
Write Endurance in Flash Drives:

Measurements and Analysis

Simona Boboila

Peter Desnoyers

Northeastern University

2

Motivation

� Flash used for many years in consumer devices

(photography, media players, portable drives)

� Parameters of flash not of interest to users (usually
proprietary/undisclosed)

� But… only recently flash used for storage in laptops and
desktops

� Now we care!

� efficient access to data (in intensively used storage)

� consistent average performance (over large periods of time)

� Understand flash internals:

� harness its strengths

� address its limitations: write endurance, garbage collection

3

Our work

� To uncover internals of flash we investigated real
USB flash drives:

� chip-level testing

� analysis and simulation

� reverse engineering

� timing analysis

� whole-device testing

� Why USB flash drives?

� Device disassembling, destructive testing, reverse
engineering more difficult to do for more sophisticated devices

In the paper

Discussed

next

4

Outline

� Device lifespan : predictions & measurements

� Timing analysis : non-intrusive investigation

� Scheduling : storage optimization for flash devices

5

USB flash drive

USB

Controller

(internal logic)

Flash memory

(chip-level parameters)

� Flash memory: chip-level parameters

� Controller: internal algorithms

(implemented in the Flash Translation Layer, FTL)

In the

paper

Discussed

next

6

Flash Translation Layer (FTL)

Logical

blocks

Physical

blocks

…

Free blocks

Logical-to-physical

block mappings

� Flash can not be overwritten (has to be erased before writing again)

� FTL uses a pool of free blocks to accommodate new writes before old
data is erased

� Different granularity of program (page) vs. erase (block, ≥ 32 pages)

� Flash wears out in time (limited number of writes/erasures)

� FTL distributes the number of writes/erasures evenly among physical
blocks

7

USB port USB port

Output (physical level):

addresses &

internal commands

Linux host Windows hostLogic analyzer

Input (logical level):

reads & writes

at specific addresses

application

(C language)

capture digital signal:

bus transactions

Reverse engineering of FTL

� Input (logical level): reads/writes issued from a Linux USB host at
specific logical addresses

� Output (physical level): internal commands and physical addresses
captured with a IO-3200 logic analyzer

8

send address

1 1 1

1

0

1

1

1

1

1

1

0

0
0
0

address

(block number):

001111101010 =

3EAh = 1002

Block 1002 was erased!

send command

1

0

0

1

1

0

0

0

0

command

code:

01100000 =

60h = erase

9

Specifics of experiments

� Investigated USB drives:

� Generic – 64MB, Hynix HY27US08121A

� House – 2GB, Intel 29F16G08CANC1

� Memorex – 512MB, Mini TravelDrive

� Writing pattern:

� Step 1. Write all logical blocks completely.

� Step 2. Overwrite some page.

10

Page update mechanism: Generic device

Page 30Update request:

Page 0, valid

Page 1, valid

Page 30, valid

Page 31, valid

Block A Block B

Page 0, valid

Page 1, valid

Page 30, valid

Page 31, valid

Page 30, invalid

Erased

(garbage collection)

Use a free block

to write data

… …

11

Successive updates: Generic device

Page 30
Update

request:

Page 0, valid

Page 1, valid

Page 2, valid

Page 31, valid

Block A Block B

Page 0, valid

Page 1, valid

Page 30, invalid

Page 31, valid

Page 30, invalid

Erased

(garbage collection)

Page 30
Update

request:

Erased

(garbage collection)

� For Generic, one page update triggers a block erasure!!
� Only the list of free blocks is used: worn out faster!!

Block C

Page 0, valid

Page 1, valid

Page 30, valid

Page 31, valid

…… …

12

Predicting lifespan: Generic device

� Internal algorithm:

� cycle through the list of free blocks

� erase one block at each page update

� Predicted lifespan =

� h = chip-level endurance

� m = number of free blocks

� Measured lifespan = 7.7 x 107

Device lifespan ≈ Chip-level endurance + FTL algorithm

Can we predict the lifespan of the device?

7
106×=×mh

13

More complex FTL: House device

Update

requests:

Page 0, valid

Page 62, valid

Page 1, valid

Page 63, valid

Block A

Block B

Page 62, invalid

Page 62

Block C

Page 62, valid

Page 62, valid

Page 62

Page 62

Merge all valid pages

in a new block

Use a free block to store

new data

Page 62, valid

Page 0, valid

Page 1, valid

Less frequent garbage collection: Can accommodate several updates

of a block into a single new block before erasing the old data

Erased

Erased

Page 62, invalid

Page 62, invalid

…

Page 62, valid

Page 63, valid

…

…

14

Predicting lifespan: House device

� Internal algorithm:

� cycle through the list of free blocks

� accommodate k pages per block, 1≤ k ≤ block size

� erase 2 blocks

� Predicted lifespan:

� Uncertainty in tracing k

� Measured lifespan: 1.06 x 108

Can we predict the lifespan of the device?

(*) Refinement of the bound in the paper.

(*)
[] []sizeblockkwith

mhk
_,1,106.9,105.1

2

87
∈××∈

××

� h = chip-level endurance,

� m = number of free blocks,

� k = number of pages written

per block before erasing

Device lifespan ≈ Chip-level endurance + FTL algorithm

15

Block ABlock BBlock A Block BBlock A

Even more complex FTL: Memorex device

Static wear-leveling: periodically swaps static blocks with

frequently updated blocks

Block B

Rarely changed
(static)

1. write static pages from A to B

2. B removed from free list

A added to free list List of free blocks

Frequently changed
(dynamic)

16

Predicting lifespan: Memorex device

� Internal algorithm:

� cycle through the entire zone

� accommodate up to a full block of pages before erasing

� Predicted lifespan =

� z = number of blocks per zone

� k = number of pages per block

� h = chip-level endurance

� Device did not break!

Can we predict the lifespan of the device?

10
105.6 ×=×× hkz

17

Outline

� Device lifespan : predictions & measurements

� Timing analysis : non-intrusive investigation

� Scheduling : storage optimization for flash devices

18

Timing analysis

� What can we figure out from timing analysis?

� Garbage collection frequency

� Writing patterns that trigger garbage collection

� If static wear-leveling is used, and how frequently

� If the device is approaching its end of life

In the
paper

Discussed
next

19

w − 50,000 w − 25,000 w = 106,612,284
0

50

100

200

300

Write count

T
im

e
 (

m
s
)

End-of-life signature: House device

� At 25,000 operations before the end, all operations slow
to 40 ms ≈ erasure at every write

Is the device approaching its end of life?

20

Outline

� Device lifespan : predictions & measurements

� Timing analysis : non-intrusive investigation

� Scheduling : storage optimization for flash devices

21

Latency problem: flash versus disk

� Latency:
� Disk: mechanical (seek delays)
� Flash devices: lack of free blocks (garbage collection delays)

� Solution: find an optimal scheduling to minimize latency
� Disk:

� Elevator algorithm: requests sorted by track number and serviced only in
the current direction of the arm movement

� Flash devices:
� Key observation:

� for writes issued to the same data block, FTL uses the same update
block

� for writes issued to different data blocks, FTL uses different update
blocks

� Solution:
� Reorder data streams to service requests to the same data block

consecutively

� Result:
� Use the free space compactly => reduce erasure frequency

� No need to reschedule reads!!

22

x

xxxx

xxx

x xx xxx x xx x x x

An example: scheduling vs. no scheduling

� Address rounded to: track number (disk); block number (flash)

� X = seek (disk); garbage collection (flash)

� R = read; W = write

� Flash: 2 free blocks

Disk
unscheduled:

R

70

R

50

W

70

W

50

R

70

R

50

W

70

W

50
35

Start track

Disk
scheduled:

Flash
unscheduled:

R

10

W

10

R

10

W

10

35
R

50

R

50

W

50

W

50

W

70

R

70

R

70

W

70

R

10

W

10

W

10

R

10

R

70

R

50

R

10

W

70

W

50

W

10

R

70

R

50

R

10

W

70

W

50

W

10

Flash
scheduled:

W

70

W

70

W

10

W

10

W

50

W

50

R

70

R

50

R

10

R

70

R

10

R

50

Time

Garbage collection overhead 4x smaller with scheduling vs. no scheduling!

23

Implications for storage systems

� Optimization of servicing requests:
� Reduce garbage collection and improve performance

� Internals of flash devices require a new scheduling paradigm

for flash

� We expect our results to apply to:

� Most removable devices (e.g. SD, CompactFlash, etc.) and low-
end SSDs with little free space and RAM

� Example: JMicron’s JMF602 flash controller, used for many low-
end SSDs: 8-16 flash chips, 16K RAM, 7% free space

24

Conclusions

� Lifespan of flash devices is a function of chip-level

endurance and internal algorithms

� Flash exhibits specific timing patterns towards end of life

� New scheduling algorithms designed specifically for
flash-based storage are necessary to extract maximum

performance

Questions?

Computer Science Department @ Northeastern University

