-
age (which is hard to quantify in this study). Therefore,
the second algorithm we propose, Sorted-Clock-WSR,
borrows the idea of preferential treatment for dirty pages
from LRU-WSR, in addition to ordering writes.

To quantify the performance of page replacement
schemes on real storage devices, we have built a sim-
ple but powerful framework (see Figure 2), which con-
sists of two components: virtual memory simulator in-
corporating different page replacement schemes and a
workload player. Virtual memory simulator takes mem-
ory access traces as its input, and generates storage ac-
cess requests as its output. Workload player is a stan-
dalone program that plays the storage access requests on
the actual storage devices and measures the performance
(elapsed times and read/write throughput). The frame-
work is especially useful to see the performance effect of
write ordering on flash storage. We have compared six
page replacement schemes: LRU, Low Inter-reference
Recency Set (LIRS), Clock, LRU-WSR, Sorted-Clock,
and Sorted-Clock-WSR.

Figure 3 shows the results with the traces of the parser
and mcf programs. We show elapsed time with page hit-
ratio, and we make two important observations from our
evaluation results. First, focusing only on hit-ratio as a
figure of merit to evaluate a page replacement scheme
can lead to wrong conclusions on flash storage. Second,
write ordering aware page replacement schemes perform
much better than the other schemes that do not pay atten-
tion to this important attribute for flash storage. Elapsed
time for Sorted-Clock and Sorted-Clock-WSR are 3.7 to
7.7 times less than the other schemes.

2000 0.99915
v
°
g
8 1500 0.99910
3
(4} o
g 1000 CElapsed Time | 0.99905 &
'-; ~#—Hit-Ratio H
“g' 500 0.99900
5
i}

0 0.99895

LRU LIRS Clock LRU-WSR SClock ~SClock-WSR
(a) parser

__ 2000 0.9970
€ 0.9969
8 1500 0.9968
o
(21 0.9967 2
2 1000 Elapsed Time [09966 &
= ~8- Hit-Ratio 09965 T
@..'_ 500 0.9964
& 0.9963
w

0 0.9962

LRU LIRS Clock LRU-WSR SClock SClock-WSR

(b) mef

Figure 3: Evaluation results with traces of parser and mcf

Smart-phones are ubiquitous and are starting to serve
as the primary source of information access and online
services for a significant segment of the user community.
Smart-phones usually incorporate low-end flash storage
to conserve size, cost, and energy. We argue in this
study that a good page replacement scheme for smart-
phones should pay attention to the write request order-
ing (while replacing dirty pages) in addition to page hit-
ratio. We propose two new page replacement schemes,
Sorted-Clock and Sorted-Clock-WSR that respect write
request ordering. Using a novel evaluation framework,
we show that these two new schemes perform better than
schemes that do not respect write request ordering. In
particular, using cumulative elapsed time as the figure
of merit, we show that these two new schemes outper-
form the competition by a factor of 3.7 to 7.7. Our fu-
ture work includes implementation of these schemes into
Linux/Android platform.

References

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Man-
asse, and R. Panigrahy. Design tradeoffs for ssd performance. In
USENIX 2008 Annual Technical conf., 2008.

[2] F. Chen, D. A. Koufaty, and X. Zhang. Understanding intrin-
sic characteristics and system implications of flash memory based
solid state drives. In Proc. of the 11th international joint conf. on
Measurement and modeling of computer systems, 2009.

[3] B. S. Gill and D. S. Modha. WOW: wise ordering for writes -
combining spatial and temporal locality in non-volatile caches. In
Proc. of the 4th conf. on USENIX conf. on File and Storage Tech-
nologies - Volume 4, 2005.

[4] S. Jiang, X. Ding, F. Chen, E. Tan, and X. Zhang. DULO: an ef-
fective buffer cache management scheme to exploit both temporal
and spatial locality. In Proc. of the 4th USENIX conf. on File and
Storage Technologies, 2005.

[5] H.Jung, H. Sim, P. Sungmin, S. Kang, and J. Cha. LRU-WSR: In-
tegration of LRU and Writes Sequence Reordering for Flash Mem-
ory. IEEE Transactions on Consumer Electronics, 54(3):1215—
1223, 2008.

