Understanding latent sector errors and how to protect against them

Bianca Schroeder, Sotirios Damouras, Phillipa Gill

Motivation

What is a latent sector error (LSE)?

Individual sectors on a drive become inaccessable (media error)

Prevalence?

- 3.5% of drives experience LSE(s) [Bairavasundaram2007]
 - > 7-9% for some disk models!

Consequence of an LSE?

- In a system without redundancy: data loss
- In RAID-5, if discovered during reconstruction: data loss
 - One of the main motivations for RAID-6
 - Growing concern with growing disk capacities

How to protect against them?

- Periodic scrubbing
 - Proactively detect LSEs and correct them.

- Intra-disk redundancy
 - Replicate selected metadata [e.g. FFS]
 - Add parity block per file [e.g. Iron file systems]
 - Add parity block per group of sectors [Dholak.08]

Our goal

Understand potential of different protection schemes

Understand characteristics of LSEs

From point of view of protection

How?

- Using real data from production machines
- Subset of data in Bairavasundaram et al. (Sigmetrics'07)
- Thanks for sharing!

The data

How effective are protection schemes?

- Scrubbing
- Intra-disk redundancy

Why?

- Detect and correct errors early
- Reduces probability to encounter LSE during RAID reconstruction

Standard sequential scrubbing

Standard sequential scrubbing
Localized scrubbing

Standard sequential scrubbing

- Localized scrubbing
- Accelerated scrubbing

Standard sequential scrubbing

- Localized scrubbing
- Accelerated scrubbing

Staggered scrubbing [Oprea et al.'10]

How do those approaches perform in practice, i.e. on real-world data?

- Localized scrubbing
- Accelerated scrubbing

Staggered scrubbing [Oprea et al.'10]

Accelerated staggered scrubbing

Scrubbing: Evaluation on NetApp data

No significant improvement from local & accelerated scrubs

- They don't reduce the time to detect whether there are any errors
- Errors are close in space, so even standard scrub finds them soon

Scrubbing: Evaluation on NetApp data

- I0-35% improvement with staggered scrubs!
 - Even better than the original paper claims!
 - Without introducing any overheads or additional reads
 - Relatively insensitive to choice of parameters

Intra-disk redundancy

- Why?
 - Recover LSEs in systems without redundancy
 - Recover LSEs during reconstruction in RAID-5

- Goal:
 - Evaluate potential protection
 - What fraction of errors could be recovered
 - Qualitative discussion of overheads

Intra-disk redundancy

- Simplest scheme: Single Parity Check (SPC)
- Can recover up to one LSE per parity group

Results from evaluation on Netapp data:

25-50% of drives have errors that SPC cannot recover

Stronger schemes?

- Additional parity => additional overhead in updating parity
- When would that be interesting?

In environments

- ... like archival systems, that don't have updates and don't like scrubs since they require powering up the system
- ... with read-mostly workloads, i.e. parity updates are rare
- ... for selected critical data on a drive, such as meta-data

Inter-leaved Parity Check (IPC) [Dholakia08]

- Requires only I parity update per data update
- Can tolerate up to m consecutive errors

Inter-leaved Parity Check (IPC) [Dholakia08]

Questions unanswered ...

What level of protection to use when?

- E.g. what is the right scrub frequency?
- > Depends on error probability at a given time

Do previous errors predict future?

Does *first* error interval predict future?

- Number of errors in first error interval:
 - Do increase expected number of future errors
 - Don't significantly increase probability of future occurrence

For how long are probabilities increased?

Questions unanswered ...

What level of protection to use when?

- What is the error probability at a given time?
- What level of protection to use where?
- > Are all areas of the drive equally likely to develop errors?

Where on the drive are errors located?

Questions unanswered ...

- What level of protection to use when?
 - What is the error probability at a given time?
- Same protection scheme across entire drive?
 - Are all parts equally likely to develop errors?
 - Scrubbing potentially harmful?
 - Do additional read operations increase error rate?

Does utilization affect LSEs?

Needs further investigation (future work).

Questions unanswered ...

- What level of protection to use when?
 - What is the error probability at a given time?
- Same protection scheme across entire drive?
 - > Are all parts equally likely to develop errors?
- Scrubbing potentially harmful?
 - Do additional read operations increase error rate?
 - What is the common distance between errors ...
 - Important for example for replica placement

How far are errors spaced apart?

Questions unanswered ...

- What level of protection to use when?
 - What is the error probability at a given time?
- Different protection for different parts of the drive?
 - > Are all parts equally likely to develop errors?
- Scrubbing potentially harmful?
 - Do additional read operations increase error rate?
- What is the common distance between errors ...
 - Important for replica placement
 - Are errors that are close in space also close in time?Yes!

Questions unanswered ...

- What level of protection to use when?
 - What is the error probability at a given time?
- Different protection for different parts of the drive?
 - > Are all parts equally likely to develop errors?
- Scrubbing potentially harmful?
 - Do additional read operations increase error rate?
- What is the common distance between errors ...
 - Important for replica placement
 - Are errors that are close in space also close in time?Yes!
- And many other questions see paper!

Conclusion

Evaluated potential of different protection schemes

- Scrubbing
 - Simple new scheme (staggered scrubbing) performs very well!
- Intra-disk redundancy
 - Single parity can recover LSEs in 50-75% of the drives
 - Need to look at more complex schemes for coverage beyond that
- Looked at characteristics of LSEs
 - And how to exploit them for reliability
- Many characteristics not captured well by simple models
 - Provided parameters for models

Thanks!

To NetApp for sharing the data

To you for listening

Questions?