
DiskReduce: RAIDing the Cloud
Bin Fan, Wittawat Tantisiriroj, Lin Xiao, Garth Gibson (Carnegie Mellon University)

Data-Intensive Scalable Computing (DISC) file systems
such as HDFS employs replication for reliability, typically
delivering users with only about a third of the storage capacity
of the raw disks. In this project, we investigate DiskReduce,
a framework for integrating RAID into these replicated stor-
age systems to lower storage capacity overhead, for example,
from 200% to 25% when triplicated data is dynamically re-
placed with 8+2 RAID 6 encoding.

We gathered usage data from large HDFS DISC systems
and find that DISC files are huge relative to traditional and
HPC file systems, but because DISC blocks are also huge, per-
file RAID wastes significant capacity. We chose to encode
blocks across files. We also studied the implication of reading
RAIDed data to MapReduce job performance. We measured
read performance benefits from replication that will be lost
with erasure encoding. We find that triplicated files can be
read at higher bandwidth than single-copy files as expected,
but this advantage is perhaps smaller than expected, and is
absent in many cases.

1 Integrating RAID into HDFS
To integrate RAID to HDFS, we group k different blocks

into one RAID set and calculate m encoding blocks. The sys-
tem keeps k data blocks and m encoding blocks on different
datanodes, and thus ensures that the data is still available from
m node failures. When m = 2 (i.e. RAID 6 encoding), data
can survive any 2 node failures which matches triplication.
Though the idea is simple, to use RAIDed HDFS efficiently
is in fact complicated and has at least following challenges:

Storage Overhead Since each HDFS block is large (64 MB),
if we follow the common rule only to group blocks from the
same file into the same RAID set, it may not be trivial to find
enough number of blocks for one group. Insufficient blocks
in the RAID set leads to higher capacity overhead.

Performance Degradation After data is encoded, the num-
ber of copies of data is reduced from three copies to only one.
We explore the performance degradation for reading data that
might result from having fewer sources in Section 3.

2 RAID Grouping Strategy
With RAID encoding, storage overhead is usually deter-

mined by the code itself. However we show that in HDFS
the grouping strategy can also significantly affect the storage
overhead achieved. In this section, we evaluate two basic
grouping strategies to select different blocks into RAID sets.

RAID per file is a strategy that always groups blocks from

the same file into one RAID set. This strategy is adopted in
“HDFS RAID”[1] and PanFS [4] due to simplicity. Per-file
RAID ensures that whenever a block is deleted, all the other
blocks in this RAID set are also deleted since they are all from
the same file. Consequently there is no need to update the
check blocks on delete. However, due to the large block size
in HDFS, making RAID per file suffers from high capacity
overhead for files with a small number of blocks.

RAID across files can potentially achieve lower capacity
overhead than per-file RAID, by allowing blocks from dif-
ferent files to be encoded into one RAID set. On the other
hand, small write problem will be introduced and require
extra maintenance work on RAID mutation.

0.9

0.99

0.999

0.9999

0.99999

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F
ra

c
ti
o
n
 o

f
s
p
a
c
e
 u

s
e
d
 b

y
 f
il
e
s

w
h
o
s
e
 s

iz
e
 <

 x

DW

M45

A

C

D

M

N

U

OC

0.00001

0.0001

0.001

0.01

0.1

1K 1M 64M 1G 1T

x: file size in bytes

Figure 1: The CDF of total capacity used in the files of given size
collected from cloud computing clusters (each line represents each
cluster). X axis is in log scale of base 4. The Y axis is split into 3
sections. Section from 0 to 100 percentile is linear; section from 90
to 99.999 percentile and 0.001 to 10 percentile is log scale.

To evaluate the two grouping strategies, we gathered file
usage data from HDFS clusters in CMU, Facebook and Ya-
hoo! and show the statistics in Figure 1 where the CDF of
the files of given size is plotted. Across all file systems, the
largest single file observed is about 5 TB in size. The median
size ranges widely from 16 KB to 120 MB and the average
ranges from 22 MB to 577 MB. Even though, in all clusters
except U more than 80% of files are still smaller than 64 MB
(the default block size in HDFS).

As a result, the simple per-file RAID encoding suffers from
a large fraction of “small” files observed in real HDFS and
the capacity saving will be much smaller than idea RAID
encoding.

1

3 Performance Degradation
In this section we explore the performance degradation

that might result from decreasing the number of copies with
encoding. It is generally believed that having replications can
improve read performance due to (1) When small datasets are
read by many different jobs or tasks in a job at the same time,
the total number of disk spindles serving the data becomes
the key bottleneck. (2) MapReduce exploits shipping code

to data and thus try to assign computation tasks to storage
nodes with data co-located. With more data copies the job
tracker has more flexibility of the task assignment, leading to
better load balancing.

Experiment Setup We employ a HDFS cluster with one
node serving as a master while 60 nodes serve as clients and
slaves for MapReduce and HDFS. Each node contains two
quad-core 2.83GHz Xeon processors, 16 GB of memory, and
four 7200 rpm SATA 1 TB disks. Nodes are interconnected
by 10 Gigabit Ethernet.

Benchmarking MapReduce Read For datasets of 10, 300,
1500 and 6000 64MB blocks, we construct different settings
and measure the time needed to read all data blocks, one map
task per block. We compare three replicas, one replica in
which data is uniformly distributed across data nodes and one
replica with a skewed distribution. The skewed distribution is
obtained by reducing the replication level from three to one.

Figure 2 shows little performance difference between one
and three replicas for small datasets (10 or 300 blocks). How-
ever, as the datasets become bigger, there is an increasing
gap between the speed of reading triplicated and single copy
data. With large data, this gap is as large as 50% and 10% in
the skewed distribution and the uniformly distribution cases,
respectively. The experiment shows (1) that RAID 6 encoded
data can be read often as fast as triplicated data, (2) that in
some cases triplicated data is notably faster to read especially
if data distribution is uncontrolled.

 0

 20

 40

 60

 80

 100

 120

 140

 160

10blk
(640 MB)

300 blk
(18.75GB)

1500 blk
(93.75GB)

6000 blk
(375GB)

Ti
m

e
to

 re
ad

 b
ac

k
a

da
ta

se
t (

se
c)

Dataset with different size

3rep
1rep-uniform
1rep-skewed

Figure 2: Time to read back a dataset with different settings

4 Reliability
We focus on catastrophic failure of magnetic disks and

assume disk failures, disk repairs and data loss events as

Poisson events, with exponential inter-arrival times [3, 2].
We employ a Markov model to compare the reliability of
triplication and RAID in large storage systems with respect
to their annual data loss rate.

We coded the model into Mathematica and run through a
few interesting cases. Consider HDFS (64MB blocks) storage
systems with 80TB to 10PB user data built with 1 TB disks
where each disk is 80% utilized, and assume disks typically
sustain 25 MB/s each for repair. Disk failure rates are as-
sumed to be 2% per year. There is a detection time before
repair starts. Once the repair starts, the repair rate is deter-
mined by the amount of reconstruction work divided by the
number of disks, each providing 25 MB/s. RAID 6 groups
contain eight data blocks and two check blocks.

4

16

64

256

1K

 0 2000 4000 6000 8000 10000

A
nn

ua
l D

at
a

Lo
ss

 (B
yt

es
)

Total Amount of User Data (TB)

Triplication 10min
RAID6 10min

(a) 10 minute detection time

1

4

16

64

256

 0 2000 4000 6000 8000 10000

A
nn

ua
l D

at
a

Lo
ss

 (B
yt

es
)

Total Amount of User Data (TB)

Triplication
RAID6

(b) Zero detection time

Figure 3: Annual data loss rate with different detection time

First, triplication is shown to be more reliable than RAID
6. For example in Figure 3(a), when detection of a failure
takes 10 minutes, the expected annual amount of data loss in
the largest systems is about an order of magnitude larger with
RAID 6. Note however that the absolute number of lost bytes
is quite small: less than 4KB per year.

Figure 3(a) also shows, especially for RAID 6, two com-
peting factors: larger systems have more repair bandwidth,
decreasing annual data loss, and larger systems have more
disks failing, increasing annual loss. A RAID 6 configuration
needs fewer disks and more read bandwidth, so it exposes an
initially decreasing data loss rate as the system gets larger.

The failure detection time is a key parameter for system
developers. If it could be reduced to 0, as shown in Figure
3(b) , larger systems could have better reliability, because
repair would be getting faster proportionally to disk failure
rates increasing. Unfortunately, instant detection is unrealistic
due to network latency and other issues.

5 Conclusion
This paper proposes DiskReduce, a tool to integrate RAID

technology into HDFS. We investigate the file statistics and
show that even encoding simplicity encourages the contents
of each RAID set be taken from the same file, but because
DISC file systems have such large block size, this leads to
excessive capacity overhead.

Our prototype of DiskReduce has been built for HDFS and
released with the Apache project as MAPREDUCE-2036 for
all users’ benefit.

2

References
[1] D. Borthakur. Hdfs and erasure codes, Aug. 2009.

http://hadoopblog.blogspot.com/2009/08/
hdfs-and-erasure-codes-hdfs-raid.html.

[2] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman,
J. Leong, and S. Sankar. Row-diagonal parity for double disk
failure correction. In USENIX FAST, pages 1–14, 2004.

[3] D. A. Patterson, G. Gibson, and R. H. Katz. A case for redundant
arrays of inexpensive disks (raid). ACM SIGMOD Rec., 17(3):
109–116, 1988.

[4] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller,
J. Small, J. Zelenka, and B. Zhou. Scalable performance of
the panasas parallel file system. In USENIX FAST, 2008.

3

http://hadoopblog.blogspot.com/2009/08/hdfs-and-erasure-codes-hdfs-raid.html
http://hadoopblog.blogspot.com/2009/08/hdfs-and-erasure-codes-hdfs-raid.html

!"#$%&'()&*+%,-!"./+01&+234('+

!"#$%&

56&76"&8
'()*+,)-*.(//,0,/*1,)/(2(3(345-*#()*6(,4-*7,3/8*7(924)

944/3&+:;<+=!:;+4.+!>0>+-.0&.#"6&+;)>3>?3&+24@A(0&7#

-@@&'">0&+6#B+C>)$/74(.'+D.)4'"./

E+ ;"@A3&

0.9
0.99

0.999
0.9999

0.99999

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Fr
ac

tio
n

of
 sp

ac
e

us
ed

 b
y
!l

es
w

ho
se

 si
ze

 <
 x

DW
M45

A
C
D
M
N
U

OC

0.00001
0.0001

0.001
0.01

0.1

1K 1M 64M 1G 1T
x: !le size in bytes

;A>)&+46&71&>'+

*&:

*;&:

*<&:

*=&:

*>&:

*%&&:

". ?<@ A B " ? C D

;A
>)
&+
F
#&
' $AE"*=*9F*G(HI

EJI,H*$AE"*=

+

234('+'>0>+>))&##+A>00&7.

0.9
0.99

0.999
0.9999

0.99999

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

%2IK %L() %83 %J,F %0IIM**%L4) %F3

φ
: G
3,
K/
(4
)*
4G
*9
H4
KM
*,
KK
I2
2

,/
*,
NI
*O
*/

Block Age t

M45
A

DW 0

 20

 40

 60

 80

 100

 120

 140

 160

10blk
(640 MB)

300 blk
(18.75GB)

1500 blk
(93.75GB)

6000 blk
(375GB)

Ti
m

e
to

 re
ad

 b
ac

k
a

da
ta

se
t (

se
c)

Dataset with di"erent size

3rep
1rep-uniform
1rep-skewed

7+P*Q*R"+P "(2M$IJSKI

!

"

"

!

!
"

"

" !

!

" !

-@@&'">0&+&.)4'"./*

C>)$/74(.'+&.)4'"./*

8"01+#)>3&

<

%=

=<

;@=

%T

*& *;&&& *<&&& *=&&& *>&&& *%&&&&

13(UH(K,/(4)*%&L()
$AE"=*%&L()

%

<

%=

=<

;@=

*& *;&&& *<&&& *=&&& *>&&& *%&&&&

13(UH(K,/(4)
$AE"=

	Integrating RAID into HDFS
	RAID Grouping Strategy
	Performance Degradation
	Reliability
	Conclusion

