

A Clean-Slate Look at Disk Scrubbing

Alina Oprea and Ari Juels RSA Laboratories

Presented by Arkady Kanevsky

Risk of Data Loss in Hard Drives

Drives fail!

RAID and LSEs

- RAID-5 protects against one disk failure
- But...one disk failure + one LSE result in data loss
- Impact of LSEs on RAID reliability
 - [Elerath and Pecht 2007], [Baker et al. 2007]

Mitigations Within a Single Drive

- Disk scrubbing [Schwartz et al. 2004]
 - Background process that reads disk sectors during disk idle time to proactively discover LSEs
- Intra-disk redundancy [Dholakia et al. 2008]
 - Erasure code over consecutive disk sectors
 - Parity blocks stored on the same drive
 - Incurs write overhead
- Comparison of scrubbing and intra-disk redundancy
 - [Iliadis et al. 2008], [Mi et al. 2008], [Schroeder et al. 2010]

Disk Scrubbing

- Today: sequential reading of disk sectors, usually with a fixed pre-determined rate
- But LSEs do not occur with a fixed rate and uniformly across disk sectors (Sigmetrics 2007 study)
 - Temporal decay: subsequent errors develop after first LSE
 - Temporal locality: most errors occur within a short interval of previous error
 - Spatial locality: 50% of LSEs are at a logical distance of 10MB

Idea: enlarged design space of scrubbing strategies to account for distribution of LSEs and disk history

- Adaptively change scrubbing rate following error event
- Sample across disk regions for discovering errors faster than by sequential reading ("staggering")

Outline

- Motivation for more intelligent disk scrubbing techniques
- Our LSE model
 - Use known facts about LSE distribution (spatial and temporal locality)
 - New assumptions for usage error development
- Enlarged design space of scrubbing strategies
 - Staggered strategies
 - Strategies with adaptive rates
- Simulation model and evaluation
 - New metric for single drive reliability (MLET)
 - Reliability dependence on various disk parameters, and disk workloads

Methodology for our LSE model

- Published facts on LSE distribution
 - [Bairavasundaram et al. 2007] study on 1.53 million drives from various models and manufacturers over 24 month period
 - Two disk categories: nearline and enterprise
 - Consider only enterprise disks in our work
 - Data is not published, only some statistics on it
 - Translate known facts into scrubbing principles
- Need new assumptions to generate LSE model
 - Parameterized model aimed at capturing disks with various characteristics
 - Actual disk parameters are currently not transparent
- Validate LSE model against data published by Bairavasundaram et al.

Scrubbing principles

Almost constant LSE rates

[Bairavasundaram et al. 2007]

- LSE rate is fairly low and constant in first 2 months of drive operation
- LSEs rate increases after 2 months, but is fairly constant before the first LSE develops

Scrubbing principles

- Keep scrubbing rate low and constant during first 2 months
- Increase scrubbing rate after 2 months, and keep it constant before the first LSE develops

Scrubbing principles

Temporal locality and decay of LSEs

[Bairavasundaram et al. 2007]

- LSEs exhibit temporal locality inter-arrival time distribution has very long tails
- LSEs exhibit decay more LSEs develop shortly after a first LSE

Scrubbing principles

- Use adaptive scrubbing rates
 - Increase scrubbing rate temporarily in a short interval after LSE detection

Scrubbing principles

Spatial locality of LSEs

[Bairavasundaram et al. 2007]

 LSEs develop clustered on disk at block logical level

Scrubbing principles

 Staggering detects errors faster than sequential scrubbing

Staggered strategy

- Performance overhead compared to sequential scrubbing
 - Small segment sizes (32-64KB): a factor of 5
 - Large segment sizes (1MB): only 2% overhead
- Parameter choices
 - Segment size 1MB
 - Region size 128MB: most LSEs are at distance lower than 128MB

Staggered Adaptive Strategies

Assumptions on LSE development

- Usage error development
 - Bairavasundaram et al. study only characterizes age errors
 - Usage errors exhibit same spatial and temporal locality
 - Usage errors develop due to both reads and writes, albeit with different weights given by a parameter RW_Weight
 - Increase RW_Weight to minimize effect of reads on LSE development
- Usage errors are triggered when number of bytes accessed (weighted by RW_Weight) exceeds on average 1/BER
 - BER: byte-error rate, between [10⁻¹⁵,10⁻¹³]
- Error distribution on disk
 - Errors are clustered on disk around a cluster centroid
 - Clusters of errors are uniformly distributed on disk
- Assumptions validated against Bairavasundaram et al. results

Outline

- Motivation for more intelligent disk scrubbing techniques
- Our LSE model
 - Use known facts about LSE distribution (spatial and temporal locality)
 - New assumptions for usage error development
- Enlarged design space of scrubbing strategies
 - Staggered strategies
 - Strategies with adaptive rates
- Simulation model and evaluation
 - New metric for single drive reliability (MLET)
 - Reliability dependence on various disk parameters, and disk workloads

Simulation Model

Disk Model

- 24 months, interval of one hour
- 100,000 disks, 500GB each
- LSE model includes both age and usage errors

Staggered adaptive space

- Scrubbing rates from 0 to one full disk scrub per day (in GB/ hour)
- Length of accelerated interval from 3 hours to time to scrub the full disk

Exhaustive search for optimized scrubbing

Optimized: Min MLET (Mean Latent Error Time)
Fraction of time disk has latent sector errors

Dependence on BER

Staggered adaptive vs sequential

Staggered adaptive vs sequential

Staggered adaptive vs sequential

Relative improvement of staggering and adaptive rates

Improvement of staggering and adaptive rates over fixed-rate sequential

Dependence on disk workload

Optimized staggered adaptive for different usage levels

Discussion

- More intelligent scrubbing strategies by taking into account disk characteristics and the history of error development
- Optimal strategies are highly dependent on disk BER and disk workloads
 - High sensitivity to disk parameters that are not always public
- Staggering improves resilience to LSEs for all disks
- Adaptively changing scrubbing rates in a short interval after detecting an LSE benefits most disks that develop a high number of usage errors
- Optimized adaptive staggered strategies can reduce MLET by several orders of magnitude compared to fixed-rate sequential strategies used today

Future work

- Expansion of search space for scrubbing strategies
- Use more sophisticated search heuristics
 - E.g., hill-climbing or simulated annealing
- Performance overhead of real scrubbers in conjunction with typical workloads
- Translation of results to FLASH
- Extension of results to replication and RAID systems
- Questions?
 - Alina Oprea (<u>aoprea@rsa.com</u>)
 - Ari Juels (<u>ajuels@rsa.com</u>)