
Discovery of Application Workloads from Network File Traces

Neeraja J. Yadwadkar, Chiranjib Bhattacharyya, K. Gopinath
Department of Computer Science and Automation, Indian Institute of Science

Thirumale Niranjan, Sai Susarla
NetApp Advanced Technology Group

Abstract

An understanding of application I/O access patterns is
useful in several situations. First, gaining insight into what
applications are doing with their data at a semantic level
helps in designing efficient storage systems. Second, it helps
create benchmarks that mimic realistic application behav-
ior closely. Third, it enables autonomic systems as the infor-
mation obtained can be used to adapt the system in a closed
loop.

All these use cases require the ability to extract the
application-level semantics of I/O operations. Methods
such as modifying application code to associate I/O oper-
ations with semantic tags are intrusive. It is well known
that network file system traces are an important source of
information that can be obtained non-intrusively and ana-
lyzed either online or offline. These traces are a sequence
of primitive file system operations and their parameters.
Simple counting, statistical analysis or deterministic search
techniques are inadequate for discovering application-level
semantics in the general case, because of the inherent vari-
ation and noise in realistic traces.

In this paper, we describe a trace analysis methodology
based onProfile Hidden Markov Models. We show that
the methodology has powerful discriminatory capabilities
that enable it to recognize applications based on the pat-
terns in the traces, and to mark out regions in a long trace
that encapsulate sets of primitive operations that represent
higher-level application actions. It is robust enough thatit
can work around discrepancies between training and target
traces such as in length and interleaving with other opera-
tions. We demonstrate the feasibility of recognizing patterns
based on a small sampling of the trace, enabling faster trace
analysis. Preliminary experiments show that the method is
capable of learning accurate profile models on live traces
in an online setting. We present a detailed evaluation of this
methodology in a UNIX environment using NFS traces of
selected commonly used applications such as compilations
as well as on industrial strength benchmarks such as TPC-
C and Postmark, and discuss its capabilities and limitations
in the context of the use cases mentioned above.

1 Introduction

Enterprise systems require an understanding of the be-
havior of the applications that use their services. This
application-level knowledge is necessary for self-tuning,
planning or automated troubleshooting and management.
Unfortunately, there is no accepted mechanism for this
knowledge to flow from the application to the system. We
can neither impose upon application developers to give
hints, nor over-engineer network protocols to transport
more semantics. Therefore, we need mechanisms for sys-
tems tolearnwhat the application is doingautomatically.

Being able to identify the application-level workload has
significant benefits. If we can figure out that the client OLTP
(online transaction processing) application is doing ajoin,
we can tune the caching and prefetching suitably. If we can
discover that the client is executing thecompilephase of a
make, we can immediately know that it will be followed by
a link phase, that the output files generated will be accessed
very soon, and that the output files can be placed on less-
critical storage since they can be generated at will. If we
can spot that the client is executing acopyoperation, then
we can derive data provenance information usable by com-
pliance engines. If we can match the signature of a trace
with that of known malware or viruses, that can be use-
ful as well. We can employ offline workload identification
for auditing, forensics and chargeback. We can help stor-
age systems management by providing inputs to sizing and
planning tools.

In this paper, we tackle a specific instance of the prob-
lem – given the headers of an NFS [4] trace, to identify the
application-level workload that generated it. NFS clients
send messages to the server that contain opcodes such as
READ, WRITE, SETATTR, READDIR, etc., their associ-
ated parameters such as file handles and file offsets, and
data. An NFS trace contains a timestamped sequence of
these messages along with the responses sent by the server
to the client. These traces can be easily captured [12, 1]
for online or offline analysis, allowing us to develop a non-
invasive tool using the methodology described here. Fur-
thermore, the NFS trace contains all the interactions be-
tween the clients and the server. As all the necessary in-

1

formation is available, we can assert that any deficiency in
tackling our use cases is solely due to the sophistication of
the analysis methods.

However, given a trace captured at the server, it is non-
trivial to identify the client applications that generatedit.
First, there could be noise in the form of background com-
munication between the client and server. Second, mes-
sages could be interleaved with those from other applica-
tions on the same client machine. Third, the application’s
parameters may create variations in the trace. For instance,
traces of a single file copy and that of a recursive file copy
may look very different (see Tables 1 and 2), even though
it is the same application. Fourth, the asynchrony in multi-
threaded applications impact the ordering of messages in
the traces. Therefore, we believe that deterministic pat-
tern searching methods will not be able to unearth the fun-
damental patterns hidden in a trace. Methods originating
in the Machine Learning domain have shown considerable
promise in computational biology [16, 14] as well as in ini-
tial studies on trace analysis [19]. In this paper, we apply a
well-known technique calledProfile Hidden Markov Model
(profile HMM) [16, 14] to this problem, and demonstrate
its pattern-recognition capabilities with respect to our use
cases.

The key contributions of this paper are as follows:

Workload Identification We show that profile HMMs,
once trained, are capable of identifying the applica-
tion that generated the trace. Using commonly used
UNIX commands such asmake, cp, find, mv, tar, un-
tar, etc., as well as industry benchmarks such as TPC-
C, we show that we are able to cleanly distinguish the
traces that these commands generate.

Trace Annotation We show that our methodology is able
to identify transitions between workloads, and mark
workload-specific regions in a long trace sequence.

Trace Sampling We show that profile HMMs do not need
the entire trace to work on. With merely a 20% seg-
ment of the trace, sampled randomly, we are able
to discriminate between many workloads and identify
them with high confidence. This will enable us to per-
form faster analysis. Further, we show how to use this
ability to identify concurrently executing workloads.

Automated Learning We demonstrate a technique by
which the profile HMMs can be trained automatically
without manual labeling of workloads. We use the
technique to train and then subsequently identify con-
stituent workloads of a Linux kernel compilation task.

Power of Opcode SequencesWe show that opcode se-
quences alone contain sufficient information to tackle
many of the common use cases. Other information in

the traces such as file handles and offsets are not suf-
ficiently amenable to mathematical modeling, so this
result is valuable.

Since the technique we use requires training on data sets
followed by a recognition phase and also involves reason-
able amounts of computation, it is best suited for those
problems whose natural time constants are in the minutes or
hours range (such as in system management, for example,
detecting configuration errors). Algorithmic approaches,
widely used, are still the best if the time constants are much
smaller (such as in milliseconds or seconds).

The rest of the paper is organized as follows. Section 2
presents the current state of research in this area and places
our work in context. Section 3 describes the mathematics
behind our methodology, the workflow associated with it,
and describes how it is used to identify workloads and mark
out regions exhibiting known patterns in the trace. Sec-
tion 4 offers experimental validation of our techniques. Fi-
nally, Section 6 summarizes our conclusions and proposes
avenues for continuing this work.

2 Related Work

There is a rich body of work in which file system
traces have been analyzed to get aggregate information
about systems and to understand how storage is used over
time [2, 17, 24, 11]. Our work differs from this body of
work in that we focus on individual workloads running
on the system and attempt to discover them. Since prior
research efforts are oriented towards extracting gross be-
havior, counting-based tools suffice. The problem that we
tackle in this paper requires more powerful methods.

Traces are a good source of information as they contain
a complete picture of the inputs to a system and at the same
time are easy to capture in a non-invasive manner. Ellard
[10] makes a strong case that the information in NFS traces
can be used to enable system optimizations. HMMs gener-
ated from block traces have been used for adaptive prefetch-
ing [27]. Traces have been used for file classification [19].
In that work, the authors build a decision tree based sys-
tem that uses NFS traces to infer correlations between the
create-time properties of files such as their names and the
dynamic properties such as access patterns and size. In this
paper, we do not attempt to classify files and data but focus
more on the applications that access them.

The power of HMM as a tool to extract workload access
patterns is known [18]. Our work is significantly larger in
scope. While they restrict themselves to inferring the se-
quentiality of workloads using read and write headers in the
block traces, we use all the opcodes available in NFS head-
ers to discover the higher-level application that caused it.
The sequentiality of a workload can perhaps also be discov-
ered using our framework by including the file offsets as

2

part of the alphabet through an appropriate scheme of quan-
tization.

Magpie [3] diagnoses problems in distributed systems by
monitoring the communications between black-box com-
ponents, and applying an edit-distance based clustering
method to group similar workloads together. Somewhat
similar is Spectroscope [25], which uses clustering on re-
quest flow graphs constructed from traces to categorize and
learn about differences in system behavior. Intrusion detec-
tion is another area where various such techniques are used.
Warrender [29] surveys methods for intrusion detection us-
ing various data mining techniques including HMMs, on
system call traces.

Our work is different from all of the above in that it is not
only able to identify a higher-level workload, given a trace,
but also to be able to accurately mark out workload regions
in a composite trace.

3 Methodology

A key observation that motivates our approach to solv-
ing the problem is that NFS traces corresponding to a given
workload class exhibit significant variability, yet have a
characteristic signature. For instance, look at the four traces
depicting acp command, shown in Tables 1 and 2. The
fuzziness in the repeating subsequences in the trace ofcp *
dir/ andcp -r dir1 dir make us look at probabilistic meth-
ods.

An HMM is appropriate for probabilistic modeling of
sequences, and has been used in similar settings in the
past [14]. However, in our case, the sequences of the same
workload show additions, deletions and mutations between
them that are not easily modeled by an HMM. Acp foo bar
differs fromcp foo dir/ – the latter has an extralookupoper-
ation, as seen in Table 2. Our method should have the power
to ignore this extra operation since that operation must not
be used for discrimination. A variant of the HMM called
the profile HMM [8] offers exactly this ability, vianon-
emitting (or delete) states. Therefore, we conjecture that
profile HMM will be a good method to use for classifying
NFS traces. In the rest of this section, we first outline the
theory behind the profile HMM and then describe the work-
flow of our workload identification methodology.

3.1 Profile HMMs for Modeling Opcode Traces

It is well known and empirically verified, e.g., Table 1,
that opcode traces of the same command are often very sim-
ilar but not exactly the same. It is also known that traces cor-
responding to different commands are dissimilar. These ob-
servations motivate the development of mathematical mod-
els that are capable of discovering a command/workload by
merely looking at the trace it generates (e.g., opcode se-

cp * dir/
GETATTR Call, FH:0x0eb18814
READDIRPLUS Call, FH:0x0eb18814
READDIRPLUS Reply (Call In 9) ...
LOOKUP Call, DH:0xe003db8b/tqslwiz.h
LOOKUP Reply Error:NFS3ERR_NOENT
GETATTR Call, FH:0x21b1a714
ACCESS Call, FH:0x21b1a714
CREATE Call, DH:0xe003db8b/tqslwiz.h
SETATTR Call, FH:0x6bd9e67c
GETACL Call
GETATTR Call, FH:0x6bd9e67c
READ Call, FH:0x21b1a714 ...
WRITE Call, FH:0x6bd9e67c ...
COMMIT Call, FH:0x6bd9e67c
GETATTR Call, FH:0xe003db8b
LOOKUP Call, DH:0xe003db8b/TrustedQSL.spec
LOOKUP Reply Error:NFS3ERR_NOENT
GETATTR Call, FH:0x2fb1a914
ACCESS Call, FH:0x2fb1a914
CREATE Call, DH:0xe003db8b/TrustedQSL.spec
SETATTR Call, FH:0x65d9e87c
GETATTR Call, FH:0x65d9e87c
READ Call, FH:0x2fb1a914 ...
WRITE Call, FH:0x65d9e87c ...
COMMIT Call, FH:0x65d9e87c
LOOKUP Call,
DH:0xe003db8b/TrustedQSL.spec.in
LOOKUP Reply Error:NFS3ERR_NOENT
GETATTR Call, FH:0x23b1a514
ACCESS Call, FH:0x23b1a514
CREATE Call,
DH:0xe003db8b/TrustedQSL.spec.in
SETATTR Call, FH:0x67d9ea7c
GETATTR Call, FH:0x67d9ea7c
READ Call, FH:0x23b1a514 ...
WRITE Call, FH:0x67d9ea7c ...

COMMIT Call, FH:0x67d9ea7c

cp -r dir1 dir
ACCESS Call, FH:0xc5914d40
LOOKUP Call, DH:0xc5914d40/dir
LOOKUP Reply Error:NFS3ERR_NOENT
MKDIR Call, DH:0xc5914d40/dir
GETATTR Call, FH:0xc5914d40
GETACL Call
ACCESS Call, FH:0xc5914d40
LOOKUP Call, DH:0xc5914d40/dir
LOOKUP Reply, FH:0x3fb1b914
GETATTR Call, FH:0x0eb18814
ACCESS Call, FH:0x0eb18814
READDIRPLUS Call, FH:0x0eb18814
READDIRPLUS Reply . ..
ACCESS Call, FH:0x3fb1b914
MKDIR Call, DH:0x3fb1b914/hh
GETATTR Call, FH:0x3fb1b914
GETACL Call
GETATTR Call, FH:0x3fb1b914
GETATTR Call, FH:0x36b1b014
ACCESS Call, FH:0x36b1b014
READDIRPLUS Call, FH:0x36b1b014
READDIRPLUS Reply . ..
GETATTR Call, FH:0x39b1bf14
ACCESS Call, FH:0x39b1bf14
ACCESS Call, FH:0x3db1bb14
CREATE Call, DH:0x3db1bb14/contacts.csv
SETATTR Call, FH:0x33b1b514
GETACL Call
GETATTR Call, FH:0x33b1b514
READ Call, FH:0x39b1bf14 ...
WRITE Call, FH:0x33b1b514 ...
COMMIT Call, FH:0x33b1b514
GETATTR Call, FH:0x21b1a714
ACCESS Call, FH:0x21b1a714
CREATE Call, DH:0x3fb1b914/tqslwiz.h
SETATTR Call, FH:0x35b1b314
GETATTR Call, FH:0x35b1b314
READ Call, FH:0x21b1a714 ...
WRITE Call, FH:0x35b1b314 ...

COMMIT Call, FH:0x35b1b314

Table 1. Two cp NFS trace headers. The first one copies 3 files into

a directory, while the second one is a recursive copy. These traces illus-

trate that workloads repeat some elements of the trace, with one region be-

ing underlined. However, the repetition of symbols is not strict and cannot

be captured by a finite state automata model. There is sufficient variability

that warrants a fuzzy or probabilistic pattern recognition algorithm such as

an HMM. Figure shows only the client→server requests, not the responses.

The sole exception is that of responses to LOOKUP since they will help the

reader understand the traces.

cp contacts.csv con.csv
ACCESS Call, FH:0xe003db8b
LOOKUP Call, DH:0xe003db8b/con.csv
LOOKUP Reply Error:NFS3ERR_NOENT
LOOKUP Call,
DH:0xe003db8b/contacts.csv
LOOKUP Reply, FH:0x71d9fc7c
GETATTR Call, FH:0x71d9fc7c
ACCESS Call, FH:0x71d9fc7c
CREATE Call, DH:0xe003db8b/con.csv
SETATTR Call, FH:0x58d9d57c
GETACL Call
GETATTR Call, FH:0x58d9d57c
READ Call, FH:0x71d9fc7c ...
WRITE Call, FH:0x58d9d57c ...

COMMIT Call, FH:0x58d9d57c

cp contacts.csv dir/con.csv
LOOKUP Call, DH:0xe003db8b/dir
LOOKUP Reply, FH:0x0eb18814
ACCESS Call, FH:0x0eb18814
LOOKUP Call, DH:0x0eb18814/con.csv
LOOKUP Reply Error:NFS3ERR_NOENT
LOOKUP Call,
DH:0xe003db8b/contacts.csv
LOOKUP Reply, FH:0x71d9fc7c
GETATTR Call, FH:0x71d9fc7c
ACCESS Call, FH:0x71d9fc7c
CREATE Call, DH:0x0eb18814/con.csv
SETATTR Call, FH:0x14b19214
GETACL Call
GETATTR Call, FH:0x14b19214
READ Call, FH:0x71d9fc7c ...
WRITE Call, FH:0x14b19214 ...

COMMIT Call, FH:0x14b19214

Table 2. Two cp NFS trace headers. The second one differs from the

first in an extra LOOKUP operation (underlined), showing the need for a

methodology that can suppress or ignore certain elements in traces. Profile

HMM is one such candidate. Figure shows only the client→server requests,

not the responses. The sole exception is that of responses to LOOKUP since

they will help the reader understand the traces.

3

quence), and checking for its similarity with prior traces
of the same command with various arguments. The prob-
lem of constructing such models is complicated as there is
no unique trace for every command. Similar issues arise in
many other areas, notable among them being computational
biology. The study of designing efficient sequence match-
ing algorithms has received a significant impetus from com-
putational biology where one needs to align a family of
many closely related sequences (typically genetic or protein
sequences). These sequences diverge due to chance muta-
tions at certain points in the sequence while, at the same
time, conserving critical parts of the sequence.

The similarity of two symbol sequences can be measured
via the number of mutations needed to make them identical,
also called theedit distance. Hence, to measure the similar-
ity of a sequence to a set of sequences, one could first align
them to be of the same length by adding, deleting or re-
placing the minimal number of symbols, and then use the
smallest edit distance.

As of today there are quite a few techniques for se-
quence matching, ranging from deterministic [13] to prob-
abilistic approaches [6]. Deterministic approaches are
based on dynamic programming, which often leads to al-
gorithms that have prohibitively high time complexity for
large symbol sequences:O(Nr) to match with r sequences,
each of length N. Probabilistic approaches such as Profile
HMMs [6] have emerged as faster alternatives to determin-
istic methods and have been proven to be very effective
for computational biology problems. The key observation
behind our work is that trace-based workload identifica-
tion and annotation maps well to the sequence-matching
problem in computational biology, and hence can benefit
from similar techniques. Profile HMMs are special Hidden
Markov models (HMMs) developed for modeling sequence
similarity occurring in biological sequences. Next, we pro-
vide a high-level intuitive understanding of HMMs, profile
HMMs and their use for sequence matching.

An HMM [23] is a statistical tool that captures certain
properties of one or more sequences of observable sym-
bols (such as NFS opcodes) by constructing a probabilis-
tic finite state machine with artificial hidden states respon-
sible for emitting those sequences. During training, the
state machine’s graph and its state transition probabilities
are computed to best produce the training sequences. Later,
the HMM can be used to evaluate whether a new unseen
“test” sequence is “of the same kind” as the training data,
with a score to quantify confidence in the match. The test
sequence gets a higher score if the HMM has to traverse
higher-probability edges in its state machine to produce that
sequence. Thus, the HMM’s state machine encodes the
commonality among various opcode sequences of a given
application workload by boosting the probabilities of the
corresponding state transitions. It identifies a new work-

load by measuring how well its opcode sequence makes the
HMM to make high-frequency transitions.

A profile HMM is a special type of HMM with states and
a left-to-right state transition diagram specifically designed,
as explained in Section 3.4.2, to efficiently remember sym-
bol matches as well as tolerate chance mutations (i.e., in-
serts and deletes) in observed symbol sequences. Unlike a
fully connected state graph of a traditional HMM, the pro-
file HMM’s left-to-right transition graph enables very fast
O(N) matching of a test sequence against known workload
patterns.

In this paper, we consider two specific problems where
existing sequence-matching techniques are applicable:

• Workload identification: we are told that samples are
only from one workload but not told which one. Can
we say which workload it is from?

• Annotation: we are told that distinct workloads ran se-
quentially one after another. Can we mark the bound-
aries when the workloads were switched?

In the following sections, we provide a more formal de-
scription of the HMM construct, including the concept of
sequence alignment and how it is central to do approximate
matching of large symbol sequences like opcode traces.

3.2 A Brief Review of HMMs

An HMM is defined by an alphabetΣ, a set of hidden
states denoted byZ, a matrix of state transition probabili-
tiesA, a matrix of emission probabilitiesE, and an initial
state distributionπ. The matrixA is |Z| × |Z| with individ-
ual entriesAuv, which denotes the probability of transiting
to statev from u. The matrixE (|Z| × |Σ|) contains entries
Eut, which denotes the probability of emitting a symbol
t ∈ Σ while in hidden stateu. Let λ be the model’s param-
eters; these depend onΣ, Z,A,E andπ and hence written
asλ = (Σ, Z,A,E, π). If we see a sequenceX, an HMM
can assign a probability to it as follows (assuming a model
λ):

P (X|λ) =
∑

z

∏

k

Azk,zk+1
Ezk,Xk

The (inner) product terms arise from the probabilities of
transition from one state (zk) to another state (zk+1) in the
sequence of states under consideration whereas the (outer)
sum of terms arises from having to sum all the possible
ways of emitting the sequenceX through all possible se-
quence of states. There is an iterative procedure based on
expectation maximization algorithms for determining the
parametersλ from a training set [23]. Popularity of HMMs
stems from the fact that there are efficient procedures such
as (a) Viterbi algorithm[23]) to compute the most proba-
ble stateZ given a sequenceX, i.e. computeZ to max-
imize P (Z|X) (b) forward and backward procedures[23]

4

to compute the likelihood,P (X) and(c) Expectation Maxi-
mization procedures[23] to learn the parameters,(A,E, π)
given a dataset of independent and identically distributed
sequences.

3.3 Problem Definition

At this point we can state the problem more formally as
follows. Let{S1, S2, . . . , Sr} be a set of traces obtained by
executingr times a particular workload, sayW . The traces
are different as they are obtained by executing the workload
with different parameters; they may also be different due to
some stochastic events in the system. Thejth symbolsij

of the sequenceSi is generated from the alphabetΣ of all
possible opcodes. Let the sequenceSi be of lengthni, i.e
the indexj varies from1 to ni. We consider the task of
constructing a model on theser sequences such that when
presented with a previously unseen sequence,X, the model
can infer whetherX was generated by executing workload
W .

3.4 Profile HMMs for identifying workloads

We will begin by recalling a few definitions related to se-
quence alignment. We will then discuss profiles and Profile
HMMs, finally ending with a scheme for classifying work-
loads using them.
3.4.1 On Aligning Multiple Sequences

Let Si = si1si2 . . . sini
(i = 1, 2) be two sequences of

different lengthsn1 andn2 generated from an alphabetΣ.
An alignmentof these two sequences is defined as a pair
of new equal length sequencesS∗

i = s∗i1 . . . s∗in (i = 1, 2)
obtained fromS1(S2) by inserting “−” states inS1(S2) to
record differences in the two sequences. Letn be the length
of S∗

1 (which is also that ofS∗

2) with (n1 + n2) ≥ n ≥
max(n1, n2). We will call s1k ands2l asmatched if for
somej , s∗1j = s1k, s∗2j = s2l. On the other hand ifs∗1j =
“−”,s∗2j = s2m then we will say that there is adeletestate
in S1 andinsertstate inS2.

Theglobal alignment problem is posed as that of com-
puting two equal length sequencesS∗

1 andS∗

2 such that the
matches are maximized and insertions/deletions are mini-
mized. This problem can be precisely formulated for suit-
ably defined score functions and solved by dynamic pro-
gramming based algorithms [20]. Global alignment is a
good indicator of how similar two sequences are.

The problem oflocal alignment tries to locate two sub-
sequences one from each string such that they are very sim-
ilar. This problem can be formulated as that of finding two
subsequences which are maximally aligned in the global
sense for a suitably defined score function. It also admits
a dynamic programming based algorithm [26] and can be
solved exactly.

However both global and local alignment are defined for
a pair of sequences. As mentioned before, our interest is in
inferring similarities in more than two sequences. This will
require the notion of multiple alignment, which generalizes
the notion of alignment to more than two sequences.Mul-
tiple alignment is defined as the setS = {S∗

1 , S∗

2 , . . . , S∗

r}
where, as before,S∗

i is obtained fromSi by inserting “−”
states so that the length of all the resultingr sequences are
equal, sayn. Multiple alignment can be visualized as a
r × n matrix where each row consists of a specific string
and each column corresponds to specific position in the
alignment. Each matrix entry can take values inΣ ∪ “−”.
Multiple alignments are useful in detecting similar subse-
quences which remain conserved in sequences originating
from the same family. Thus multiple alignment can decide
the membership of a given new sequence with respect to
a family represented by the multiple alignment. Figure 1
shows an alignment of ten traces of opcodes generated by
anedit workload. Each symbol in the alignment represents
a particular opcode. The alignment shows regions of high
conservation where more than half of the symbols in the col-
umn are present. These conserved regions capture the simi-
larity between the traces of this workload. When identifying
a previously unseen trace generated by the same workload,
it would be desirable to concentrate on checking that these
more conserved columns are present.

One can extend the dynamic programming based solu-
tions for the pairwise case to the problem at hand. Un-
fortunately they are prohibitively expensive,O(nr) in both
time and space [13], and are not very practical for detect-
ing large file operation sequences (100s to 1000s) typical in
networked storage workloads.
3.4.2 Introduction to Profile HMMs

A profile is said to be a representation of a multiple align-
ment (such as that of multiple proteins that are closely re-
lated and belong to the same family). One can attribute
the slight differences between family members to chance
mutations, whose underlying probability distribution is not
known. It has been empirically observed that HMMs are
extremely useful in building profiles from biological se-
quences [6].

Profile HMMs: For modeling alignments, a natural
choice for hidden states correspond to Insertions, Deletions
and Matchings. In a Profile HMM, each insert stateIi and
match stateMi has a nonzero emission probability of emit-
ting a symbol, whereas the delete stateDi does not emit a
symbol. The non-emitting states make Profile HMMs dif-
ferent from traditional HMMs. From an insert state, it is
possible to move to the next delete state, continue in the
same insert state or go to the next match state (Figure 2).
Each diamond, circle, and square represents insert, delete
and match states respectively. From each insert, delete or
match state, the possible state transitions are as follows:

5

Figure 1. An example of multiple alignment of ten NFSv3 traces generated by anedit workload using the wireshark [5] tool. Here, G is getattr, S setattr, L lookup,

R read, W write, A access, D readdirplus, C create, M commit, V remove, etc. Aligned columns areannotated at the bottom by a ’+’ if the opcodes in those columns are

highly conserved. These columns will be modeled as match states in the profileHMM.

Ii → Di+1, Ii, Mi+1,

Di → Di+1, Ii, Mi+1,

Mi → Di+1, Ii, Mi+1.
Profile HMMs are essentiallyLeft-Right HMMs (Fig-

ure 2). Unlike fully connected state machines, Left-Right
HMMs have a more sparse transition matrix and are of-
ten upper triangular. Inference on such machines is much
quicker and hence often preferred in many applications such
as speech processing [23].

Figure 2. The transition structure of a profile HMM [8]. For example,

from an insert state (diamond), we can go to the next delete state (circle),

continue in the insert state (self loop) or go to the next match state (rectangle).

Note that while multiple sequential deletions are possible by following the

circle states, each with a different probability, multiple sequential insertions

are only possible with the same probability.

It is straightforward to adapt the traditional HMM algo-
rithms such as Viterbi algorithm, Forward-Backward pro-
cedure and Expectation Maximization based learning pro-
cedure [23] to profile HMMs [6, 8].

These models provide flexibility in modeling closely re-
lated sequences by the choice of more complex score func-
tions. This has made profile HMMs extremely popular for
comparing biological sequences.

Learning a Profile HMM from data: The parameters of
profile HMMs are the emission probabilities and the state
transition probabilities. This is easy to compute if one
knows the multiple alignment. In such a case, the state tran-
sition probabilities are given byauv = ANuv∑

v
ANuv

and the

emission probabilities are given byeut = ENut∑
t

ENut

where

ANuv denotes the number of transitions from the stateu to
v andENut denotes the number of emissions oft given a
stateu(see [6]).
3.4.3 Profile HMM for identifying workloads

Let us now revisit the problem as defined in subsection
3.3. Assume that we have pretrained many Profile HMMs,
each for a workload. Now consider the problem of identify-
ing the underlying workload when a new trace is presented.
Using Profile HMMs one can consider solving such a prob-
lem by the decision rule

y(X) = argmaxkP (X|λk)

whereX is the unseen sequence,λk denotes the model for
the kth workload andy(X) is prediction for the underly-
ing workload which generated the sequenceX. Using the
forward-backward procedure we can compute this decision
rule easily. This can be understood as globally aligning the
profile with the unseen sequence. Though there is no con-
fidence measure with respect to prediction, the input is re-
jected (no prediction is made) if a confidence threshold is
not crossed.

Now consider the problem of annotating a huge trace of
opcodes generated by sequentially running workloads. As
before assume that we have pretrained models of individual
workloads. This would be equivalent to computing a local
alignment of each profile with the bigger trace.

It is thus clear that the Profile HMM architecture chosen
should be versatile enough to solve such problems. The
architecture shown in Figure 2 will require some tweaking
or the inference mechanism needs to be modified for such
problems.

A Specific Implementation for Profile HMMs: For our
work here, we have used the open source HMMER [7] im-
plementation of a profile HMM whose architecture (Figure

6

Figure 3. Architecture of HMMER [7]. Squares represent match states
w.r.t. an alignment, diamonds are insert and ignored emitting states (N,J,C),
circles are delete and special begin/end states (B,E,S,T). Note that there are
no D to I or I to D transitions in HMMER.

3) allows flexibility in deciding between global and local
alignments by adjusting the parameters of self-transitions
involving nodesN (at the beginning),C (at the end), and
J (in between). These self-transitions model the unaligned
(or “ignored”) part of the sequences. The set of states with
their abbreviations are as follows:

Mx Match statex, emitter.
Dx Delete statex, non-emitter.
Ix Insert statex, emitter.
S Start state, non-emitter.
T Terminal State, non-emitter.
N N-terminal unaligned sequence state

in the beginning of a sequence, emitter.
B Begin state (for entering main model),

non-emitter.
E End state (for exiting main model),

non-emitter.
C C-terminal unaligned sequence state

at the end of a sequence, emitter.
J Joining segment unaligned sequence state,

emitter

If the loop probability modeling the transition between
N → N is set to0, all alignments are constrained to start
at the beginning of the model. If the probability of transi-
tion fromC → C is set to0, all alignments are constrained
to end at the last node of the model. SettingE → J to 0
forces a global alignment. If it is not set to0, the model
can start at any point in a larger sequence and end some
distance away for effecting local alignments. This option
can be used for the sequence annotation task mentioned be-
fore by aligning the model locally against a large sequence.
Furthermore, the transitionJ → J can be used to control
the gap between local alignments. One can do the reverse,
i.e., globally aligning a smaller sequence to a part of the
model, by controlling the transitions betweenB → M and
M → E. HMMER is an extremely versatile and power-
ful sequence alignment tool. It can thus be very useful in
locating sequences of opcodes from traces.

To learn the parameters of the model, it may be useful
to use a small set of multiply aligned sequences. We have
used an open source implementation of multiple alignment
provided in [9] for this purpose.

3.5 Workload Identification Workflow: An
Overview

In this section, we give an overview of our methodology
using profile HMMs. Figure 4 gives the workflow for build-
ing a profile HMM model of a given workload. We need
to supply one or more opcode sequences corresponding to
traces of different runs of an application workload. These
opcode sequences need to be encoded into a limited-sized
alphabet that the HMM model works with. This is done
by the alphabetizer module. The encoded sequences pass
through a multiple alignment module (explained in Sec-
tion 3.4.1), which creates a canonical aligned sequence for
training. We use an open-source tool called Muscle [9] for
this purpose. We then use HMMER [7] to generate a pro-
file HMM model of the workload based on the aligned se-
quences.

To annotate the occurrences of a set of trained work-
loads in an arbitrary NFS trace, we extract the NFS opcode
sequence from the trace, alphabetize it and pass it to the
HMMER’s pattern search tool calledhmmpfamalong with
the profile HMM models of the workloads that we want to
identify within the trace. The tool outputs the indices of
the subsequences that it matched with various workloads
along with a fractional score (in the range 0 to 1) indicat-
ing its confidence in the match relative to other workloads.
We have written a script to post-process this output to pro-
duce the final annotation of the test sequence. The post-
processing phase involves the following steps:

1. Merge two contiguous matches of the same workload.

2. Remove the matching subsequence with very low
score (less than 0.1 percent of the average score for
the matching subsequences of the same workload).

3. Again, merge any two new contiguous matching sub-
sequences of the same workload.

4. If more than two workloads are reported for the same
region, report the workload with a higher score.

4 Evaluation

In this section, we illustrate the capabilities of our profile
HMM based methodology including its ability to identify
and mark out the positions of high-level operations in an
unknown network file system trace as well as its ability to
isolate multiple workloads running concurrently. We also
evaluate the training and pattern recognition performance
of the methodology via micro-benchmarks.

7

Figure 4. Profile HMM Training and usage workflow. Given a set of opcode traces of a given workloadw with various parameters, this workflow produces a profile

HMM model in the filew.hmm. Muscle and HMMER are existing open source tools, whereas the alphabetizer and post processor are modules that we developed. The

bottom flow represents trace identification, where we input the workload modelsdeveloped by the training workflow above into the HMMER search engine.

4.1 Experimental Setup and Training Method

For our evaluation, we choose several popular UNIX
commands and user operations on files and directories as
our application workloads:tar, untar, make, edit, copy,
move, grep, find, compile. The UNIX commands access
subsets of 14361 files and 1529 directories up to 7 levels
deep stored on a Linux NFSv3 server from one or more
Linux NFSv3 clients. For a more realistic evaluation, we
also incorporated TPC-C [22] workloads. TPC-C is an
OLTP benchmark portraying the activities of a wholesale
supplier, where a population of terminal operators executes
transactions against a warehouse database. Our TPC-C con-
figuration used 1 to 5 warehouses with 1 to 5 database
clients per warehouse. The database had 100,000 items.

The NFS clients are located on the same 1 Gbps LAN
with NFS client-side caching enabled. The caching effects
across multiple experiments were eliminated by mounting
and unmounting the file system between each experiment.
We capture the NFS packet trace at the NFS server ma-
chine’s network interface using the Wireshark tool [5], and
filter out the data portion of the NFS operations. For all ex-
periments in this paper, we only use the opcode information
in the NFS trace. Hence, we use the termtrace in the rest
of this section to refer only to the opcode sequences.

We build profile HMMs for each of the UNIX commands
as follows. First, we run the UNIX command many times
with different parameters and capture their traces. The num-
ber of captured traces for each command along with their
average length in opcodes, is shown in Table 3. Next, we

build the profile HMM for the command with increasing
numbers of randomly selected traces as outlined in Figure 4,
each time cross-validating its recognition quality by testing
with the remaining traces. We stop when the improvement
in the model quality metric diminishes below a threshold.
We found that ten traces of each command were sufficient.
We call those sequences as ourtraining sequences, and the
rest astest sequences.

4.2 Workload Identification

Our first experiment evaluates how well profile HMM
can identify pure application-level workloads based on past
training. We feed the test sequences to the trained profile
HMM for identification. Table 3 shows the results in the
form of a “confusion” matrix. Each row of the matrix indi-
cates a test command and each column under the “models”
umbrella indicates a command for which profile HMM got
trained. Each cell indicates how well the profile HMM la-
beled the sequence as the given command, the ideal being
100%. Commands were recognized correctly much of the
time with a few exceptions.

For instance, about 9% of thecopyworkloads are mis-
labeled asedit workloads. These were primarily single file
copies and they share similarities withedit workloads that
we trained with; they both exhibit an even mix of reads and
writes. Copies of multiple files or recursive copies were
not confused withedit workloads. The results also show
that 11.3% ofgrepworkloads are getting mis-labeled astar
workloads. Upon close inspection, we discovered that many

8

Trace Models

Command make find grep tar untar copy move edit tpcc

make 91.7 1.2 1.2 2.4 3.6

find 91.8 2.1 3.1 1 2.1

grep 1 72 22 5

tar 100

untar 1.2 98.8

copy 1 1 6 82 1 9

move 5.6 0.8 0.8 2.4 89.6 0.8

edit 100

tpcc 100

Table 3. Recognizing a single workload using the profile HMM on a test opcode sequence. Confusion matrix gives entries indicating the percentage of instances

recognized correctly; the rows add up to 100%. The profile HMM recognized most commands correctly.

of the single-filegrep commands (“grep foo bar.c”) were
being identified astar’s. The combined multiple alignment
model shows that the initial subsequence oftar, where a sin-
gle file is being read from beginning to end, is very much
like that of a single-filegrep. That could have led to the pro-
file HMM making an error. The diversity of the training set
is critical. For instance, when we manually picked thegrep
training traces to have diverse command traces, we could
improve the accuracy from 72% to 85%.

Consider another example:find andtar need to traverse
a directory hierarchy in its entirety, except that in our case,
tar additionally reads the file contents and writes the tar file.
This distinction was enough for profile HMM to success-
fully distinguishfind from tar in 100% of the cases. Over-
all, our methodology is able to distinguish workloads well
based on small differences in their trace patterns.

An interesting result here is that thetpccworkload was
identified correctly 100% of the time. The intuition behind
this result is that, a complex workload contains unique pat-
terns in its traces that can be accurately recognized. A sim-
ple workload may not have a strong signature in its traces,
leading the profile HMM to mis-identify it occasionally.

Discrimination between TPC-C and Postmark: We
also wanted to see how two large applications can be ac-
curately distinguished using the NFS traces; we selected
TPC-C and Postmark for this experiment. Postmark [15]
is a synthetic benchmark that has been designed to create
a large pool of continually changing files and measure the
transaction rates for a workload approximating a large In-
ternet electronic mail server.

Postmark traces were generated by running the bench-
mark 60 times with varying parameters. The file sizes were
varied between 10000 bytes and 300000 bytes, the frac-
tion of creations vs. deletions was varied between 10% and
100%, and the fraction of reads vs. appends was varied
between 10% and 100%. Out of this set of traces, 10 were
randomly picked for training, and 50 traces for testing. Sim-
ilarly, 20 traces of previously unknown TPC-C workload

TPC-C Postmark

TPC-C 100% 0%
Postmark 0% 100%

Table 4. Workload identification accuracy with TPC-C and Postmark

loads.

were attempted after training with 4 traces. The TPC-C
traces were from the previous experiment. The results of
the workload identification are given in Table 4.

In both cases, there were no misclassifications. This ex-
periment shows the capability of profile HMMs in discrim-
inating between two complex and large workloads.

4.3 Trace Annotation

Our next experiment evaluates how profile HMM can
mark out the NFS operations constituting various com-
mands in a long but not earlier seen NFS packet trace. It
tells us how accurately it can detect the start and end of
commands just by observing the NFS operations. We run
sequences of commands to simulate a variety of common
user-level activities, collect their NFS opcode traces and
query the profile HMM to identify the commands and their
positions in each trace, as outlined in Figure 4. We then
compare them with the known correct positions. Profile
HMM is able to detect the boundaries of a command’s op-
code sequence to within a few opcodes in many cases.

Figure 5 shows the trace annotation diagram with both
the detected and actual command boundaries for a com-
mand sequence<untar;make;edit;make;tar>that attempts
to simulate the process of downloading the HMMER source
package, compiling it, modifying it, compiling it again, and
then tar’ing up the resulting package. The bottom-most
bar in the figure shows the actual command boundaries,
while the other bars show the annotation made by the pro-
file HMM. We see that the quality of annotation is high. The
NFS operations corresponding to theuntar, the twomake’s

9

Figure 5. Visualization of the annotated trace for a sequence of user

commands: <untar; make; edit;make; tar>. The bottom-most bar in the fig-

ure shows the actual sequence in the trace, while the other bars above show

the annotation by the profile HMM. The vertical lines indicate workload tran-

sition boundaries. The visualizations in this figure show that the annotation

is reasonably accurate.makeis a harder command to classify because it in-

vokes other commands.

andtar commands are accurately marked.

Figure 6. Overall Trace Annotation Accuracy for a random sequence

of UNIX commands.

We then ran a comprehensive experiment, so that our re-
sults can be more statistically significant. We generated 100
traces, where each trace contained a run from a sequence of
100 commands, each picked randomly from our available
pool of commands. We analyzed the traces using profile
HMM, and annotated each opcode with its identified com-
mand. The results are presented in Figure 6. The annotation
accuracy is a measure of how much of the trace is marked
correctly with respect to start and end of the traces (and un-
related to confusion matrix entries computed for workload
identification). 86% of the opcodes were annotated cor-
rectly; 10% of them were marked as belonging to a wrong
command; and, 4% were identified as not belonging to any
of our commands. Figure 7 shows the results broken down
on a per-workload basis. Here we notice that opcodes be-
longing togrepandmovewere often incorrectly annotated.
Both these workloads perform poorly in the sampling ex-
periments above as well, implying that their characteristic
patterns are not very unique.

In summary, profile HMMs are able to make use of
subtle differences in workload traces to accurately iden-
tify transitions among workloads and annotate opcodes with
the higher-level operations that they represent. The minor
discrepancies observed were likely caused by not having

Figure 7. Trace Annotation Accuracy on a per-command basis. Note

that it is lower than that for identification as the starting and ending of the

traces have also to be marked correctly.

enough diversity in the selected training traces. Note that
for single workload identification described in 4.2, manu-
ally picking thegrep training traces to have diverse com-
mand traces resulted in accuracy improvement from 72% to
85%. Further work is needed to figure out how to select
traces for improved discrimination.

4.4 Trace Processing Rate

Next, we measure the rate at which the profile HMMs
can process (identify or annotate) a trace by applying it on a
trace of length 50000 opcodes. Such a trace is constructed
randomly using traces in our test sequence set. For identi-
fication, each model in turn reports how many instances of
its family are present in the whole trace as well as a score
that indicates how well it matches with its training set. For
annotation, each model marks out its portion in the trace
and a post-processing procedure decides which workload is
assigned to a segment of the trace (based on a score).

Profile HMMs are not particularly fast – they processed
the trace at a rate of 356 opcodes per second on a Intel
Quad-Core CPU at 2.66 GHz and 3 GB of memory run-
ning Ubuntu Linux, kernel version 2.6.28. We then isolated
each model and measured their performance individually
on the same trace. The results are shown in the “process-
ing rate” column of Table 5. We find that the models differ
markedly in their speed (makeandtpccbeing the slowest).
We see a strong inverse correlation between the speed of the
model and the maximum sequence length of the training
traces. This is understandable: shorter training sequences
will likely build a profile HMM with fewer states and tran-
sitions. One could speed up the models by choosing shorter
traces for training, provided they do not jeopardize the iden-
tification accuracy. This is a tradeoff worth exploring in the
future.

10

Trace # Test Trace Length Processing rate

Command Traces min. mean max (opcodes/sec)

make 84 23 2653 32175 2971

find 98 33 10683 66093 135893

grep 100 19 4784 24024 121701

tar 98 67 1255 19578 49430

untar 81 85 2082 28013 24680

copy 100 35 8665 97789 21408

move 125 9 26 39 667714

edit 127 657 670 687 22177

tpcc 24 1289 12665 61430 565

Table 5. Trace processing rates. Since each model has different number

of states in its profile HMM, the processing rates differ.

Figure 8. Sensitivity of profile HMM to the length of the trace sam-

ple analyzed for various commands when sample picked randomly from the

whole trace. Y-axis indicates the percent of runs (out of hundred runs) where

the command was correctly recognized.

4.5 Identification of Randomly Sampled Partial
Traces

In a real system, we will not have the entire trace of a
single command or a neatly ordered sequential set of com-
mands to analyze. They will typically be interleaved be-
cause of concurrent execution. Therefore, we must be able
to detect an application operation just by observing a snip-
pet of a command’s trace. Further, for online behavior de-
tection and adaptation, we should be able to quickly detect
an application operation, which implies that we should need
to analyze small amounts of traces to identify workloads.

Our next experiment evaluates how much of a randomly
sampled NFS trace the profile HMM methodology needs to
be able to correctly recognize a high-level operation. For
this experiment, we feed the profile HMM with contiguous
substrings of the pure test sequences — of various lengths
and at random locations in the full sequence — and mea-
sure how often it detects the command correctly. Figure 8
contains plots of profile HMM’s sensitivity to trace snippet
size for various high-level commands. As the graphs indi-
cate, profile HMM is able to recognize most workloads with

Figure 9. Sensitivity of profile HMM’s accuracy to the length of the

trace prefix analyzed for various commands. The Y-axis indicates the percent

of runs (out of hundred runs) where the command was correctly recognized.

80% accuracy by examining a small fraction of the trace.
The movecommand generates a small trace to begin with.
Therefore, the profile HMM requires a large fraction of its
trace to be examined to correctly identify it.

The characteristic patterns of a workload may be concen-
trated at some locations for certain commands, while they
may be distributed better for other commands. Having char-
acteristic patterns at various locations in the trace is useful
for online behavior detection, since there is a larger likeli-
hood of identifying a workload from a random sample. To
understand the distribution of characteristic patterns inour
workloads, we tested the profile HMM with varying length
prefixes of traces. Figure 9 shows the results. We see that
the predictive value of small prefixes of traces is quite high.
For some commands likecopyandmove, the end of a trace
seems to have strong characteristics.

This evaluation suggests that in real scenarios, some
workloads may be identified by examining just a small snip-
pet, while other workloads may need a large fraction of their
traces to be analyzed before identification.

4.6 Automated Learning on Real Traces

Validating our approach using real traces from real
deployments is important. Our approach is based on
a classification-based methodology that requires that the
training data be labeled. Unfortunately, real traces are typi-
cally not labeled with workload information. Therefore, we
will neither be able to train with the real trace nor be able to
validate our results.

To tackle this problem, we use the LD_PRELOAD en-
vironment variable on the client to interpose our own li-
brary that intercepts all process invocations (“exec” family
of calls in UNIX) and forces a sentinel marker in the trace
by doing an operation that can be spotted. Whenever we
see an “exec”, we “stat” a non-existent file – the file name
encodes the identity of the exec’ed program. The NFS re-

11

gcc cat mv ld

gcc 80.5 1.9 0.9 16.8
cat 3.1 77.9 0.8 18.2
mv 0.6 0.5 62.5 36.4
ld 13.3 1.2 1.7 83.8

Table 6. Workload identification accuracy on live traces.

sponse that the file does not exist (ENOENT) with the coded
filename is enough for us to mark the boundaries of the trace
segment generated by each of the command invocations.
Here we need to ensure that the invocation is “atomic”, i.e.,
it does not result in exec’ing of other programs that are of
interest independently for identification (otherwise, we will
mark a only a subtrace as belonging to the invocation and
mark some part of the following trace as belonging to the
subprocess). We used an open-source tool calledSnoopy
[21] and modified it to suit our purposes.

As an example, we used the compilation of Linux 2.6.30
source as the generator of a real trace. We instrumented
the client with the above interposition library, collectedthe
traces for a certain amount of time and constructed our
training trace data automatically. Our sentinel markers in
the trace also give us an easy way to validate our results.

The following commands were detected in the Linux
source compilation on the Ubuntu 9 system1: “gcc”, “rm”,
“cat”, “mv”, “expr”, “make”, “getent”, “cut”, “mkdir”,
“bash”, “run-parts”, “sed”, “date”, “whoami”, “host-
name”, “dnsdomainname”, “tail”, “grep”, “cmp”, “sudo”,
“objdump”, “ld”, “nm”, “objcopy”, “awk”, “update-
motd”, “renice”, “ionice”, “basename”, “landscape-
sysinfo”, “who”, “stat”, “apt-config”, “ls”. Since com-
mands like “make” initiate, for example, many gcc com-
piles, it is not possible to demarcate the beginning and end
of the trace that “make” contributes as we are interested in
“gcc” as a workload in itself. We eliminated such compos-
ite commands and those that do not contribute to NFS traces
(eg. “date”), and ended finally by selecting 4 commands in
the live trace.

For workload identification, we considered the 105
minute live trace of the Linux source compilation discussed
earlier with training on approximately 3 minutes of the
trace. The results are given in Table 6.

To understand how learning is improved with larger
number of training traces used, we chose 30 sec, 40 sec,
50 sec, 1 min, 2 min, 3 min, 4 min and 5 min durations of
the trace and used the specific workload found in these dura-
tions for training that workload. From Figure 10, we notice
that the accuracy of the workload identification improves
with increase in the number of training sequences used, thus
demonstrating learning in the system. Commands that gen-

1“landscape-sysinfo” provides a quick summary about the machine’s
status regarding disk space, memory, processes, etc. “run-parts” runs a
number of scripts or programs found in a single directory.

Figure 10. Online learning on live traces.

erate a small amount of traces, such ascat andmvpose dif-
ficulties for our methodology. In this experiment, the output
of thecatcommands were for/dev/nulland for a single spe-
cific file; because of client-side caching, the traces did not
have a strong signature. We need traces with good signa-
tures (likegcc) to get good results. This is acceptable from
a practical standpoint as bigger application workloads, in
general, are of more interest in the systems community.

The value of the profile HMM as a practical tool will
be significantly enhanced if we can automatically generate
a labeled trace, with each of its constituent workloads de-
marcated, for training. The LD_PRELOAD mechanism is
a way to do this. On new clients or clients running new ap-
plications, the interposition library could be introducedto
generate new training sets. The library could subsequently
be removed after sufficient training data has been generated.

4.7 Concurrent Workloads

Shared storage systems almost always serve multiple
concurrent workloads. Therefore, the server-side trace con-
tains the trace sequences of multiple application-level oper-
ations interleaved with each other in time. However, while a
shared storage system may serve files to thousands of clients
in an enterprise deployment, the NFS trace contains client
IDs that can be used to tease the interleaving apart. There-
fore, we need automated tools only to separate out the traces
due to requests from a single client. Typically, the number
of concurrent applications at a single client invoking NFS
operations to the same backend server are small.

Profile HMM’s ability to detect high-level commands
from small snippets of file system operations helps iden-
tify the various workloads running concurrently. Our next
experiment evaluates this ability. We run sequences of com-
mands from 2 to 6 NFS clients accessing the same NFS
server, capture the NFS opcode trace at the server’s net-
work interface, remove the client ID (to simulate the effect
of multiple applications from the same client), and feed it
into the profile HMM for marking the commands’ opera-

12

Figure 11. Concurrent sequences of commands were run from 2 to 6

clients. The graph shows the quality of the annotation.

tion sequences. We compare the result with the sequences
identified manually based on the source IP address. Fig-
ure 11 shows the quality of the annotation. The amount of
concurrency determines whether there will be long enough
snippets for profile HMM to accurately annotate the trace.
As expected, for a concurrency level of 2 or 3, the results
are acceptable, but gets worse beyond that. The interesting
point to note here is that the incorrect annotations do not
increase with concurrency; only the proportion of unrecog-
nized sequences do. The profile HMM’s ability to explicitly
tag unrecognized sequences as such helps the user rely on
its output.

More than the exact marking of regions, the identifica-
tion of constituent workloads in a mixed-workload scenario
is itself of good value. This is because, for the typical ad-
ministrator, a more compelling use case than unraveling the
opcode sequences of interleaving workloads is to identify
which workloads are running in a given interval of time.
Note that TPC-C, a very concurrent workload, can be identi-
fied quite successfully as reported earlier (Sections 4.2, 4.3).

5 Limitations

During the course of our evaluation, we discovered a few
limitations with this methodology. First, training the tool
requires a diverse and representative sample of workloads.
This is a fundamental characteristic of machine learning
methodologies. Second, the open-source tools that we used
to build our solution are from computational biology. The
current off-the-shelf solutions have a limited alphabet space
which may not be completely appropriate for systems appli-
cations. However, we believe that there are no fundamental
mathematical limitations in the number of symbols, except
that we may have to perform significantly more training if
we use more symbols. Third, the level of concurrency at a
client adversely affected the accuracy of the tool. The fine-
grained interleaving resulting from a large number of con-
current streams can be tackled only if we are able to iden-

tify workloads using very small trace snippets. Finally, the
profile HMM seems to be slow compared with the typical
rates of NFS operations at a server, hampering online anal-
ysis. Many of these limitations may not be fundamental in
nature, but pointers to future work.

6 Conclusions and Future Work

In this paper, we have presented a profile HMM-based
methodology for analysis of NFS traces. Our method is suc-
cessful at discovering the application-level behavioral char-
acteristics from NFS traces. We have also shown that given
a long sequence of NFS trace headers, it is able to annotate
regions of the sequence as belonging to the applications that
it has been trained with. It can identify and annotate both
sequential and concurrent execution of different workloads.
Finally, we demonstrate that small snippets of traces are suf-
ficient for identifying many workloads. This result has im-
portant consequences. Because traces are going to get gen-
erated faster than one can analyze them, being able to infer
meaningful information from periodic random sampling is
very important for effective analysis.

Although profile HMM methodology looks promising
for trace analysis, our experience indicates that we have
not leveraged all its capabilities. For instance, we have not
used all the information that is available in the NFS trace.
There is a rich amount of data available in the form of file
names and handles, file offsets, read/write lengths and error
responses that throw more light on the application work-
loads. We have to investigate how to incorporate this in-
formation into a form amenable for multiple alignment and
profile HMM. This will be the first step in extending our
work.

NFSv4 introduces client delegations, offering clients the
ability to access and modify a file in its own cache without
talking to the server. This implies that an NFSv4 trace may
not have all the information about application workloads.
Investigating how profile HMMs work on NFSv4 traces is a
clear extension of this work.

We also believe that our methodology is general enough
that we can apply it to other source data such as network
messages, system call traces, disk traces and function call
graphs. This methodology can be a foundation to tackle use
cases in areas such as anomaly detection and provenance
mining, which are building blocks for next-generation sys-
tems management tools. Finally, we will look into other
machine learning methods that overcome some of the limi-
tations of profile HMMs.

Acknowledgments: We thank Bhupender Singh, Alex
Nelson, and Darrell Long for reviewing the paper, Pavan
Kumar for performing the PostMark experiments, and Alma
Riska for shepherding the paper with thoughtful comments
and guidance. We also gratefully acknowledge support

13

from a NetApp2 research grant.

References

[1] Eric Anderson. Capture, conversion, and analysis of an intense NFS
workload. InProccedings of the 7th conference on File and storage
technologies,pages 139-152, Feb. 2009

[2] M. Baker, J. Hartman, M. Kupfer, K. Shirriff, and J. Ousterhout.
Measurements of a distributed file system. InProceedings of the
13th Symposium on Operating Systems Principles, Oct. 1991.

[3] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for
request extraction and workload modelling. InProc of the Seventh
Symposium on Operating System Design and Implementation, pages
259–272, Dec. 2004.

[4] B. Callaghan, B. Pawlowski, and P. Staubach. NFS version3 protocol
specification. Internet Request For Comments RFC 1813, Internet
Network Working Group, June 1995.

[5] G. Combs. Wireshark network protocol analyzer.http://www.
wireshark.org, 1998.

[6] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison.Biological Se-
quence Analysis: Probabilistic models of proteins and nucleic acids.
Cambridge University Press, 1998.

[7] S. R. Eddy. HMMER: Sequence analysis using profile hidden
Markov models. Available athttp://hmmer.wustl.edu/.

[8] S. R. Eddy. Profile hidden Markov models.Bioinformatics,
14(9):755–763, 1998.

[9] R. C. Edgar. MUSCLE:multiple sequence alignment with highaccu-
racy and high throughput.Nucleic Acid Research, 32(5):1792–1797,
2004.

[10] D. Ellard. Trace-based analyses and optimizations for network stor-
age servers. PhD thesis, Cambridge, MA, USA, 2004. Adviser-
Margo I. Seltzer.

[11] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Passive NFS tracing
of email and research workloads. InProceedings of the 2nd USENIX
Conference on File and Storage Technologies (FAST03), pages 203–
216, 2003.

[12] D. Ellard and M. Seltzer. New NFS tracing tools and techniques for
system analysis. InProceedings of the Seventeenth Large Installation
Systems Administration Conference (LISA), Oct. 2003.

[13] D. Gusfield.Algorithms on Strings, Trees and Sequence. Cambridge
University Press, 1997.

[14] D. Haussler, A. Krogh, I. S. Mian, and K. Sjölander. Protein model-
ing using hidden markov models: analysis of globins. InProceedings
of the 26th Annual Hawaii International Conference on Systems Sci-
ences, volume 1, pages 792–802. IEEE Computer Society, 1993.

[15] J. Katcher. Postmark: A new file system benchmark. Technical Re-
port 3022, NetApp, 1997.

[16] A. Krogh, M. Brown, I. S. Mian, Sj
..

olander, and D. Haussler. Hidden
Markov models in computational biology: Applications to protein
modeling. 235:1501–1531, 1994.

[17] A. Leung, S. Pasupathy, G. Goodson, and E. Miller. Measurement
and analysis of large-scale file system workloads. InProceedings of
the USENIX 2008 Annual Technical Conference, June 2008.

[18] T. Madhyastha and D. Reed. Input/output access patternclassifica-
tion using hidden markov models. InWorkshop on Input/Output in
Parallel and Distributed Systems, Nov. 1997.

2NetApp, the NetApp logo, and Go further, faster, are trademarks or
registered trademarks of NetApp, Inc. in the United States and/or other
countries.

[19] M. Mesnier, E. Thereska, G. Ganger, D. Ellard, and M. Seltzer. File
classification in self-* storage systems. InProceedings of the First
International Conference on Autonomic Computing, May 2004.

[20] S. B. Needleman and C. D. Wunsch. A general method applicable
to the search for similarities in the amino acid sequences of two pro-
teins.Journal of Molecular Biology, 48:443–453, 1970.

[21] D. Packages. Snoopy.http://http://packages.debian.
org/lenny/snoopy.

[22] F. Raab, W. Kohler, and A. Shah. Overview of the TPC benchmark
C: The order-entry benchmark.http://www.tpc.org/tpcc/
detail.asp.

[23] L. R. Rabiner. Tutorial on hidden Markov models and selected appli-
cations in speech recognition.Proceedings of IEEE, 77(2):257–288,
1989.

[24] D. Roselli, J. Lorch, and T. E. Anderson. A comparison of file system
workloads. InProceedings of the USENIX 2000 Annual Technical
Conference, 2000.

[25] R. R. Sambasivan, A. X. Zheng, E. Thereska, and G. Ganger.Cate-
gorizing and differencing system behaviours. InHot Topics in Auto-
nomic Computing, June 2007.

[26] T. F. Smith and M. S. Waterman. Identification of common molecular
subsequences.Journal of Molecular Biology, 147:197–198, 1981.

[27] N. Tran and D. Reed. Automatic ARIMA time-series modeling for
adaptive i/o prefetching.IEEE Transactions on Parallel and Dis-
tributed Systems, 15(4):362–377, Apr. 2004.

[28] R. A. Wagner and M. J. Fischer. The string-to-string correction prob-
lem. Journal of ACM, 21(1):168–173, 1974.

[29] C. Warrender, S. Forrest, and B. Pearlmutter. Detectingintrusions
using system calls. InProceedings of the 1999 IEEE Symposium on
Security and Privacy, May 1999.

14

