
DFS: A Filesystem for
Virtualized Flash Disks

25 February 2010

William Josephson

wkj@CS.Princeton.EDU

1

Why Flash?

“Tape is Dead; Disk is Tape; Flash is Disk; RAM Locality is King”

-Jim Gray (2006)

• Why Flash?

– Non-volatile storage

– No mechanical components

∗ Moore’s law does not apply to seeks

– Inexpensive and getting cheaper

– Potential for significant power savings

– Real-world performance is much better than in 2006

• Bottom line: disks for $/GB; flash for $/IOPS

2

Why not Battery-Backed DRAM?

• Flash costs less than DRAM and is getting cheaper

– Both markets are volatile, however (e.g., new iPhones)

• Memory subsystems that support large memory are expensive

• Think of flash as a new level in the memory hierarchy

• Last week’s spot prices put SLC : DRAM at 1 : 3.6 and MLC at 1 : 9.8

3

Flash Memory Review

• Non-volatile solid state memory

– Individual cells are comparable in size to a transistor

– Not sensitive to mechanical shock

– Re-write requires prior bulk erase

– Limited number of erase/write cycles

• Two categories of flash:

– NOR flash: random access, used for firmware

– NAND flash: block access, used for mass storage

• Two types of memory cells:

– SLC: single level cell that encodes a single bit per cell

– MLC: multi-level cell that encodes multiple bits per cell

4

NAND Flash

• Economics

– Individual cells are simple

∗ Improved fabrication yield

∗ 1st to use new process technology

– Already must deal with failures, so just mark fab defects

– High volume for many consumer applications

• Organization

– Data is organized into “pages” for transfer (512B-4K)

– Pages are grouped into “erase blocks” (EBs) (16K-16MB+)

– Must erase an entire EB before writing again

5

NAND Flash Challenges

• Block oriented interface

– Must read or write multiples of the page size

– Must erase an entire EB at once

• Bulk erasure of EBs requires copying rather than update-in-place

• Limited number of erase cycles requires wear-leveling

– Less of an issue if you are copying for performance anyway

• Additional error correction often necessary for reliability

• Performance requires HW parallelism and software support

6

Why Another Filesystem?

• There are many filesystems designed for spinning rust

– e.g., FFS, extN , XFS, VxFS, FAT, NTFS, etc.

– Layout not designed with flash in mind

– Firmware/driver still implements a level of indirection

∗ Indirection supports wear-leveling and copying for performance

• There are also several filesystems designed specifically for flash

– e.g., JFFS/JFFS2 (NOR), YAFFS/YAFFS2 (SLC NAND)

– Log-structured; implement wear-leveling & additional ECC

– Intended for embedded applications

– Small numbers of files, small total filesystem sizes

– Some must scan entire device at boot

– Often expect to manage raw flash

• In a server environment, we end up with two storage managers!

7

DFS: Idea

• Idea: Instead of running two storage managers, delegate

– Filesystem still responsible for directory management, access control

– Flash disk storage manager responsible for block allocation

– May take advantage of features not in traditional disk interface

• Longer term question: what should storage interface look like?

8

DFS: Requirements

• Currently relies on four features of underlying flash disk

1. Sparse block or object-based interface

2. Crash recoverability of block allocations

3. Atomic multi-block update

4. Trim: i.e., discard a block or block range

• All are a natural outgrowth of high-performance flash storage

– (1) follows from block-remapping for copying and failed blocks

– (2) and (3) follow from log-structured storage for write peformance

– (4) already exists on most flash devices as a hint to GC

9

Block Diagram of Existing Approach vs DFS

!"!"!"

!"#$%&'()$*%

+,-."/01-#%2#034%&)0,-5$%6-'$,%

7$-.%
8,")$%

&$3)0,%% 7$-.%
8,")$%

&$3)0,%%

!"#$%&'()*%+,-.'*%/%

9-)-:-($% ;%;%;%

#$%&'"

<-5$%

<-5$%

;;
;%

=>=9%!#-(?%@$*0,'%

!+6%A7$*-BB"15C%

2#034%%$,-($%
<-5$%
D,")$%

<-5$%
,$-.%

&0#".%&)-)$%9"(4%

#$%&'"

<-5$%

<-5$%

;;
;%

=>=9%!#-(?%@$*0,'%

!+6%A7$*-BB"15C%

2#034%%$,-($%
<-5$%
D,")$%

<-5$%
,$-.%

&0#".%&)-)$%9"(4%

!"!"!"

E",)F-#"G$.%!#-(?%&)0,-5$%6-'$,%

A7$*-BB"15H%8$-,I6J#"15H%7$#"-:"#")'C%

%!"#$%&'()*%+,-.'*%0'(1123(.'*%444%

;%;%;%

2#034%
$,-($%%

#$%&'"

<-5$%

<-5$%

;;
;%

=>=9%!#-(?%@$*0,'%

K01),0##$,%

"09,"J$%

2FL$,%-1.%605%

<-5$%
,$-.H%D,")$%%

2#034%
$,-($%%

#$%&'"

<-5$%

<-5$%

;;
;%

=>=9%!#-(?%@$*0,'%

K01),0##$,%

"09,"J$%

2FL$,%-1.%605%

<-5$%
,$-.H%D,")$%%

(a) Traditional layers of abstractions (b) Our layers of abstractions

5-,.6(1%71238%
9:;<7-.%71238%()),'##=%

>2?-3(1%71238%
9"@A#-3(1%#-B'=%%

()*"
+,-."/01-#%
9-)-:-($%

+,-."/01-#%
!"#$%&'()$*%

10

DFS: Logical Address Translation

• I-node contains base virtual address for file’s extent

• Base address, logical block #, and offset yield virtual address

• Flash storage manager translates virtual address to physical

11

DFS: File Layout

• Divide virtual address space into contiguous allocation chunks

– Flash storage manager maintains sparse virtual-to-physical mapping

• First chunk used for boot block, super block, and I-nodes

• Subsequent chunks contain either one “large” file or several “small” files

• Size of allocation chunk and small file chosen at initialization

12

DFS: Directories

• Directory implementation that peforms is work in progress

– Evaluation platform does not yet export atomic multi-block update

– Plan to implement directories as sparse hash tables

• Current implementation uses UFS/FFS directory metadata

– Requires additional logging of directory updates only

13

Evaluation Platform

• Linux 2.6.27.9 on a 4-core amd64 @ 2.4GHz with 4GB DRAM

• FusionIO ioDrive with 160GB SLC NAND flash (formatted capacity)

– Sits on PCIe bus rather than SATA/SCSI bus

– Hardware op latency is ∼50µs

– Theoretical peak throughput of ∼120, 000 IOPS

∗ Version of device driver we are using limits throughput further

– OS-specific device driver exports block device interface

∗ Other features of the device can be separately exported

– Functionality split between hardware, software, & host device driver

∗ Device driver consumes host CPU and memory

14

Microbenchmark: Random Reads

• Random 4KB I/Os per second as function of number of threads

– Need multiple threads to take advantage of hardware parallelism

– On our particular hardware, peak performance is about 100K IOPS

– Host CPU/memory performance has substantial effect, too

1T 2T 3T 4T 8T 16T 32T 64T
0

10

20

30

40

50

60

70

80

90

Read IOPS x 1K
raw
dfs
ext3

15

Microbenchmark: Random Writes

• Random 4KB I/Os per second as function of number of threads

– Once again need multiple threads to get best agregate performance

– There is an additional garbage collector thread in device driver

• We consider CPU expended per I/O in a moment

1T 2T 3T 4T 8T 16T 32T 64T
0

10

20

30

40

50

60

70

80

90

Write IOPS x 1K
raw
dfs
ext3

16

Microbenchmark: CPU Utilization

• Improvement in CPU usage for DFS vs. Ext3 at peak throughput

– i.e., larger, positive number is better

• About the same for reads; improvement for writes at low concurrency

• 4 threads+4 cores: improved performance at higher cost due to GC

Threads Read
Random

Read
Write

Random

Write

1 8.1 2.8 9.4 13.8

2 1.3 1.6 12.8 11.5

3 0.4 5.8 10.4 15.3

4 -1.3 -6.8 -15.5 -17.1

8 0.3 -1.0 -3.9 -1.2

16 1.0 1.7 2.0 6.7

32 4.1 8.5 4.8 4.4

17

Application Benchmark: Description

Applications Description I/O Patterns

Quicksort A quicksort on a large dataset Mem-mapped I/O

N-Gram A hash table index for n-grams

collected on the web

Direct, random read

KNNImpute Missing-value estimation for

bioinformatics microarray data

Mem-mapped I/O

VM-Update Simultaneous update of an OS

on several virtual machines

Sequential read & write

TPC-H Standard benchmark for

Decision Support

Mostly sequential read

18

Application Benchmark: Performance

Wall Time

Application Ext3 DFS Speedup

Quick Sort 1268 822 1.54

N-Gram (Zipf) 4718 1912 2.47

KNNImpute 303 248 1.22

VM Update 685 640 1.07

TPC-H 5059 4154 1.22

• Lower per-file lock contention

• I/Os to adjacent locations merged into fewer but larger requests

– Simplified get block can more easily issue contiguous I/O requests

19

Some Musings on Future Directions

• CPU overhead of device driver is not trivial

– Particularly write side suffers from GC overhead

• Push storage management onto flash device or into network?

• No compelling reason to interact with flash as ordinary mass storage

– Useful innovation at interface to new level in memory hierarchy?

∗ Key/value pair interface implemented in hardware/firmware?

∗ First class object store with additional metadata?

20

Conclusions

• With a little “secret sauce”, NAND flash becomes interesting

– Secret sauce includes hardware, firmware, and possibly device driver

– No need for flash to sit behind traditional mass storage bus

• Delegating storage management to flash vendor’s hardware/software:

– Allows simplification of system software

– Simulatenously provides opportunity for improved performance

– Does not require changes to storage interfaces or protocols

∗ There may be benefit to innovation in the storage interface

– Allows vendors to improve the “secret sauce” independently

21

Acknowledgements

David Flynn at FusionIO

Garrett Swart at Oracle

22

