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Abstract

A content-addressable storage (CAS) system is a valuable

tool for building storage solutions, providing efficiency by

automatically detecting and eliminating duplicate blocks;

it can also be capable of high throughput, at least for

streaming access. However, the absence of a standardized

API is a barrier to the use of CAS for existing applica-

tions. Additionally, applications would have to deal with

the unique characteristics of CAS, such as immutability

of blocks and high latency of operations. An attractive

alternative is to build a file system on top of CAS, since

applications can use its interface without modification.

Mapping a file system onto a CAS system efficiently, so

as to obtain high duplicate elimination and high through-

put, requires a very different design than for a traditional

disk subsystem. In this paper, we present the design,

implementation, and evaluation of HydraFS, a file sys-

tem built on top of HYDRAstor, a scalable, distributed,

content-addressable block storage system. HydraFS pro-

vides high-performance reads and writes for streaming ac-

cess, achieving 82–100% of the HYDRAstor throughput,

while maintaining high duplicate elimination.

1 Introduction

Repositories that store large volumes of data are increas-

ingly common today. This leads to high capital expen-

diture for hardware and high operating costs for power,

administration, and management. A technique that of-

fers one solution for increasing storage efficiency is data

deduplication, in which redundant data blocks are identi-

fied, allowing the system to store only one copy and use

pointers to the original block instead of creating redundant

blocks. Deduplicating storage is ideally suited to backup

applications, since they store similar data repeatedly, and

with growing maturity is expected to become common in

the data center for general application use.

Data deduplication can be achieved in-line or off-line.

In both cases, data is eventually stored in an object store

where objects are referenced through addresses derived

from their contents. Objects can be entire files, blocks of

data of fixed size, or blocks of data of variable size.

In a CAS system with in-line deduplication, the data

blocks are written directly to the object store. Thus, they

are not written to disk if they are deemed duplicates; in-

stead, the address of the previously written block with the

same contents is used. A CAS system with off-line dedu-

plication first saves data to a traditional storage system,

and deduplication processing is done later. This incurs

extra I/O costs, as data has to be read and re-written, and

requires additional storage space for keeping data in non-

deduplicated form until the processing is complete.

While a CAS system with in-line deduplication does

not have these costs, using it directly has two disadvan-

tages: the applications have to be modified to use the

CAS-specific API, and use it in such a way that the best

performance can be obtained from the CAS system. To

avoid the inconvenience of rewriting many applications,

we can layer a file system on top of the object store. This

has the advantage that it presents a standard interface to

applications, permitting effective use of the CAS system

to many applications without requiring changes. Addi-

tionally, the file system can mediate between the access

patterns of the application and the ones best supported by

the CAS system.

Designing a file system for a distributed CAS system is

challenging, mainly because blocks are immutable, and

the I/O operations have high latency and jitter. Since

blocks are immutable, all data structures that hold ref-

erences to a block must be updated to refer to the new



address of the block whenever it is modified, leading to

multiple I/O operations, which is inefficient. Distributed

CAS systems also impose high latencies in the I/O path,

because many operations must be done in the critical path.

While file systems have previously been built for CAS

systems, most have scant public information about their

design. One notable exception is LBFS [18], which fo-

cuses on nodes connected by low bandwidth, wide area

networks. Because of the low bandwidth, it is not tar-

geted at high-throughput applications, and poses different

challenges for the file system designers.

This paper describes the design, implementation,

and evaluation of HydraFS, a file system layered on

top of a distributed, content-addressable back end,

HYDRAstor [5] (also called Hydra, or simply the “block

store”). Hydra is a multi-node, content-addressable stor-

age system that stores blocks at configurable redundancy

levels and supports high-throughput reads and writes for

streams of large blocks. Hydra is designed to provide a

content-addressable block device interface that hides the

details of data distribution and organization, addition and

removal of nodes, and handling of disk and node failures.

HydraFS was designed for high-bandwidth streaming

workloads, because its first commercial application is as

part of a backup appliance. The combination of CAS

block immutability, high latency of I/O operations, and

high bandwidth requirements brings forth novel chal-

lenges for the architecture, design, and implementation of

the file system. To the best of our knowledge, HydraFS is

the first file system built on top of a distributed CAS sys-

tem that supports high sequential read and write through-

put while maintaining high duplicate elimination.

We faced three main challenges in achieving high

throughput with HydraFS. First, updates are more expen-

sive in a CAS system, as all metadata blocks that refer to a

modified blockmust be updated. This metadata comprises

mappings between an inode number and the inode data

structure, the inode itself, which contains file attributes,

and file index blocks (for finding data in large files). Sec-

ond, cache misses for metadata blocks have a significant

impact on performance. Third, the combination of high

latency and high throughput requires a large write buffer

and read cache. At the same time, if these data structures

are allowed to growwithout bound, the systemwill thrash.

We overcome these challenges through three design

strategies. First, we decouple data and metadata pro-

cessing through the use of a log [10]. This split allows

the metadata modifications to be batched and applied ef-

ficiently. We describe a metadata update technique that

maintains consistency without expensive locking. Sec-

ond, we use fixed-size caches and use admission control

to limit the number of concurrent file system operations

such that their processing needs do not exceed the avail-

able resources. Third, we introduce a second-order cache

to reduce the number of misses for metadata blocks. This

cache also helps reduce the number of operations that are

performed in the context of a read request, thus reducing

the response time.

Our experimental evaluation confirms that HydraFS en-

ables high-throughput sequential reads and writes of large

files. In particular, HydraFS is able to support sequential

writes to a single file at 82–100% of the underlying Hydra

storage system’s throughput. Although HydraFS is op-

timized for high-throughput streaming file access, its per-

formance is good enough for directory operations and ran-

dom file accesses, making it feasible for bulk data transfer

applications to use HydraFS as a general-purpose file sys-

tem for workloads that are not metadata-intensive.

This paper makes the following contributions. First,

we present a description of the challenges in building a

file system on top of a distributed CAS system. Sec-

ond, we present the design of a file system, HydraFS, that

overcomes these challenges, focusing on several key tech-

niques. Third, we present an evaluation of the system that

demonstrates the effectiveness of these techniques.

2 Hydra Characteristics

HydraFS acts as a front end for the Hydra distributed,

content-addressable block store (Figure 1). In this sec-

tion, we present the characteristics of Hydra and describe

the key challenges faced when using it for applications,

such as HydraFS, that require high throughput.

Commit

Server

File

Server

Storage

Node

Storage

Node

Storage

Node

Storage

Node

HYDRAstor Block Access Library

HydraFS

Hydra

Access Node

Single−System Content−Addressable Store

Figure 1: HYDRAstor Architecture.

2.1 Model

HydraFS runs on an access node and communicates with

the block store using a library that hides the distributed



nature of the block store. Even though the block store is

implemented across multiple storage nodes, the API gives

the impression of a single system.

The HYDRAstor block access library presents a simple

interface:

Block write The caller provides a block to be written and

receives in return a receipt, called the content ad-

dress, for the block. If the system can determine that

a block with identical content is already stored, it can

return its content address instead of generating a new

one, thus eliminating duplicated data. Multiple re-

siliency levels are available to control the amount of

redundant information stored, thereby allowing con-

trol over the number of component failures that a

block can withstand.

The block access library used on the access node has

the option of querying the storage nodes for the ex-

istence of a block with the same hash key to avoid

sending the block over the network if it already ex-

ists. This is a block store feature, imposing only a

slight increase in the latency of the write operations,

that is already tolerated by the file system design.

Block read The caller provides the content address and

receives the data for the block in return.

Searchable block write Given a block and a label, the

block is stored and associated with the label. If a

block with the same label but different content is al-

ready stored, the operation fails. Labels can be any

binary data chosen by the client, and need not be de-

rived from the contents of the block.

Two types of searchable blocks are supported: re-

tention roots that cause the retention of all blocks

reachable from them, and deletion roots that mark

for deletion the retention roots with the same labels.

Periodically, a garbage collection process reclaims

all blocks that are unreachable from retention roots

not marked for deletion.

Searchable block read Given a label, the contents of the

associated retention root are returned.

The searchable block mechanism provides a way for

the storage system to be self-contained. In the absence

of a mechanism to retrieve blocks other than through their

content address, an applicationwould have to store at least

one content address outside the system, which is undesir-

able.

2.2 Content Addresses

In HYDRAstor, content addresses are opaque to clients

(in this case, the filesystem). The block store is respon-

sible for calculating a block’s content address based on

a secure, one-way hash of the block’s contents and other

information that can be used to retrieve the block quickly.

For the same data contents, the block store can return

the same content address, although it is not obliged to do

so. For example, a block written at a higher resiliency

level would result in a different content address even if

an identical block were previously written at a lower re-

siliency level. The design also allows for a byte-by-byte

comparison of newly-written data blocks whose hashes

match existing blocks. Collisions (different block con-

tents hashing to the same value) would be handled by

generating a different content address for each block. For

performance reasons, and given that the hash function is

strong enough to make collisions statistically unlikely, the

default is to not perform the check.

Because the content address contains information that

the file system does not have, it is impossible for the file

system to determine the content address of a block in ad-

vance of submitting it to the block store. At first blush,

since the latency of the writes is high, this might seem like

a problem for performance, because it reduces the poten-

tial parallelism of writing blocks that contain pointers to

other blocks. However, this is not a problem for two rea-

sons. First, even if we were to write all blocks in parallel,

we still would have to wait for all child blocks to be per-

sistent before writing the searchable retention root. The

interface is asynchronous: write requests can complete in

a different order than that in which they were submitted.

If we were to write the searchable block without waiting

for the children and the system were to crash, the file sys-

tem would be inconsistent if the retention root made it to

disk before all of its children.

Second, the foreground processing, which has the

greatest effect on write performance, writes only shallow

trees of blocks; the trees of higher depth are written in the

background, so the reduction in concurrency is not signif-

icant enough to hurt the performance of streaming writes.

Thus, although the high latency of operations is a chal-

lenge for attaining good performance, the inability of the

file system to calculate content addresses on its own does

not present an additional problem.

2.3 Challenges

Hydra presents several challenges to implementing a file

system that are not encountered with conventional disk

subsystems. Some of the most notable are: (i) blocks are

immutable, (ii) the latency of the block operations is very

high, and (iii) a chunking algorithmmust be used to deter-

mine the block boundaries that maximize deduplication,

and this results in blocks of unpredictable and varied sizes.



2.3.1 Immutable Blocks

When a file system for a conventional disk subsystem

needs to update a block, the file system can simply re-

write it, since the block’s address is fixed. The new con-

tents become visible without requiring further writes, re-

gardless of how many metadata blocks need to be tra-

versed to reach it.

A CAS system, however, has to store a new block,

which may result in the new block’s address differing

from the old block’s address. Because we are no longer

interested in the contents of the old block, we will infor-

mally call this an “update.” (Blocks that are no longer

needed are garbage collected by Hydra.) But to reach the

new block, we need to update its parent, and so on re-

cursively up to the root of the file system. This leads to

two fundamental constraints on data structures stored in a

CAS system.

First, because the address of a block is derived from

a secure, one-way hash of the block’s contents, it is im-

possible for the file system to store references to blocks

not yet written. Since blocks can only contain pointers to

blocks written in the past, and more than one block can

contain the same block address, the blocks form directed

acyclic graphs (DAGs).

Second, the height of the DAG should be minimized

to reduce the overhead of modifying blocks. The cost to

modify a block in a file system based on a conventional

disk subsystem is limited to the cost to read and write

the block. In a CAS-based file system, however, the cost

to modify a block also includes the cost to modify the

chain of blocks that point to the original block. While this

problem also occurs in no-overwrite file systems, such as

WAFL [11], it is exacerbated by higher Hydra latencies,

as discussed in the next section.

2.3.2 High Latency

Another major challenge that Hydra poses is higher laten-

cies than conventional disk subsystems. In a conventional

disk subsystem, the primary task in reading or writing a

disk block is transferring the data. In Hydra however,

much more work must be done before an I/O operation

can be completed. This includes scanning the entire con-

tents of the block to compute its content address, com-

pressing or uncompressing the block, determining the lo-

cation where the block is (or will be) stored, fragmenting

or reassembling the blocks that are made up of smaller

fragments using error-correcting codes, and routing these

fragments to or from the nodes where they reside. While

conventional disk subsystems have latencies on the order

of milliseconds to tens of milliseconds, Hydra has laten-

cies on the order of hundreds of milliseconds to seconds.

An even higher contributor to the increased latency

comes from the requirement to support high-throughput

reads. With conventional disk subsystems, placing data in

adjacent blocks typically ensures high-throughput reads.

The file system can do that because there is a clear indica-

tion of adjacency: the block number. However, a CAS

system places data based on the block content’s hash,

which is unpredictable. If Hydra simply places data con-

tiguously based on temporal affinity, as the number of

streams written concurrently increases, the blocks of any

one stream are further and further apart, reducing the lo-

cality and thus causing low read performance.

To mitigate this problem, the block store API allows

the caller to specify a stream hint for every block write.

The block store will attempt to co-locate blocks with the

same stream hint by delaying the writes until a sufficiently

large number of blocks arrive with the same hint. The

decision of what blocks should be co-located is up to the

file system; in HydraFS all blocks belonging to the same

file are written with the same hint.

The write delay necessary to achieve good read per-

formance depends by the number of concurrent write

streams. The default value of the delay is about one sec-

ond, which is sufficient for supporting up to a hundred

concurrent streams. Thus, the write latency is sacrificed

for the sake of increased read performance. To cope with

the large latencies but still deliver high throughput, the file

system must be able to issue a large number of requests

concurrently.

2.3.3 Variable Block Sizes

The file system affects the degree of deduplication by how

it divides files into blocks, a process we call chunking.

Studies have shown that variable-size chunking provides

better deduplication than fixed-size chunking ([15], [20]).

Although fixed-size chunking can be sufficient for some

applications, backup streams often contain duplicate data,

possibly shifted in the stream by additions, removals, or

modifications of files.

Consider the case of inserting a few bytes into a file

containing duplicate contents, thereby shifting the con-

tents of the rest of the file. If fixed-size chunking is used,

and the number of bytes is not equal to the chunk size,

duplicate elimination would be defeated for the range of

file contents from the point of insertion through the end of

the file. Instead, we use a content-defined chunking algo-

rithm, similar to the one in [18], that produces chunks of

variable size between a given minimum and maximum.

This design choice affects the representation of files.

With a variable block size, an offset into a file cannot be

mapped to the corresponding block by a simple mathe-

matical calculation. This, along with the desire to have

DAGs of small height, led us to use balanced tree struc-

tures.
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3 File System Design

HydraFS design is governed by four key principles. First,

the primary concern is the high throughput of sequential

reads and writes. Other operations, such as metadata oper-

ations, file overwrites, and simultaneous reads and writes

to the same file, are supported, but are not the target for

optimization. Second, because of the high latencies of

the block store, the number of dependent I/O operations

must be minimized. At the same time, the system must

be highly concurrent to obtain high throughput. Third,

the data availability guarantees of HydraFS must be no

worse than those of the standard Unix file systems. That

is, while data acknowledged before an fsyncmay be lost

in case of system crash, once an fsync is acknowledged

to the application, the data must be persistent. Fourth, the

file system must efficiently support both local file system

access and remote access over NFS and CIFS.

3.1 File System Layout

Figure 2 shows a simplified view of the HydraFS file sys-

tem block tree. The file system layout is structured as a

DAG, with the root of the structure stored in a searchable

block. The searchable block contains the file system super

block, which holds the address of the inode map (called

the “imap”) together with the current file system version

number and some statistics. The imap is conceptually

similar to the inode map used in the Log-Structured File

File
Server

Commit
Server

File
Operations

Transaction Log

v1 v2 v3

Data Blocks

Super Blocks

Hydra

Figure 3: HydraFS Software Architecture.

System [23]. In HydraFS, the imap is a variable-length

array of content addresses and allocation status, stored as

a B-tree. It is used to translate inode numbers into inodes,

as well as to allocate and free inode numbers.

A regular file inode indexes data blocks with a B-tree

so as to accommodate very large files [27] with variable-

size blocks. Regular file data is split up into variable-

size blocks using a chunking algorithm that is designed

to increase the likelihood that the same data written to the

block store will generate a match. Thus, if a file is writ-

ten to the block store on one file system, and then written

to another file system using the same block store, the only

additional blocks that will be stored by the block store will

be the metadata needed to represent the new inode, and its

DAG ancestors: the imap and the superblock. The modifi-

cations of the last two are potentially amortized overmany

inode modifications.

Although the immutable nature of Hydra’s blocks nat-

urally allows for filesystem snapshots, this feature is not

yet exposed to the applications that use HydraFS.

3.2 HydraFS Software Architecture

HydraFS is implemented as a pair of user-level processes

that cooperate to provide file system functionality (see

Figure 3). The FUSE file system module [8] provides the

necessary glue to connect the servers to the Linux kernel

file system framework. The file server is responsible for

managing the file system interface for clients; it handles

client requests, records file modifications in a persistent

transaction log stored in the block store, and maintains an

in-memory cache of recent file modifications. The commit

server reads the transaction log from the block store, up-

dates the file system metadata, and periodically generates

a new file system version.

This separation of functionality has several advantages.

First, it simplifies the locking of file system metadata

(discussed further in Section 3.3). Second, it allows the



commit server to amortize the cost of updating the file sys-

tem’s metadata by batching updates to the DAG. Third,

the split allows the servers to employ different caching

strategies without conflicting with each other.

3.3 Write Processing

When an application writes data to a file, the file server

accumulates the data in a buffer associated with the file’s

inode and applies a content-defined chunking algorithm

to it. When chunking finds a block boundary, the data in

the buffer up to that point is used to generate a new block.

The remaining data is left in the buffer to form part of the

next block. There is a global limit on the amount of data

that is buffered on behalf of inodes, but not yet turned into

blocks, to prevent the memory consumption of the inode

buffers from growing without bound. When the limit is

reached, some buffers are flushed, their content written to

Hydra even though the chunk boundaries are no longer

content-defined.

Each new block generated by chunking is marked dirty

and immediately written to Hydra. It must be retained in

memory until Hydra confirms the write. The file server

must have it available in case the write is followed by

a read of that data, or in case Hydra rejects the block

write due to an overloaded condition (the operation is re-

submitted after a short delay). When Hydra confirms the

write, the block is freed, but its content address is added

to the uncommitted block table with a timestamp and the

byte range that corresponds to the block.

The uncommitted block table is a data structure used

for keeping modified file system metadata in memory.

Since there is no persistent metadata block pointing to the

newly-written data block, this block is not yet reachable

in a persistent copy of the file system.

An alternative is to update the persistent metadata im-

mediately, but this has two big problems. The first is that

each data block requires the modification of all metadata

blocks up to the root. This includes inode index blocks,

inode attribute block, and imap blocks. Updating all of

them for every data block modification creates substantial

I/O overhead. The second is that the modification to these

data structures would have to be synchronized with other

concurrent operations performed by the file server. Since

the metadata tree can only be updated one level at a time

(a parent can be written only after the writes of all chil-

dren complete), propagation up to the root has a very high

latency. Locking the imap for the duration of these writes

would reduce concurrency considerably, resulting in ex-

tremely poor performance. Thus, we chose to keep dirty

metadata structures in memory and delegate the writing of

metadata to the commit server.

When the commit server finally creates a new file sys-

tem super block, the file server can clean its dirty metadata

structures (see Section 3.4). To provide persistence guar-

antees, the metadata operations are written to a log which

is kept persistently in Hydra until they are executed by the

commit server.

Sequentially appending data to files exhibits the best

performance in HydraFS. Random writes in HydraFS in-

cur more overhead than appends because of the chunking

process that decides the boundaries of the blocks written

to Hydra. The boundaries depend on the content of the

current write operation, but also on the file data adjacent

to the current write range (if any). Thus, a random write

to the file system might generate block writes to the block

store that include parts of blocks already written, as well

as any data that was buffered but not yet written since it

was not a complete chunk.

3.4 Metadata Cleaning

The file server must retain dirty metadata as a conse-

quence of delegating metadata processing to the commit

server to avoid locking. This data can only be discarded

once it can be retrieved from the block store. For this to

happen, the commit servermust sequentially apply the op-

erations it retrieves from the log written by the file server,

create a new file system DAG, and commit it to Hydra.

To avoid unpredictable delays, the commit server gen-

erates a new file system version periodically, allowing the

file server to clean its dirty metadata proactively. Instead,

if the file server waits until its cache fills up before ask-

ing the commit server to generate a new root, then the

file server would stall until the commit server completes

writing all the modified metadata blocks. As mentioned

before, this can take a long time, because of the sequen-

tial nature of writing content-addressable blocks along a

DAG path.

Metadata objects form a tree that is structurally simi-

lar to the block tree introduced in Section 3.1. To simplify

metadata cleaning, the file server does not directly modify

the metadata objects as they are represented on Hydra. In-

stead, all metadata modifications are maintained in sepa-

rate lookup structures, with each modification tagged with

its creation time. With this approach, the metadata that

was read from Hydra is always clean and can be dropped

from the cache at any time, if required.

When the file server sees that a new super block has

been created, it can clean the metadata objects in a top-

down manner. Cleaning a metadata object involves re-

placing its cached clean state (on-Hydra state) with a new

version, and dropping all metadata modification records

that have been incorporated into the new version.

The top-down restriction is needed to ensure that a dis-

carded object will not be re-fetched from Hydra using an

out-of-date content address. For example, if the file server

were to drop a modified inode before updating the imap
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first, the imap would still refer to the old content address

and a stale inode would be fetched if the inode were ac-

cessed again.

Figure 4 shows an example of metadata cleaning. The

file server keeps an in-memory list of inode creation (or

deletion) records that modify the imap, as well as un-

committed block table records for the inodes, consisting

of content addresses with creation timestamps (and off-

set range, not shown). The file server might also have

cached blocks belonging to the old file system version

(not shown). Inode 3067 can be discarded, because all

of its modifications are included in the latest version of

the super block. Inode 3068 cannot be removed, but it can

be partially cleaned by dropping content addresses with

timestamps 801 and 802. Similarly, creation records up to

timestamp 802 can be dropped from the imap. Note that

in-memory inodes take precedence over imap entries; the

stale imap information for inode 3068 will not be used as

long as the inode stays in memory.

3.5 Admission Control

Both servers accept new events for processing after first

passing the events through admission control, a mecha-

nism designed to limit the amount of memory consumed.

Limits are determined by the amount of memory config-

ured for particular objects, such as disk blocks and inodes.

When an event arrives, the worst-case needed allocation

size is reserved for each object that might be needed to

process the event. If memory is available, the event is al-

lowed into the server’s set of active events for processing.

Otherwise, the event blocks.

During its lifetime, an event can allocate and free mem-

ory as necessary, but the total allocation cannot exceed the

reservation. When the event completes, it relinquishes the

reservation, but it might not have freed all the memory it

allocated. For example, a read event leaves blocks in the

cache. Exhaustion of the memory pool triggers a reclama-

tion function that frees cached objects that are clean.

Admission control solves two problems. First, it lim-

its the amount of active events, which in turn limits the

amount of heap memory used. This relieves us from hav-

ing to deal with memory allocation failures, which can be

difficult to handle, especially in an asynchronous system

where events are in various stages of completion. Sec-

ond, when the memory allocated for file system objects is

tuned with the amount of physical memory in mind, it can

prevent paging to the swap device, which would reduce

performance.

3.6 Read Processing

The file system cannot respond to a read request until the

data is available, making it harder to hide high CAS la-

tencies. To avoid I/O in the critical path of a read request,

HydraFS uses aggressive read-ahead for sequential reads

into an in-memory, LRU cache, indexed by content ad-

dress. The amount of additional data to be read is config-

urable with a default of 20MB.

To obtain the content addresses of the data blocks that

cover the read-ahead range, the metadata blocks that store

these addresses must also be read from the inode’s B-tree.

This may require multiple reads to fetch all blocks along

the paths from the root of the tree to the leaf nodes of

interest. To amortize the I/O cost, HydraFS caches both

metadata blocks and the data blocks, uses large leaf nodes,

and high fan-out for internal nodes.

Unfortunately, the access patterns for data andmetadata

blocks differ significantly. For sequential reads, accesses

to data blocks are close together, making LRU efficient. In

contrast, because of the large fan-out, consecutive meta-

data block accesses might be separated by many accesses

to data blocks, making metadata eviction more likely. An

alternative is to use a separate cache for data and meta-

data blocks, but this does not work well in cases when the

ratio of data to metadata blocks differs from the ratio of

the two caches. Instead, we use a single weighted LRU

cache, where metadata blocks have a higher weight, mak-

ing them harder to evict.

To further reduce the overhead of translating offset-

length ranges to content addresses, we use a per-inode

look-aside buffer, called the fast range map (FRM), that

maintains a mapping from an offset range to the content

address of the block covering it. The FRM has a fixed

size, is populated when a range is first translated, and is

cleared when the corresponding inode is updated.

Finally, we also introduce a read-ahead mechanism for

metadata blocks to eliminate reads in the critical path of

the first access to these blocks. The B-tree read-ahead

augments the priming of the FRM for entries that are

likely to be needed soon.



3.7 Deletion

When a file is deleted in HydraFS, that file is removed

from the current version of the file system namespace.

Its storage space, however, remains allocated in the block

store until no more references to its blocks exist and the

back end runs its garbage collection cycle to reclaim un-

used blocks. The garbage collection is run as an adminis-

trative procedure that requires all modified cached data to

be flushed by HydraFS to Hydra to make sure that there

are no pointers to blocks that might be reclaimed.

Additional references to a file’s blocks can come from

two sources: other files that contain the same chunk of

data, and older versions of the file system that contain ref-

erences to the same file. References need not originate

from the same file system, however. Since all file systems

share the same block store, blocks can match duplicates

from other file systems.

When a new version of a file system is created, the old-

est version is marked for deletion by writing a deletion

root corresponding to its retention root. The file system

only specifies which super blocks are to be retained and

which are to be deleted, and Hydra manages the refer-

ence counts to decide which blocks are to be retained and

which are to be freed.

The number of file system versions retained is config-

urable. These versions are not currently exposed to users;

they are retained only to provide insurance should a file

system need to be recovered.

Active log blocks are written as shallow trees headed

by searchable blocks. Log blocks are marked for deletion

as soon as their changes are incorporated into an active

version of the file system.

4 Evaluation

HydraFS has been designed to handle sequential work-

loads operating under unique constraints imposed by the

distributed, content-addressable block store. In this sec-

tion, we present evidence that HydraFS supports high

throughput for these workloads while retaining the ben-

efits of block-level duplicate elimination. We first char-

acterize our block storage system, focusing on issues that

make it difficult to design a file system on top of it. We

then study HydraFS behavior under different workloads.

4.1 Experimental Setup

All experiments were run on a setup of five computers

similar to Figure 1. We used a 4-server configuration of

storage nodes, in which each server had two dual-core,

64-bit, 3.0 GHz Intel Xeon processors, 6GB of memory,

and six 7200 RPM MAXTOR 7H500F0 SATA disks, of

which five were used to store blocks, and one was used

for logging by Hydra. Its redundancy is given by an era-

sure coding scheme [1] using 9 original and 3 redundant

fragments. A similar hardware configuration was used for

the file server, but with 8GB of memory and an ext3 file

system on a logical volume split across two 15K RPM Fu-

jitsu MAX3073RC SAS disks using hardware RAID: this

file system was used for logging in HydraFS experiments,

and for storing data in ext3 experiments. All servers run a

2.6.9 Linux kernel, because this was the version that was

used in the initial product release. (It has since been up-

graded to a more recent version; regardless, the only local

disk I/O on the access node is for logging, so improve-

ments in the disk I/O subsystem won’t affect our perfor-

mance appreciably.)

4.2 HydraFS Efficiency

The goal in this section is to characterize the efficiency

of HydraFS and to demonstrate that it comes close to the

performance supported by our block store. Unfortunately,

since Hydra exports a non-standard API and HydraFS is

designed for this API, it is not possible for us to use a com-

mon block store for both HydraFS and a disk-based file

system, such as ext3. It is important to note that we are

not interested in the absolute performance of the two file

systems, but how much the performance degrades when

using a file system compared to a raw block device.

To compare the efficiencies of HydraFS and ext3, we

used identical hardware, configured as follows. We ex-

ported an ensemble of 6 disks on each storage node as an

iSCSI target using a software RAID5 configuration with

one parity disk. We used one access node as the iSCSI

initiator and used software RAID0 to construct an ensem-

ble that exposes one device node. We used a block size of

64KB for the block device and placed an ext3 file system

on it. The file system was mounted with the noatime

and nodiratimemount options. This configuration al-

lows ext3 access to hardware resources similar to Hydra,

although its resilience was lower than that of Hydra, as

it does not protect against node failure or more than one

disk failure per node.

Sequential Throughput: In this experiment, we use a

synthetic benchmark to generate a workload for both the

HydraFS and ext3 file systems. This benchmark generates

a stream of reads or writes with a configurable I/O size

using blocking system calls and issues a new request as

soon as the previous request completes. Additionally, this

benchmark generates data with a configurable fraction of

duplicate data, which allows us to study the behavior of

HydraFS with variable data characteristics. The through-

put of the block store is measured with an application that

uses the CASAPI to issue in parallel as many block opera-

tions as accepted by Hydra, thus exhibiting the maximum

level of concurrency possible.
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Figure 5: Comparison of raw device and file system

throughput for iSCSI and Hydra

Figure 5 shows the read and write throughput achieved

by ext3 and HydraFS against the raw block device

throughput of the iSCSI ensemble and Hydra respectively.

We observe that while the read throughput of ext3 is com-

parable to that of its raw device, HydraFS read throughput

is around 82% of the Hydra throughput. For the write

experiment, while ext3 throughput degrades to around

80% of the raw device, HydraFS achieves 88% of Hydra

throughput, in spite of the block store’s high latency.

Therefore, we conclude that the HydraFS implementa-

tion is efficient and the benefits of flexibility and general-

ity of the file system interface do not lead to a significant

loss of performance. The performance difference comes

mostly from limitations on concurrency imposed by de-

pendencies between blocks, as well as by memory man-

agement in HydraFS, which do not exist in raw Hydra ac-

cess.

Metadata Intensive Workloads: To measure the perfor-

mance of our system with a metadata-intensive workload,

we used Postmark [12] configured with an initial set of

50,000 files in 10 directories, with file sizes between 512B

and 16KB.We execute 30,000 transactions for each run of

the benchmark. Postmark creates a set of files, followed

by a series of transactions involving read or write followed

by a create or delete. At the end of the run, the benchmark

deletes the entire file set.

Table 1 shows the file creation and deletion rate with

and without transactions, including the overall rate of

transactions for the experiment. A higher number of

transactions indicates better performance for metadata-

intensive workloads.

We observe that the performance of HydraFS is much

lower than that of ext3. Creating small files presents the

worst case for Hydra, as the synchronous metadata oper-

ations are amortized over far fewer reads and writes than

with large files. Moreover, creation and deletion are lim-

Create Delete
Overall

Alone Tx Alone Tx

ext3 1,851 68 1,787 68 136

HydraFS 61 28 676 28 57

Table 1: Postmark comparing HydraFS with ext3 on sim-

ilar hardware

ited by the number of inodes HydraFS creates without go-

ing through the metadata update in the commit server. We

keep this number deliberately low to ensure that the sys-

tem does not accumulate a large number of uncommitted

blocks that increase the turnaround times for the commit

server processing, increasing unpredictably the latency of

user operations. In contrast, ext3 has no such limitations

and all metadata updates are written to the journal.
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4.3 Write Performance

In the experiment, we write a 32GB file sequentially to

HydraFS using a synthetic benchmark. The benchmark

uses the standard file system API for the HydraFS experi-

ment and uses the custom CAS API for the Hydra experi-

ment.

We vary the ratio of duplicate data in the write stream

and report the throughput. For repeatability in the pres-

ence of variable block sizes and content-defined chunk-

ing, our benchmark is designed to generate a configurable

average block size, which we set to 64KB in all our ex-

periments.

Figure 6 shows the write throughput when varying the

fraction of duplicates in the write stream from no dupli-

cates (0%) to 80% in increments of 20%. We make two

observations from our results. First, the throughput in-

creases linearly as the duplicate ratio increases. This is



as expected for duplicate data as the number of I/Os to

disk is correspondingly reduced. Second, for all cases, the

HydraFS throughput is within 12% of the Hydra through-

put. Therefore, we conclude that HydraFS meets the de-

sired goal of maintaining high throughput.
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To support high-throughput streaming writes, HydraFS

uses a write-behind strategy and does not perform any

I/O in the critical path. To manage its memory resources

and to prevent thrashing, HydraFS uses a fixed size write

buffer and admission control to block write operations be-

fore they consume any resources.

Write Behind: Figure 7 shows the order of I/O comple-

tions as they arrive from Hydra during a 20-second win-

dow of execution of the sequential write benchmark. In an

ideal system, the order of completion would be the same

as the order of submission and the curve shown in the fig-

ure would be a straight line. We observe that in the worst

case the gap between two consecutive block completions

in this experiment can be as large as 1.5GB, a testament to

the high jitter exhibited by Hydra. Consequently, the la-
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tency of an internal compound operation requiring many

block writes to the back end will experience a latency

higher than the average even if all blocks are written in

parallel.

To further understand the write behavior, we show

the Cumulative Distribution Function (CDF) of the write

event lifetimes in the system in Figure 8. The write event

is created when the write request arrives at HydraFS and

is destroyed when the response is sent to the client. Fig-

ure 8 shows that the 90th percentile of write requests take

less than 10 ms.

Admission control: In the experiments above, we show

that HydraFS is highly concurrent even when the under-

lying block store is bursty and has high latency. To pre-

vent the system from swapping under these conditions, we

use admission control (see Section 3.5). In an ideal sys-

tem, the allocations must be close to the size of the write

buffer and the unused resources must be small to avoid

wasting memory. Figure 9 shows the reservations and al-

locations in the system during a streaming write test. We

observe that with admission control, HydraFS is able to

maintain high memory utilization and only a fraction of

the reserved resources are unused.

Commit Server Processing: Commit server processing

overheads are much lower than file server overheads and

we observe its CPU utilization to be less than 5% of the

file server’s utilization for all the experiments above. This

allows the commit server to generate new versions well in

advance of the file server filling up with dirty metadata,

thus avoiding costly file server stalls.

4.4 Read Ahead Caching

In the following experiments, we generate a synthetic

workload where a client issues sequential reads for 64KB

blocks in a 32GB file. All experiments were performed

with a cold cache and the file system was unmounted be-



 0

 500

 1000

 1500

 2000

 2500

 100  120  140  160  180  200  220  240  260  280

L
a

te
n

c
y
 (

m
s
)

Bandwidth (MB/s)

Figure 10: Read throughput vs. average latency

tween runs. Unless otherwise specified, the read-ahead

window is fixed at 20MB.

To characterize the read behavior, we study how the

read latency varies at different throughput levels. Hydra

responds immediately to read requests when data is avail-

able. In this experiment we vary the offered load to Hydra

by limiting the number of outstanding read requests and

measure the time between submitting the request and re-

ceiving the response. We limit the number of outstanding

read requests by changing the read ahead window from

20MB to 140MB in increments of 15MB.

Figure 10 shows the variation of average latency of read

requests when the Hydra throughput is varied. From the

figure, we observe that the read latency at low throughput

is around 115 ms and increases linearly until the through-

put reaches 200MB/s. At higher throughput levels, the

latency increases significantly. These results show that

the read latencies with Hydra are much higher than other

block store latencies. This implies that aggressive read-

ahead is essential to maintain high read throughput.

Optimizations: As described in Section 3, to maintain

high throughput, we introduced two improvements - Fast

Range Map and B-tree Read Ahead (BTreeRA). For a se-

quential access pattern, once data blocks are read, they

are not accessed again. However, the metadata blocks

(B-tree blocks) are accessed multiple times, often with a

large inter-access gap. Both our optimizations, FRM and

BTreeRA, target the misses of metadata blocks.

Table 2 shows the evolution of the read performance

with introduction of these mechanisms. The FRM opti-

mization reduces multiple accesses to the metadata blocks

leading to a 23% improvement in throughput. BTreeRA

reduces cache misses for metadata blocks by issuing read

ahead for successive spines of the B-tree concurrently

with collecting index data from one spine. Without this

prefetch, the nodes populating the spine of the B-tree must

be fetched when initiating a read. Moreover, the address

Thrpt

(MB/s)
Accesses

Misses

Data Metadata

Base 134.3 486,966 1,577 1,011

FRM 166.1 210,480 871 1,593

FRM+BTreeRA 183.2 211,632 438 945

Table 2: Effect of read path optimizations

of the block at the next level is available only after the cur-

rent block is read from Hydra. For large files, with multi-

ple levels in the tree, this introduces a significant latency,

which would cause a read stall.

To confirm the hypothesis that the throughput improve-

ments are from reduced metadata accesses and cache

misses, Table 2 also shows the number of accesses and

the number of misses in the cache for all three cases. We

make the following observations: first, our assumption

that improving the metadata miss rate has significant im-

pact on read throughput is confirmed. Second, our opti-

mizations add a small memory and CPU overhead but can

improve the read throughput by up to 36%.

5 Related Work

Several existing systems use content-addressable storage

to support enterprise applications. Venti [21] uses fixed-

size blocks and provides archival snapshots of a file sys-

tem, but since it never deletes blocks, snapshots are made

at a low frequency to avoid overloading the storage system

with short-lived files. In contrast, HydraFS uses variable-

size blocks to improve duplicate elimination and creates

file system snapshots more frequently, deleting the oldest

version when a new snapshot is created; this is enabled

by Hydra providing garbage collection of unreferenced

blocks.

Centera [6] uses a cluster of storage nodes to pro-

vide expandable, self-managing archival storage for im-

mutable data records. It provides a file system interface

to the block store through the Centera Universal Access

(CUA), which is similar to the way an access node ex-

ports HydraFS file systems in HYDRAstor. The main

difference is that the entire HydraFS file system image

is managed in-line by storing metadata in the block store

as needed; the CUA keeps its metadata locally and makes

periodic backups of it to the block store in the background.

Data Domain [4, 31] is an in-line deduplicated storage

system for high-throughputbackup. Like HydraFS, it uses

variable-size chunking. An important difference is that

their block store is provided by a single node with RAID-

ed storage, whereas Hydra is composed of a set of nodes,

and uses erasure coding for configurable resilience at the

individual block level.



Deep Store [29] is an architecture for archiving im-

mutable objects that can be indexed by searchable meta-

data tags. It uses variable-size, content-defined chunks

combined with delta compression to improve duplicate

elimination. A simple API allows objects to be stored and

retrieved, but no attempt is made to make objects accessi-

ble through a conventional file system interface.

Many file system designs have addressed provid-

ing high performance, fault-tolerant storage for clients

on a local area network. The Log-Structured File

System (LFS) [23] and Write-Anywhere File Layout

(WAFL) [11] make use of specialized file system layouts

to allow a file server to buffer large volumes of updates

and commit them to disk sequentially. WAFL also sup-

ports snapshots that allow previous file system versions to

be accessed. LFS uses an imap structure to cope with the

fact that block addresses change on every write. WAFL

uses an “inode file” containing all the inodes, and updates

the relevant block when an inode is modified; HydraFS

inodes might contain data and a large number of point-

ers, so they are stored in separate blocks. Neither LFS

nor WAFL support in-line duplicate elimination. Ele-

phant [24] creates new versions of files on every modifi-

cation and automatically selects “landmark versions,” in-

corporating major changes, for long-term retention. The

Low-Bandwidth File System [18] makes use of Rabin

fingerprinting [16, 22] to identify common blocks that

are stored by a file system client and server, to reduce

the amount of data that must be transferred over a low-

bandwidth link between the two when the client fetches

or updates a file.

The technique of building data structures using hash

trees [17] has been used in a number of file systems.

SFSRO [7] uses hash trees in building a secure read-

only file system. Venti [21] adds duplicate elimination to

make a content-addressable block store for archival stor-

age, which can be used to store periodic snapshots of a

regular file system. Ivy [19] and OceanStore [14] build

on top of wide-area content-addressable storage [26, 30].

While HydraFS is specialized for local-area network per-

formance, Ivy focuses on file system integrity in a multi-

user system with untrusted participants, and OceanStore

aims to provide robust and secure wide-area file access.

Pastiche [3] uses content hashes to build a peer-to-peer

backup system that exploits unused disk capacity on desk-

top computers.

To remove the bottleneck of a single file server, it is

possible to use a clustered file system in which several

file servers cooperate to supply data to a single client.

The Google File System [9] provides high availability and

scales to hundreds of clients by providing an API that is

tailored for append operations and permits direct com-

munication between a client machine and multiple file

servers. Lustre [2] uses a similar architecture in a general-

purpose distributed file system. GPFS [25] is a parallel

file system that makes use of multiple shared disks and

distributed locking algorithms to provide high throughput

and strong consistency between clients. In HYDRAstor,

multiple access nodes share a common block store, but

a file system currently can be modified by only a single

access node.

The Frangipani distributed file system [28] has a rela-

tionship with its storage subsystem, Petal, that is similar

to the relationship between HydraFS and Hydra. In both

cases, the file system relies on the block store to be scal-

able, distributed, and highly-available. However, while

HydraFS is written for a content-addressable block store,

Frangipani is written for a block store that allows block

modifications and does not offer duplicate elimination.

6 Future Work

While the back-end nodes in HYDRAstor operate as a co-

operating group of peers, the access nodes act indepen-

dently to provide file system services. If one access node

fails, another access node can recover the file system and

start providing access to it, but failover is neither auto-

matic nor transparent. We are currently implementing en-

hancements to allow multiple access nodes to cooperate

in the management of the same file system image, mak-

ing failover and load-balancing an automatic feature of

the front end.

Currently the file system uses a chunking algorithm

similar to Rabin fingerprinting [22]. We are working

on integrating other algorithms, such as bimodal chunk-

ing [13], that generate larger block sizes for compara-

ble duplicate elimination, thereby increasing performance

and reducing metadata storage overhead.

HydraFS does not yet expose snapshots to users. Al-

though multiple versions of each file system are main-

tained, they are not accessible, except as part of a disaster

recovery effort by system engineers. We are planning on

adding a presentation interface, as well as a mechanism

for allowing users to configure snapshot retention.

Although HydraFS is acceptable as a secondary stor-

age platform for a backup appliance, the latency of file

system operations makes it less suitable for primary stor-

age. Future work will focus on adapting HydraFS for use

as primary storage by using solid state disks to absorb the

latency of metadata operations and improve the perfor-

mance of small file access.

7 Conclusions

We presented HydraFS, a file system for a distributed

content-addressable block store. The goals of HydraFS

are to provide high throughput read and write access



while achieving high duplicate elimination. We presented

the design and implementation of mechanisms that allow

HydraFS to achieve these goals and handle the unique

CAS characteristics of immutable blocks and high la-

tency.

Through our evaluation, we demonstrated that HydraFS

is efficient and supports up to 82% of the block device

throughput for reads and up to 100% for writes. We also

showed that HydraFS performance is acceptable for use

as a backup appliance or a data repository.

A content-addressable storage system, such as

HYDRAstor, provides an effective solution for support-

ing high-performance sequential data access and efficient

storage utilization. Support for a standard file system

API allows existing applications to take advantage of the

efficiency, scalability, and performance of the underlying

block store.
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