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With the arrival of the cloud computing era, large-
scale distributed systems are increasingly in use. These
systems are built out of tens of thousands of commodity
machines that are not fully reliable and can fail from time
to time [1, 2, 7, 10, 14, 15]. Thus, the software that runs
on these systems has a great responsibility to correctly
recover from frequent, diverse hardware failures.

Even if distributed systems are built with reliability
and fault tolerance as primary goals [6, 7, 8], their recov-
ery protocols are often buggy. For example, the develop-
ers of Hadoop File System (HDFS) [16] have dealt with
91 recovery issues over its four years of development [9].
There are many reasons for this. Sometimes developers
fail to anticipate the kind of failures that a system can
face in a real setting (e.g., tolerate crashes but not cor-
ruption). Even if all kinds of failures are anticipated, the
recovery implementation might be incorrect. There have
been many serious consequences (e.g., data loss, unavail-
ability) of the presence of recovery bugs in real deployed
systems [3, 4, 5, 9].

To improve the reliability of large-scale distributed
systems, failure testing has become a mainstream tech-
nique to test software reliability. One major challenge is
that the number of combinations of failures to explore is
potentially large [9, 12]. One direct way to explore this
failure space is via randomness. For example, random
injection of failures is employed by the developers at
Google [4], Yahoo! [17], Microsoft [18], Amazon [10],
and others [11]. Random fault-injection is relatively sim-
ple to implement, but the downside is that it could eas-
ily miss corner-case failure scenarios. Thus, there is a
need for systematic techniques that can smartly explore
the space of failure scenarios and find bugs efficiently.

There has been some work that proposes novel tech-
niques for smart exploration of failures [12, 13]. They
primarily address single failures during program execu-
tion. However, large-scale distributed systems face fre-
quent, multiple, and diverse failures. And thus, there is a
need to advance the state-of-the-art of failure testing for
large-scale distributed systems.

In this work, we address the challenges of failure test-
ing by introducing PREFAIL , a programmable and effi-
cient failure testing framework that can can explore fail-
ures systematically, including multiple combinations of

diverse failures. More specifically, PREFAIL comes with
the following features:

1. Well-defined failure optimizations: PREFAIL comes
with optimizations that completely remove redundant
fault-injection tests. For example, crashes are injected
only before write I/Os; a naive framework would inject
crashes around read and write I/Os. The optimizations
bring 1 to 21 times (5 on average) of improvement de-
pending on the workload and failure type.

2. Programmable exploration policies: PREFAIL al-
lows testers to express failure exploration policies of dif-
ferent complexities so that they can use the right ones
at the right times. For example, they could use some
coarse policies that result in few experiments in the de-
velopment mode, finer policies during nightly builds, and
more elaborate policies that test a greater number of fail-
ures before a big release. In our experience, by using dif-
ferent policies, we only need to run one to three orders of
magnitude fewer experiments compared to a brute-force
approach, but still found important recovery bugs.

3. Parallelizable testing workflow: Since we target
the developers of large-scale systems who tend to have
many machines for testing purposes, we designed PRE-
FAIL such that its test workflow is parallelizable. Thus, it
can explore multiple failure sequences concurrently and
achieve a considerable speed-up in its performance.

4. Triaging support for efficient debugging: In auto-
mated failure testing, a number of experiments can fail
because of the same bug. When tens or hundreds of
experiments fail, a tester could get easily overwhelmed.
To reduce the debugging effort, PREFAIL automatically
triages failed experiments by clustering failed experi-
ments according to the bugs that caused them to fail. The
triaging support can also sort failed experiments accord-
ing to the importance of bugs that caused them.

Overall, PREFAIL is a practical and well-equipped
failure testing framework that can help today’s large-
scale distributed systems “prevail” against failures. We
have found 6 new bugs in the latest version of Hadoop
File System (HDFS), and 16 bugs in an older version.
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