\Wu\.\
=
™
=
AN

P>
~
A,
=
~
D
=
LO
N

Why Flash?

“Tape is Dead; Disk is Tape; Flash is Disk; RAM Locality is King”
-Jim Gray (2006)

e Why Flash?
— Non-volatile storage

— No mechanical components

x Moore’s law does not apply to seeks
— Inexpensive and getting cheaper
— Potential for significant power savings

— Real-world performance is much better than in 2006

e Bottom line: disks for §/GB; flash for $/IOPS

Why not Battery-Backed DRAM?

e Flash costs less than DRAM and is getting cheaper

— Both markets are volatile, however (e.g., new iPhones)
e Memory subsystems that support large memory are expensive

e Think of flash as a new level in the memory hierarchy

10,000 e

$1,000 L !

%\ fol
$100

NAND -

s10 i =

s1 T T T : T : ; T T S

"
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2092
-~

s0.1 4 == - eV TEEER | _Source: Objective Analysis, August 2007

e Last week’s spot prices put SLC : DRAM at 1: 3.6 and MLC at 1:9.8

Flash Memory Review

e Non-volatile solid state memory
— Individual cells are comparable in size to a transistor
— Not sensitive to mechanical shock
— Re-write requires prior bulk erase

— Limited number of erase/write cycles

e Two categories of flash:
— NOR flash: random access, used for firmware

— NAND flash: block access, used for mass storage

e Two types of memory cells:
— SLC: single level cell that encodes a single bit per cell
— MLC: multi-level cell that encodes multiple bits per cell

NAND Flash

e Fconomics

— Individual cells are simple

x Improved fabrication yield

x 1st to use new process technology
— Already must deal with failures, so just mark fab defects

— High volume for many consumer applications
e Organization

— Data is organized into “pages” for transfer (512B-4K)
— Pages are grouped into “erase blocks” (EBs) (16K-16MB+)

— Must erase an entire EB before writing again

NAND Flash Challenges

Block oriented interface
— Must read or write multiples of the page size

— Must erase an entire EB at once
Bulk erasure of EBs requires copying rather than update-in-place

Limited number of erase cycles requires wear-leveling

— Less of an issue if you are copying for performance anyway
Additional error correction often necessary for reliability

Performance requires HW parallelism and software support

Why Another Filesystem?

e There are many filesystems designed for spinning rust
— e.g., FFS, ext N, XFS, VxFS, FAT, NTFS, etc.
— Layout not designed with flash in mind
— Firmware/driver still implements a level of indirection

x Indirection supports wear-leveling and copying for performance

e There are also several filesystems designed specifically for flash
— e.qg., JFFS/JFFS2 (NOR), YAFFS/YAFFS2 (SLC NAND)
— Log-structured; implement wear-leveling & additional ECC
— Intended for embedded applications
— Small numbers of files, small total filesystem sizes
— Some must scan entire device at boot

— Often expect to manage raw flash
e In a server environment, we end up with two storage managers!

7

DFS: Idea

e Idea: Instead of running two storage managers, delegate
— Filesystem still responsible for directory management, access control
— Flash disk storage manager responsible for block allocation

— May take advantage of features not in traditional disk interface

e Longer term question: what should storage interface look like?

DFS: Requirements

e Currently relies on four features of underlying flash disk
1. Sparse block or object-based interface
2. Crash recoverability of block allocations
3. Atomic multi-block update

4. Trim: i.e., discard a block or block range

e All are a natural outgrowth of high-performance flash storage
— (1) follows from block-remapping for copying and failed blocks
— (2) and (3) follow from log-structured storage for write peformance

— (4) already exists on most flash devices as a hint to GC

Block Diagram of Existing Approach vs DFS

‘ File System Database . e

Logical block

(physical size) Ops: Read, Write, ...

Traditional Traditional
DFS File System Database e

Traditional Block Storage Layer

(64-[5'{2‘;3({-1? I:;él(ress) Ops: Read, Write, Deallocate, ...

Virtualized Flash Storage Layer
(Remapping, Wear-Leveling, Reliability)

Read
SectorI Write

Read
SectorI Write

FTL (Remapping)

Block |erase Page APage
o write read

Block
Page

Page

NAND Flash Memory
Solid State Disk

FTL (Remapping)

A
Block |erase Page Page
v write read

NAND Flash Memory
Solid State Disk

Block T Page Block T Page
erase lread, write erase Jlread, write
Controller Controller

Buffer and Log

NAND Flash Memory

(a) Traditional layers of abstractions

ioDrive

Buffer and Log

NAND Flash Memory

ioDrive

(b) Our layers of abstractions

DF'S: Logical Address Translation

=fd, byte-offset=

1

Fd#| i-nodes

1

File block# | block offset |

i 32 bits
—- P

Vir blockd

Phy addr

Linux fd table | rE——

&
32 bits &4 bits

[ES

g

Virtualized Flash
Storage Layer

e [-node contains base virtual address for file’s extent

v
<dev, block, page>

e Base address, logical block #, and offset yield virtual address

e Flash storage manager translates virtual address to physical

11

DFS: File Layout

Sy stem Allocation Allocation
File Chunk Chunk
Small Fllad
Boothlock Directory
Superblock Small files
g directory
i-node, Large file/
directory
l-node,
l 2% (2TB) 2% (2T8) 22 (IT8H) |

Divide virtual address space into contiguous allocation chunks

— Flash storage manager maintains sparse virtual-to-physical mapping
First chunk used for boot block, super block, and I-nodes
Subsequent chunks contain either one “large” file or several “small” files

Size of allocation chunk and small file chosen at initialization

I
o973

12

DF'S: Directories

e Directory implementation that peforms is work in progress
— Evaluation platform does not yet export atomic multi-block update

— Plan to implement directories as sparse hash tables

e Current implementation uses UFS/FFS directory metadata

— Requires additional logging of directory updates only

13

Evaluation Platform

e Linux 2.6.27.9 on a 4-core amd64 @Q 2.4GHz with 4GB DRAM

e FusionlO ioDrive with 160GB SLC NAND flash (formatted capacity)
— Sits on PCle bus rather than SATA /SCSI bus

— Hardware op latency is ~50us

— Theoretical peak throughput of ~ 120,000 IOPS

x Version of device driver we are using limits throughput further

— OS-specific device driver exports block device interface

x Other features of the device can be separately exported

— Functionality split between hardware, software, & host device driver

* Device driver consumes host CPU and memory

14

Microbenchmark: Random Reads

e Random 4KB I/Os per second as function of number of threads
— Need multiple threads to take advantage of hardware parallelism
— On our particular hardware, peak performance is about 100K IOPS

— Host CPU/memory performance has substantial effect, too

Read IOPS x 1K
o™ raw
M dfs
go- Ml ext3

70-
60-
50-
40-
30-
20-
10-

o_ L 1 1 1 1 1 1]
1T 2T 3T 4T 8T 16T 32T 64T

15

Microbenchmark: Random Writes

e Random 4KB I/Os per second as function of number of threads
— Once again need multiple threads to get best agregate performance

— There is an additional garbage collector thread in device driver

e We consider CPU expended per I/O in a moment

Write IOPS x 1K

M raw
% mm dfs
go-MHext3

70-
60-
50-
40-

30-

20-
1
10- |

o_ L 1 1 1 1 1 1]
1T 2T 3T 4T 8T 16T 32T 64T

16

Microbenchmark: CPU Utilization

e Improvement in CPU usage for DF'S vs. Ext3 at peak throughput

— 1.e., larger, positive number is better
e About the same for reads; improvement for writes at low concurrency

e 4 threads+4 cores: improved performance at higher cost due to GC

Threads| Read Randor Write Handom

Read Write
1 8.1 2.8 9.4 13.8
2 1.3 1.6 12.8 11.5
3 0.4 5.8 10.4 15.3
4 -1.3 -6.8 -15.5 -17.1
8 0.3 -1.0 -3.9 -1.2
16 1.0 1.7 2.0 6.7
32 4.1 8.5 4.8 4.4

17

Application Benchmark: Description

Applications | Description [/O Patterns
Quicksort A quicksort on a large dataset Mem-mapped 1/0
N-Gram A hash table index for n-grams | Direct, random read
collected on the web
KNNImpute | Missing-value estimation for Mem-mapped 1/0
bioinformatics microarray data
VM-Update | Simultaneous update of an OS | Sequential read & write
on several virtual machines
TPC-H Standard benchmark for Mostly sequential read

Decision Support

18

Application Benchmark: Performance

Wall Time
Application Ext3 | DFS | Speedup

Quick Sort 1268 | 822 1.54
N-Gram (Zipf) | 4718 | 1912 2.47
KNNImpute 303 | 248 1.22
VM Update 685 | 640 1.07
TPC-H 5059 | 4154 1.22

e Lower per-file lock contention

e 1/Os to adjacent locations merged into fewer but larger requests

— Simplified get_block can more easily issue contiguous 1/0O requests

19

Some Musings on Future Directions

e CPU overhead of device driver is not trivial

— Particularly write side suffers from GC overhead
e Push storage management onto flash device or into network?

e No compelling reason to interact with flash as ordinary mass storage

— Useful innovation at interface to new level in memory hierarchy?

x Key/value pair interface implemented in hardware/firmware?
x First class object store with additional metadata?

20

Conclusions

e With a little “secret sauce”, NAND flash becomes interesting
— Secret sauce includes hardware, firmware, and possibly device driver

— No need for flash to sit behind traditional mass storage bus

e Delegating storage management to flash vendor’s hardware/software:
— Allows simplification of system software
— Simulatenously provides opportunity for improved performance

— Does not require changes to storage interfaces or protocols

x There may be benefit to innovation in the storage interface

— Allows vendors to improve the “secret sauce” independently

21

