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Motivation

� Flash used for many years in consumer devices

(photography, media players, portable drives)

� Parameters of flash not of interest to users (usually 
proprietary/undisclosed)

� But… only recently flash used for storage in laptops and 
desktops

� Now we care!

� efficient access to data (in intensively used storage)

� consistent average performance (over large periods of time)

� Understand flash internals:

� harness its strengths 

� address its limitations: write endurance, garbage collection
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Our work

� To uncover internals of flash we investigated real 
USB flash drives:

� chip-level testing

� analysis and simulation

� reverse engineering

� timing analysis

� whole-device testing

� Why USB flash drives? 

� Device disassembling, destructive testing, reverse 
engineering more difficult to do for more sophisticated devices

In the paper

Discussed 

next
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Outline

� Device lifespan :  predictions & measurements

� Timing analysis :  non-intrusive investigation

� Scheduling :  storage optimization for flash devices
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USB flash drive

USB

Controller

(internal logic)

Flash memory

(chip-level parameters)

� Flash memory: chip-level parameters

� Controller: internal algorithms

(implemented in the Flash Translation Layer, FTL)

In the 

paper

Discussed 

next
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Flash Translation Layer (FTL)

Logical 

blocks

Physical 

blocks

…

Free blocks

Logical-to-physical 

block mappings

� Flash can not be overwritten (has to be erased before writing again)

� FTL uses a pool of free blocks to accommodate new writes before old 
data is erased 

� Different granularity of program (page) vs. erase (block, ≥ 32 pages)

� Flash wears out in time (limited number of writes/erasures)

� FTL distributes the number of writes/erasures evenly among physical 
blocks 
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USB port USB port

Output (physical level): 

addresses & 

internal commands

Linux host Windows hostLogic analyzer

Input (logical level):

reads & writes

at specific addresses

application 

(C language)

capture digital signal:

bus transactions

Reverse engineering of FTL

� Input (logical level): reads/writes issued from a Linux USB host at 
specific logical addresses

� Output (physical level): internal commands and physical addresses 
captured with a IO-3200 logic analyzer
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Block 1002 was erased!

send command

1

0

0

1

1

0

0

0

0

command 

code:

01100000 = 

60h = erase



9

Specifics of experiments

� Investigated USB drives:

� Generic – 64MB, Hynix HY27US08121A

� House – 2GB, Intel 29F16G08CANC1

� Memorex – 512MB, Mini TravelDrive

� Writing pattern:

� Step 1. Write all logical blocks completely.

� Step 2. Overwrite some page.
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Page update mechanism: Generic device

Page 30Update request:

Page 0, valid

Page 1, valid

Page 30, valid

Page 31, valid

Block A Block B

Page 0, valid

Page 1, valid

Page 30, valid

Page 31, valid

Page 30, invalid

Erased 

(garbage collection)

Use a free block

to write data

… …
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Successive updates: Generic device

Page 30
Update 

request:

Page 0, valid

Page 1, valid

Page 2, valid

Page 31, valid

Block A Block B

Page 0, valid

Page 1, valid

Page 30, invalid

Page 31, valid

Page 30, invalid

Erased

(garbage collection)

Page 30
Update 

request:

Erased

(garbage collection)

� For Generic, one page update triggers a block erasure!!
� Only the list of free blocks is used: worn out faster!!

Block C

Page 0, valid

Page 1, valid

Page 30, valid

Page 31, valid

…… …
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Predicting lifespan: Generic device

� Internal algorithm:

� cycle through the list of free blocks

� erase one block at each page update

� Predicted lifespan =

� h = chip-level endurance 

� m = number of free blocks

� Measured lifespan = 7.7 x 107

Device lifespan ≈ Chip-level endurance + FTL algorithm

Can we predict the lifespan of the device?

7
106×=×mh
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More complex FTL: House device

Update 

requests:

Page 0, valid

Page 62, valid

Page 1, valid

Page 63, valid

Block A

Block B

Page 62, invalid

Page 62

Block C

Page 62, valid

Page 62, valid

Page 62

Page 62

Merge all valid pages 

in a new block

Use a free block to store

new data

Page 62, valid

Page 0, valid

Page 1, valid

Less frequent garbage collection: Can accommodate several updates 

of a block into a single new block before erasing the old data 

Erased

Erased

Page 62, invalid

Page 62, invalid

…

Page 62, valid

Page 63, valid

…

…
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Predicting lifespan: House device

� Internal algorithm:

� cycle through the list of free blocks

� accommodate k pages per block, 1≤ k ≤ block size

� erase 2 blocks

� Predicted lifespan:

� Uncertainty in tracing k

� Measured lifespan: 1.06 x 108

Can we predict the lifespan of the device?

(*) Refinement of the bound in the paper.

(*)
[ ] [ ]sizeblockkwith

mhk
_,1,106.9,105.1

2

87
∈××∈

××

� h = chip-level endurance, 

� m = number of free blocks, 

� k = number of pages written 

per block before erasing

Device lifespan ≈ Chip-level endurance + FTL algorithm
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Block ABlock BBlock A Block BBlock A

Even more complex FTL: Memorex device

Static wear-leveling: periodically swaps static blocks with 

frequently updated blocks

Block B

Rarely changed 
(static)

1. write static pages from A to B

2. B removed from free list 

A added to free list List of free blocks

Frequently changed 
(dynamic)
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Predicting lifespan: Memorex device

� Internal algorithm:

� cycle through the entire zone 

� accommodate up to a full block of pages before erasing

� Predicted lifespan =

� z = number of blocks per zone

� k = number of pages per block 

� h = chip-level endurance

� Device did not break!

Can we predict the lifespan of the device?

10
105.6 ×=×× hkz
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Outline

� Device lifespan :  predictions & measurements

� Timing analysis :  non-intrusive investigation

� Scheduling :  storage optimization for flash devices
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Timing analysis

� What can we figure out from timing analysis?

� Garbage collection frequency

� Writing patterns that trigger garbage collection

� If static wear-leveling is used, and how frequently

� If the device is approaching its end of life

In the 
paper

Discussed 
next
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End-of-life signature: House device

� At 25,000 operations before the end, all operations slow 
to 40 ms ≈ erasure at every write

Is the device approaching its end of life?
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Outline

� Device lifespan :  predictions & measurements

� Timing analysis :  non-intrusive investigation

� Scheduling :  storage optimization for flash devices
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Latency problem: flash versus disk

� Latency:
� Disk: mechanical (seek delays)
� Flash devices: lack of free blocks (garbage collection delays)

� Solution: find an optimal scheduling to minimize latency
� Disk:

� Elevator algorithm: requests sorted by track number and serviced only in 
the current direction of the arm movement

� Flash devices: 
� Key observation:

� for writes issued to the same data block, FTL uses the same update 
block

� for writes issued to different data blocks, FTL uses different update 
blocks 

� Solution: 
� Reorder data streams to service requests to the same data block 

consecutively

� Result: 
� Use the free space compactly => reduce erasure frequency 

� No need to reschedule reads!!
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An example: scheduling vs. no scheduling

� Address rounded to: track number (disk); block number (flash)

� X = seek (disk); garbage collection (flash)

� R = read; W = write

� Flash: 2 free blocks

Disk
unscheduled:
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Garbage collection overhead 4x smaller with scheduling vs. no scheduling!
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Implications for storage systems

� Optimization of servicing requests:
� Reduce garbage collection and improve performance

� Internals of flash devices require a new scheduling paradigm 

for flash

� We expect our results to apply to:

� Most removable devices (e.g. SD, CompactFlash, etc.) and low-
end SSDs with little free space and RAM

� Example: JMicron’s JMF602 flash controller, used for many low-
end SSDs: 8-16 flash chips, 16K RAM, 7% free space
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Conclusions

� Lifespan of flash devices is a function of chip-level 

endurance and internal algorithms

� Flash exhibits specific timing patterns towards end of life 

� New scheduling algorithms designed specifically for 
flash-based storage are necessary to extract maximum 

performance
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