
PREFAIL : Programmable and Efficient Failure Testing Framework

Pallavi Joshi, Haryadi S. Gunawi, and Koushik Sen

University of California, Berkeley

With the arrival of the cloud computing era, large-
scale distributed systems are increasingly in use. These
systems are built out of tens of thousands of commodity
machines that are not fully reliable and can fail from time
to time [1, 2, 7, 10, 14, 15]. Thus, the software that runs
on these systems has a great responsibility to correctly
recover from frequent, diverse hardware failures.

Even if distributed systems are built with reliability
and fault tolerance as primary goals [6, 7, 8], their recov-
ery protocols are often buggy. For example, the develop-
ers of Hadoop File System (HDFS) [16] have dealt with
91 recovery issues over its four years of development [9].
There are many reasons for this. Sometimes developers
fail to anticipate the kind of failures that a system can
face in a real setting (e.g., tolerate crashes but not cor-
ruption). Even if all kinds of failures are anticipated, the
recovery implementation might be incorrect. There have
been many serious consequences (e.g., data loss, unavail-
ability) of the presence of recovery bugs in real deployed
systems [3, 4, 5, 9].

To improve the reliability of large-scale distributed
systems, failure testing has become a mainstream tech-
nique to test software reliability. One major challenge is
that the number of combinations of failures to explore is
potentially large [9, 12]. One direct way to explore this
failure space is via randomness. For example, random
injection of failures is employed by the developers at
Google [4], Yahoo! [17], Microsoft [18], Amazon [10],
and others [11]. Random fault-injection is relatively sim-
ple to implement, but the downside is that it could eas-
ily miss corner-case failure scenarios. Thus, there is a
need for systematic techniques that can smartly explore
the space of failure scenarios and find bugs efficiently.

There has been some work that proposes novel tech-
niques for smart exploration of failures [12, 13]. They
primarily address single failures during program execu-
tion. However, large-scale distributed systems face fre-
quent, multiple, and diverse failures. And thus, there is a
need to advance the state-of-the-art of failure testing for
large-scale distributed systems.

In this work, we address the challenges of failure test-
ing by introducing PREFAIL , a programmable and effi-
cient failure testing framework that can can explore fail-
ures systematically, including multiple combinations of

diverse failures. More specifically, PREFAIL comes with
the following features:

1. Well-defined failure optimizations: PREFAIL comes
with optimizations that completely remove redundant
fault-injection tests. For example, crashes are injected
only before write I/Os; a naive framework would inject
crashes around read and write I/Os. The optimizations
bring 1 to 21 times (5 on average) of improvement de-
pending on the workload and failure type.

2. Programmable exploration policies: PREFAIL al-
lows testers to express failure exploration policies of dif-
ferent complexities so that they can use the right ones
at the right times. For example, they could use some
coarse policies that result in few experiments in the de-
velopment mode, finer policies during nightly builds, and
more elaborate policies that test a greater number of fail-
ures before a big release. In our experience, by using dif-
ferent policies, we only need to run one to three orders of
magnitude fewer experiments compared to a brute-force
approach, but still found important recovery bugs.

3. Parallelizable testing workflow: Since we target
the developers of large-scale systems who tend to have
many machines for testing purposes, we designed PRE-
FAIL such that its test workflow is parallelizable. Thus, it
can explore multiple failure sequences concurrently and
achieve a considerable speed-up in its performance.

4. Triaging support for efficient debugging: In auto-
mated failure testing, a number of experiments can fail
because of the same bug. When tens or hundreds of
experiments fail, a tester could get easily overwhelmed.
To reduce the debugging effort, PREFAIL automatically
triages failed experiments by clustering failed experi-
ments according to the bugs that caused them to fail. The
triaging support can also sort failed experiments accord-
ing to the importance of bugs that caused them.

Overall, PREFAIL is a practical and well-equipped
failure testing framework that can help today’s large-
scale distributed systems “prevail” against failures. We
have found 6 new bugs in the latest version of Hadoop
File System (HDFS), and 16 bugs in an older version.

1



References

[1] Lakshmi N. Bairavasundaram, Garth R. Goodson,
Shankar Pasupathy, and Jiri Schindler. An Analysis
of Latent Sector Errors in Disk Drives. InSIGMET-
RICS ’07.

[2] Lakshmi N. Bairavasundaram, Garth R. Goodson,
Bianca Schroeder, Andrea C. Arpaci-Dusseau, and
Remzi H. Arpaci-Dusseau. An Analysis of Data
Corruption in the Storage Stack. InFAST ’08.

[3] Mike Burrows. The Chubby lock service for
loosely-coupled distributed systems. InOSDI ’06.

[4] Tushar Chandra, Robert Griesemer, and Joshua
Redstone. Paxos Made Live - An Engineering Per-
spective. InPODC ’07.

[5] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wil-
son C. Hsieh, Deborah A. Wallach, Michael Bur-
rows, Tushar Chandra, Andrew Fikes, and Robert
Gruber. Bigtable: A Distributed Storage System
for Structured Data. InOSDI ’06.

[6] Brian Cooper, Adam Silberstein, Erwin Tam,
Raghu Ramakrishnan, and Russell Sears. Bench-
marking Cloud Serving Systems with YCSB. In
SoCC ’10.

[7] Jeffrey Dean. Underneath the covers at google:
Current systems and future directions. InGoogle
I/O.

[8] Garth Gibson. Reliability/Resilience Panel. InHEC
FSIO ’10.

[9] Haryadi S. Gunawi, Thanh Do, Pallavi Joshi, Peter
Alvaro, Joseph M. Hellerstein, Andrea C. Arpaci-
Dusseau, Remzi H. Arpaci-Dusseau, and Koushik
Sen. FATE and DESTINI: A Framework for Cloud
Recovery Testing. InNSDI ’11 (to Appear; cur-
rently available as a technical report: UCB/EECS-
2010-127.

[10] Alyssa Henry. Cloud Storage FUD: Failure and Un-
certainty and Durability. InFAST ’09.

[11] Todd Hoff. Netflix: Continually Test by Fail-
ing Servers with Chaos Monkey. http://

highscalability.com, December 2010.

[12] Lorenzo Keller, Paul Marinescu, and George Can-
dea. AFEX: An Automated Fault Explorer for
Faster System Testing. 2008.

[13] Paul D. Marinescu, Radu Banabic, and George
Candea. An Extensible Technique for High-
Precision Testing of Recovery Code. InUsenix
ATC ’10.

[14] Eduardo Pinheiro, Wolf-Dietrich Weber, and
Luiz Andre Barroso. Failure Trends in a Large Disk
Drive Population. InFAST ’07.

[15] Bianca Schroeder and Garth Gibson. Disk failures
in the real world: What does an MTTF of 1,000,000
hours mean to you? InFAST ’07.

[16] Konstantin Shvachko, Hairong Kuang, Sanjay Ra-
dia, and Robert Chansler. The Hadoop Distributed
File System. InMSST ’10.

[17] Hadoop Team. Fault Injection framework: How to
use it, test using artificial faults, and develop new
faults.http://issues.apache.org.

[18] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei
Xu, Xuezheng Liu, Haoxiang Lin, Mao Yang, Fan
Long, Lintao Zhang, and Lidong Zhou. MODIST:
Transparent Model Checking of Unmodified Dis-
tributed Systems. InNSDI ’09.

2

http://highscalability.com
http://highscalability.com
http://issues.apache.org

