Extending SSD
Lifetimes
with Disk-Based
Write Caches

Gokul Soundararajan *University of Toronto*

Vijayan Prabhakaran Mahesh Balakrishnan Ted Wobber *Microsoft Research*

Replacing Hard Disk Drives (HDDs)

- Fast I/O reads
- Consume low power, no moving parts, and more reliable

Replacing Hard Disk Drives (HDDs)

- Fast I/O reads
- Consume low power, no moving parts, and more reliable

Limited write cycles

- Need to erase block before re-write
- High end SLC provide 100,000 erase cycles
- Mainstream MLC provides 5,000-10,000 erase cycles

Replacing Hard Disk Drives (HDDs)

- Fast I/O reads
- Consume low power, no moving parts, and more reliable

▶ Limited write cycles

- Need to erase block before re-write
- High end SLC provide 100,000 erase cycles
- Mainstream MLC provides 5,000-10,000 erase cycles

Starting to be used in laptops/desktops

Contain write intensive workloads

Contributions

Contributions

Characterized I/O patterns

- Found desktop/server traces contains many overwrites
- Caching overwrites reduces writes to SSD by 52% ideally

Contributions

Characterized I/O patterns

- Found desktop/server traces contains many overwrites
- Caching overwrites reduces writes to SSD by 52% ideally

Designed Griffin hybrid disk

- Uses a disk-based write cache
- Cache data on hard disk, periodically move it back to SSD
- Shows a 2x lifetime improvement (< 5% HDD reads)

Outline

- Motivating Workload Characteristics
 - Key features
- Disk-based Write Caching
- Experimental Evaluation
- **Conclusions**

I/O Workload Characterization

Examined various I/O traces

- Desktops (Internal Microsoft traces)
- Servers (Narayanan et. al from MSR Cambridge)
 - Use only the write-intensive traces
- Linux (Bhadkamkar et. al. from FIU)
 - Contains desktop, SVN, and web server

Trace descriptions

- Block I/Os collected below the filesystem buffer cache
- Multi-hour traces of 5 hours to 176 hours
- Between 209K to 543M I/O events per trace

Overwrites

Overwrites

Overwrites

Overwrites

Overwrites

- Consecutive writes to a block without an intervening read

Write-after-Write (WAW) Times

- Time between two consecutive writes to the same block

Overwrites

- Consecutive writes to a block without an intervening read

Write-after-Write (WAW) Times

- Time between two consecutive writes to the same block

▶ Read-after-Write (RAW) Times

- Time between a write and a subsequent read to the same block

Top Overwritten Files in Desktops

Rank	Filename
1	C:\Outlook.ost
2	C:\\ Search \\Windows.edb
3	C:\\$Bitmap
4	C:\Windows\Prefetch\Layout.ini
5	C:\Users\ <name>\NTUSER.DAT</name>
6	C:\\$Mft

WAW

Cumulative Time Interval (%)

Histogram Buckets (seconds)

Summary of Observations

Summary of Observations

Large fraction of overwrites

- Potential of 36% to 64% reduction for desktops
- As much as 94% in server workloads (web server)
- Linux: 62% in desktop and 81% in servers (web server)

Summary of Observations

Large fraction of overwrites

- Potential of 36% to 64% reduction for desktops
- As much as 94% in server workloads (web server)
- Linux: 62% in desktop and 81% in servers (web server)

Overwrites happen quickly, reads after a long interval

- Over 50% of overwrites within 30 seconds
- Only 21% of written data read within 15 minutes

Outline

- Motivating Workload Characteristics
- Disk-based Write Caching
 - Basic algorithm
 - Performance tradeoffs
- Experimental Results
- **▶** Conclusions

Griffin: Data Migration

Griffin: Data Migration

Griffin: Data Migration

What to cache?: Overwrite Distribution

What to cache?: Overwrite Distribution

Selective Write-Caching

Tradeoff: Write Savings vs. Read Penalty

Tradeoff: Write Savings vs. Read Penalty

How long to cache?: Time Intervals

How long to cache?: Time Intervals

How long to cache?: Time Intervals

Timeout trigger

- Idea: Fires after a certain time elapses
- Could have high read penalty

Timeout trigger

- Idea: Fires after a certain time elapses
- Could have high read penalty

▶ Read-threshold trigger

- Idea: Fires if HDD reads exceeds threshold since last migration
- Bounds HDD read fraction
- Could have no migrations for a long time

▶ Timeout trigger

- Idea: Fires after a certain time elapses
- Could have high read penalty

▶ Read-threshold trigger

- Idea: Fires if HDD reads exceeds threshold since last migration
- Bounds HDD read fraction
- Could have no migrations for a long time

Hybrid trigger

- Every 15 mins or read penalty > 5%

Outline

- Motivating Workload Characteristics
- Disk-based Write Caching
- Experimental Evaluation
 - Caching Policies: What to cache?
 - Migration Policies: How long to cache?
 - Performance: Lifetime and Latency
- Conclusions

What to Cache?: Read Penalty

What to Cache?: Read Penalty

What to Cache?: Read Penalty

How Long to Cache?: Write Savings

How Long to Cache?: Write Savings

How Long to Cache?: Write Savings

How Long to Cache?: Read Penalty

How Long to Cache?: Read Penalty

Performance Summary: Erasure Savings

Performance Summary: Erasure Savings

More in the Paper

More in the Paper

- Evaluation of other policies
 - Different migration triggers

More in the Paper

Evaluation of other policies

- Different migration triggers

Failure handling

- Have state on two devices
- Recovery more intricate
 - Leverage existing journalling and recovery techniques
- More details in the paper

Conclusions

SSDs starting to appear in desktops/laptops

- Contain more write-intensive workloads
- Lifetimes limited due to limit of block erasures

Built Griffin hybrid disk

- Uses hard drive as a write-cache

▶ Reduces writes while maintaining performance

- Reduces writes by 52% (< 5% HDD reads)
- Improves lifetime by factor of 2
- Reduces average I/O latency by 56%

Thank you

33 <u>http://www.e-wollmann.com/griffin.jpg</u>

Related Work

SSD Lifetimes

- Shown to degrade over time
 - Grupp et. al [ISM'09]
 - Desyoners [HotStorage'09], Boboila et. al [FAST'10]

Hybrid drives

- Used SSD as cache for hard drive
 - Kotsidas et. al [VLDB'08], Combo drive [WISH'09]
- Windows ReadyBoost
 - caches data normally paged out the HDD
- Intel Turbo Memory and Sun ZFS+Flash

Improved Sequentiality

