
Extending SSD Lifetimes with Disk-Based Write Caches

Gokul Soundararajan∗, Vijayan Prabhakaran, Mahesh Balakrishnan, Ted Wobber
University of Toronto∗, Microsoft Research Silicon Valley

gokul@eecg.toronto.edu, {vijayanp, maheshba, wobber}@microsoft.com

Abstract
We present Griffin, a hybrid storage device that uses a
hard disk drive (HDD) as a write cache for a Solid State
Device (SSD). Griffin is motivated by two observations:
First, HDDs can match the sequential write bandwidth of
mid-range SSDs. Second, both server and desktop work-
loads contain a significant fraction of block overwrites.
By maintaining a log-structured HDD cache and migrat-
ing cached data periodically, Griffin reduces writes to
the SSD while retaining its excellent performance. We
evaluate Griffin using a variety of I/O traces from Win-
dows systems and show that it extends SSD lifetime by a
factor of two and reduces average I/O latency by 56%.

1 Introduction

Over the past decade, the use of flash memory has
evolved from specialized applications in hand-held de-
vices to primary system storage in general-purpose com-
puters. Flash-based Solid State Devices (SSDs) provide
1000s of low-latency IOPS and can potentially eliminate
I/O bottlenecks in current systems. The cost of commod-
ity flash – often cited as the primary barrier to SSD de-
ployment [22] – has dropped significantly in the recent
past, creating the possibility for widespread replacement
of disk drives by SSDs.

However, two trends have a potential to derail the
adoption of SSDs. First, general-purpose (OS) work-
loads are harder on the storage subsystem than hand-held
applications, particularly in terms of write volume and
non-sequentiality. Second, as the cost of NAND flash has
declined with increased bit density, the number of erase
cycles (and hence write operations) a flash cell can tol-
erate has suffered. This combination of a more stressful
workload and fewer available erase cycles reduces useful
lifetime, in some cases to less than one year.

In this paper, we propose Griffin, a hybrid storage de-
sign that, somewhat contrary to intuition, uses a hard

disk drive to cache writes to an SSD. Writes to Griffin
are logged sequentially to the HDD write cache and later
migrated to the SSD. Reads are usually served from the
SSD and occasionally from the slower HDD. Griffin’s
goal is to minimize the writes sent to the SSD without
significantly impacting its read performance; by doing
so, it conserves erase cycles and extends SSD lifetime.

Griffin’s hybrid design is based on two characteristics
observed in block-level traces collected from systems
running Microsoft Windows. First, many of the writes
seen by block devices are in fact overwrites of a small
set of popular blocks. Using an HDD as a write cache
to coalesce overwrites can reduce the write traffic to the
SSD significantly; for the desktop and server traces we
examined, it does by an average of 52%. Second, once
data is written to a block device, it is not read again from
the device immediately; the file system cache serves any
immediate reads without accessing the device. Accord-
ingly, Griffin has a time window within which to coalesce
overwrites on the HDD, during which few reads occur.

A log structured HDD makes for an unconventional
write cache: writes are fast whereas random reads are
slow and can affect the logging bandwidth. By logging
writes to the HDD, Griffin takes advantage of the fact that
a commodity SATA disk drive delivers over 80 MB/s of
sequential write bandwidth, allowing it to keep up with
mid-range SSDs. In addition, hard disks offer massive
capacity, allowing Griffin to log writes for long periods
without running out of space. Since hard disks are very
inexpensive, the cost of the write cache is a fraction of
the SSD cost.

We evaluate Griffin using a simulator and a user-level
implementation with a variety of I/O traces, both from
desktop and server environments. Our evaluation shows
that, for the desktop workloads we studied, our caching
policies can cut down writes to the SSD by approxi-
mately 49% on average, with less than 1% of reads ser-
viced by the slower HDD. For server workloads, the ob-
served benefit is more widely varied, but equally signifi-

cant. In addition, Griffin improves the sequentiality of
the write accesses to the SSD by an average of 15%,
which can indirectly improve the lifetime of the SSD.
Reducing the volume of writes by half allows Griffin to
extend SSD lifetime by at least a factor of two; by addi-
tionally improving the sequentiality of the workload seen
by the SSD, Griffin can extend SSD lifetime even more,
depending on the SSD firmware design. An evaluation of
the performance of Griffin shows that it performs much
better than a regular SSD, where the average I/O latency
is reduced by 56%.

2 SSD Write-Lifetime

Constraints on the amount of data that can be written to
an SSD stem from the properties of NAND flash. Specif-
ically, a block must be erased before being re-written,
and only a finite number of erasures are possible before
the bit error rate of the device becomes unacceptably
high [7, 20]. SLC (single-level cell) flash typically sup-
ports 100K erasures per flash block. However, as SSD
technology moves towards MLC (multi-level cell) flash
that provides higher bit densities at lower cost, the era-
sure limit per block drops as low as 5,000 to 10,000 cy-
cles. Given that smaller chip feature sizes and more bits-
per-cell both increase the likelihood of errors, we can ex-
pect erasure limits to drop further as densities increase.

Accordingly, we define a device write-lifetime, which
is the total number of writes that can be issued to the de-
vice over its lifetime. For example, an SSD with 60 GB
of NAND flash with 5000 erase-cycles per block might
support a maximum write-lifetime of 300 TB (5000 ×
60 GB). However, write-lifetime is unlikely to be optimal
in practice, depending on the workload and firmware.
For example, according to Micron’s data sheet [18], un-
der a specific workload, its 60 GB SSD only has write-
lifetime of 42 TB, which is a reduction in write-lifetime
by a factor of 7. It is conceivable that under a more stress-
ful workload, SSD write-lifetime decreases by more than
an order of magnitude.

Firmware on commodity SSDs can reduce write-
lifetime due to inefficiencies in the Flash Translation
Layer (FTL), which maintains a map between host log-
ical sector addresses and physical flash addresses [14].
The FTL chooses where to place each incoming logical
sector during a write. If the candidate physical block
is occupied with other data, it must be moved and the
block must be erased. The FTL then writes the new data
and adjusts the map to reflect the position of the new
data. While sequential write patterns are easy to han-
dle, non-sequential write patterns can be problematical
for the FTL by requiring data copying in order to free
up space for each incoming write. In the absolute worst
case of continuous 512 byte writes to random addresses,

it may be necessary to move a full MLC flash block
(512 KB) less 512 bytes for each incoming write, reduc-
ing write-lifetime by a factor of 1000. The effect is usu-
ally known as write-amplification [10] to which we must
also add the cost of maintaining even wear across all
blocks. Although the worst-case workload is not likely,
and the FTL can lessen the negative impact of a non-
sequential write workload by maintaining a pool of re-
serve blocks not included in the drive’s advertised capac-
ity, non-sequential workloads will always trigger more
erasures than sequential ones.

It is not straightforward to map between reduced write
workload and increased write-lifetime. Halving the num-
ber of writes will at least double the lifetime. However,
the effect can be greater to the extent it also reduces
write-amplification. Overwrites are non-sequential by
nature. So if overwrites can be eliminated, or out-of-
order writes made sequential, there will be both fewer
writes and less write-amplification. As explored by
Agrawal et al. [1], FTL firmware can differ wildly in its
ability to handle non-sequential writes. A simple FTL
that maps logical sector addresses to physical flash at
the granularity of a flash block will suffer huge write-
amplification from a non-sequential workload, and there-
fore will benefit greatly from fewer of such writes. The
effect will be more subtle for an advanced FTL that does
the mapping at a finer granularity. However, improved
sequentiality will reduce internal fragmentation within
flash blocks, and therefore will both improve wear-
leveling performance and reduce write-amplification.

Write-lifetime depends on the performance of wear-
leveling and the write-amplification for a given work-
load, both of which cannot be measured. However, we
can obtain a rough estimate of write-amplification by
observing the performance difference between a given
workload and a purely sequential one; the degree of ob-
served slowdown should give us some idea of the effec-
tive write-amplification. The product manual for the In-
tel X25-M MLC SSD [13] indicates that this SSD suffers
at least a factor of 6 reduction in performance when a
random-write workload is compared to a sequential one
(sequential write bandwidth of 70 MB/s versus 3.3 K
IOPS for random 4 KB writes). Thus, after wear-leveling
and other factors are considered, it becomes plausible
that practical write-lifetimes, even for advanced FTLs,
can be an order of magnitude worse than the optimum.

3 Overview of Griffin

Griffin’s design is very simple: it uses a hard disk as a
persistent write cache for an MLC-based SSD. All writes
are appended to a log stored on the HDD and eventu-
ally migrated to the SSD, preferably before subsequent
reads. Structuring the write cache as a log allows Grif-

fin to operate the HDD at its fast sequential write mode.
In addition to coalescing overwrites, the write cache also
increases the sequentiality of the workload observed by
the SSD; as described in the previous section, this results
in increased write-lifetime.

Since cost is the single biggest barrier to SSD deploy-
ment [22], we focus on write caching for cheaper MLC-
based SSDs, for which low write-lifetime is a signifi-
cant constraint. MLC devices are excellent candidates
for HDD-based write caching since their sequential write
bandwidth is typically equal to that of commodity HDDs,
at 70-80 MB/s [13].

Griffin increases the write-lifetime of an MLC-based
SSD without increasing total cost significantly; as of this
writing, the cost of a 350 GB SATA HDD is around 50
USD, whereas an 128 GB MLC-based SSD is around
300 USD. In comparison, a 128 GB SLC-based SSD,
which offers higher write-lifetime than the MLC variant
currently costs around 4 to 5 times as much.

Griffin also increases write-lifetime without substan-
tially altering the reliability characteristics of the MLC
device. While the HDD write cache represents an ad-
ditional point of failure, any such event leaves the file
system intact on the SSD and only results in the loss of
recent data. We discuss failure handling in Section 5.3.

3.1 Other Hybrid Designs
Other hybrid designs using various combinations of
RAM, non-volatile RAM, and rotating media are clearly
possible. Since a thorough comparative analysis of all
the options is beyond the scope of this paper, we briefly
describe a few other designs and compare them qualita-
tively with Griffin.
• NVRAM as read cache for HDD storage: Given
its excellent random read performance, NVRAM (e.g.,
an SSD) can work well as a read cache in front of a
larger HDD [17, 19, 24]. However, a smaller NVRAM is
likely to provide only incremental performance benefits
as compared to an OS-based file cache in RAM, whereas
a larger NVRAM cache is both costly and subject to wear
as the cache contents change. Any design that uses rotat-
ing media for primary storage will scale-up in capacity
with less cost than Griffin. However, this cost difference
is likely to decline as flash memory densities increase.
• NVRAM as write cache for SSD storage: The Grif-
fin design can accommodate NVRAM as a write cache
in lieu of HDD. The effectiveness of using NVRAM de-
pends on two factors: 1) whether SLC or MLC flash is
used; and, 2) the ratio of reads that hit the write cache
and thus disrupt sequential logging there. The use of
NVRAM can also lead to better power savings. How-
ever, all these benefits come at a higher cost than Griffin
configured with a HDD cache, especially if SLC flash

is used for write caching. Later, we evaluate the Grif-
fin’s performance with both SLC and MLC write caches
(Section 6.4) and explore the minimum write cache size
required (Section 7).
• RAM as write cache for SSD storage: RAM can
make for a fast and effective write cache, however the
overriding problem with RAM is that it is not persis-
tent (absent some power-continuity arrangements). In-
creasing the RAM size or the timer interval for periodic
flushes may reduce the number of writes to storage but
only at the cost of a larger window of vulnerability dur-
ing which a power failure or crash could result in lost
updates. Moreover, a RAM-based write cache may not
be effective for all workloads; for example, we later show
that for certain workloads (Section 6.1.2), over 1 hour of
caching is required to derive better write savings; volatile
caching is not suitable for such long durations.

3.2 Understanding Griffin Performance
The key challenge faced by Griffin is to increase the
write-lifetime of the SSD while retaining its performance
on reads. Write caching is a well-known technique for
buffering repeated writes to a set of blocks. However,
Griffin departs significantly from conventional caching
designs, which typically use small, fast, and expensive
media (such as volatile RAM or non-volatile battery-
backed RAM) to cache writes against larger and slower
backing stores. Griffin’s HDD write cache is both in-
expensive and persistent and can in fact be larger than
the backing SSD; accordingly, the flushing of dirty data
from the write cache to the SSD is not driven by either
capacity constraints or synchronous writes.

However, Griffin’s HDD write cache is also slower
than the backing SSD for read operations, which trans-
late into high latency random I/Os on the HDD’s log. In
addition, reads can disrupt the sequential stream of writes
received by the HDD, reducing its logging bandwidth by
an order of magnitude. As a result, dirty data has to be
flushed to the SSD before it is read again, in order to
avoid expensive reads from the HDD.

Griffin’s performance is thus determined by compet-
ing imperatives — data must be held in the HDD to
buffer overwrites, and data must be flushed from the
HDD to prevent expensive reads. We quantify these with
the following two metrics:
• Write Savings: This is the percentage of total writes
that is prevented from reaching the SSD. For example,
if the hybrid device receives 60M writes and the SSD
receives 45M of them, the write savings is 25%. Ideally,
we want the write savings to be as high as possible.
• Read Penalty: This is the percentage of total reads
serviced by the HDD write cache. For example, if the
hybrid device receives 50M reads and the HDD receives

1M of these reads, the read penalty is 2%. Ideally, we
want the read penalty to be as low as possible.

There will be no read penalty if an oracle informs Grif-
fin in advance of data to be read; all such blocks can
be flushed to the SSD before an impending read. With
no read penalty, the maximum write savings possible is
workload-dependent and is essentially a measure of the
frequency of consecutive overwrites without intervening
reads. In the worst case, there will be no write savings
if there are no overwrites, i.e., no block is ever written
consecutively without an intervening read. An idealized
HDD write cache achieves the maximum write savings
with no read penalty for any workload.

To understand the performance of an idealized HDD
write cache, consider the following sequence of writes
and reads to a particular block: WWWRWW . Without
a write cache, this sequence results in one read and five
writes to the SSD. An idealized HDD write cache would
coalesce consecutive writes and flush data to the SSD
immediately before each read, resulting in a sequence of
operations to the SSD that contains two writes and one
read: WRW . Accordingly, the maximum write savings
in this simple example is 3/5 or 60%.

Griffin attempts to achieve the performance of an ide-
alized HDD write cache by controlling policy along two
dimensions: what data to cache, and how long to cache
it for. The choice of policy in each case is informed by
the characteristics of real workloads, which we will ex-
amine in the next section. Using these different policies,
Griffin is able to achieve different points in the trade-off
curve between read penalty and write savings.

4 Trace Analysis

In this section, we explore the benefits of HDD-based
write caching by analyzing traces from desktop and
server environments. Our analysis has two aspects. First,
we show that an idealized HDD-based write cache can
provide significant write savings for these traces; in other
words, overwrites commonly occur in real-world work-
loads. Second, we look for spatial and temporal pat-
terns in these overwrites that can help determine Griffin’s
caching policies.

4.1 Description of Traces
Our desktop I/O traces are collected from desktops
and laptops running Windows Vista, which were instru-
mented using the Windows Performance Analyzer. Al-
though we analyzed several desktop traces, we limit our
presentation to 12 traces from three desktops due to
space limitations.

Most of our server traces are from a previous study by
Narayanan et al. [21]. These traces were collected from

Trace Ti
m

e
(h

r)

N
um

be
r

of
4

K
B

I/
O

s

R
ea

d
(%

)

W
ri

te
(%

)

M
ax

W
ri

te
Sa

vi
ng

s(
%

)

O
ve

rw
ri

te
s

in
to

p
1%

(%
)

R
ea

ds
in

to
p

1%

D-1A 114 14 M 43 57 46 87 4
D-1B 70 29 M 45 55 39 87 2
D-1C 153 36 M 50 50 52 88 2
D-1D 27 07 M 40 60 64 84 1
D-2A 99 39 M 49 51 39 71 3
D-2B 105 30 M 48 52 36 63 2
D-2C 149 17 M 44 56 58 52 2
D-2D 103 22 M 56 44 52 47 1
D-3A 52 13 M 56 44 43 68 2
D-3B 105 33 M 50 50 56 72 4
D-3C 96 37 M 52 48 47 77 6
D-3D 55 16 M 51 49 51 78 4
S-EXCH 0.25 209 K 59 41 42 34 0
S-PRXY1 167 543 M 65 35 57 99 63
S-SRC10 168 408 M 47 53 14 11 2
S-SRC22 176 16 M 37 63 47 8 2
S-STG1 168 23 M 93 7 93 41 0
S-WDEV2 166 369 K 1 99 94 10 0

Table 1: Windows Traces.

36 different volumes from 13 servers running Windows
Server 2003 SP2. Out of 36 different traces, we used
only the most write-heavy data volume traces that have
at least one write for every two reads, and have more than
100,000 writes in total (read-intensive workloads already
work well on SSDs and do not require write caching).
In addition, we also used a Microsoft Exchange server
trace, which was collected from a RAID controller man-
aging a terabyte of data.

Table 1 lists the traces we used for the analysis, where
the desktop traces are prefixed by a “D” and server traces
by an “S”. D-1, D-2, and D-3 represent the three desktops
that were traced. EXCH, PRXY1, SRC10/22, STG1,
and WDEV2 correspond to traces from a Microsoft Ex-
change server, firewall or web proxy, source control,
web staging, and a test web server. For each trace, the
columns 2-5 show the total tracing time, number of I/Os,
and read-write percentage.

All the traces contain block-level reads and writes be-
low the NTFS file system cache. Each I/O event specifies
the time stamp (in ms), disk number, logical sector num-
ber, number of sectors transferred, and type of I/O. Even
though the desktop traces contain file system level in-
formation such as which file or directory a block access
belongs to, the server traces do not have them.

4.2 Ideal Write Savings
Our first objective in the trace analysis is to answer
the following question: do desktop and server I/O traf-
fic have enough overwrites to coalesce and if so, what
are the maximum write savings provided by an idealized

 0

 25

 50

 75

 100

 0.1 1 10 100

Pe
rc

en
ta

ge
 o

f
ov

er
w

ri
te

s

Percentage of written blocks

D-1A
S-EXCH

Figure 1: Distribution of Block Overwrites.

HDD write cache? The 6th (highlighted) column in the
Table 1 shows the maximum write savings achieved by
an idealized write cache that incurs no read penalty.

From the 6th column of Table 1, we observe that an
idealized HDD write cache can cut down writes to the
SSD significantly. For example, for desktop traces, the
maximum write saving is at least 36% (for D-2B) and
as much as 64% (for D-1D). The server workloads ex-
hibit similar savings; ideal write savings vary from 14%
(S-SRC10) to 94% (S-WDEV2). On an average, desk-
top and server traces offer write savings of 48.58% and
57.83% respectively. Based on this analysis, the first ob-
servation we make is: desktop and server workloads con-
tain a high degree of overwrites, and an idealized HDD
write cache with no read penalty can achieve significant
write savings on them.

Given that an idealized HDD-based write cache has
high potential benefits, our next step is to explore the
two important policy issues in designing a practical write
cache: what do we cache, and how long do we cache it?
We investigate these questions in the following sections.

4.3 Spatial Access Patterns
If block overwrites exhibit spatial locality, we can
achieve high write savings while caching fewer blocks,
reducing the possibility of reads to the HDD. Specifi-
cally, we want to find out if some blocks are overwritten
more frequently than others. To answer this question, we
studied the traces further and make two more observa-
tions. First, there is a high degree of spatial locality in
block overwrites; for example, on an average 1% of the
most written blocks contribute to 73% and 34% of the
total overwrites in desktop and server traces.

Figure 1 shows the spatial distribution of overwrites
for two sample traces: D-1A and S-EXCH. On y-axis,
we plot the cumulative distribution of overwrites and in
x-axis, we plot the percentage of blocks written. We
can notice that a small fraction of the blocks (e.g., 1%)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1 10 100 1000 10000 100000

N
um

be
r

of
 r

ea
ds

 o
r

w
ri

te
s

1% of most written blocks

Write
Read

Figure 2: Reads in Write-Heavy Blocks.

Rank Filenames
1 C:\Outlook.ost
2 C:\...\Search\...\Windows.edb
3 C:\$Bitmap
4 C:\Windows\Prefetch\Layout.ini
5 C:\Users\<name>\NTUSER.DAT
6 C:\$Mft

Table 2: Top Overwritten Files in Desktops.

contribute to a large percentage of overwrites (over 70%
in D-1A and 33.5% in S-EXCH). For all the traces, we
present the percentage of total overwrites that occur in
the top 1% of the most overwritten blocks in 7th column
of Table 1. We can notice that a small number of blocks
absorb most of the overwrite traffic.

The second observation we make is that the blocks that
are most heavily written receive very few reads. Figure 2
presents the total number of writes and reads in the most
heavily written blocks from trace D-1A. We collected
the top 1% of the most written blocks and plotted a his-
togram of the number of writes and reads issued to those
blocks. For all the traces, the percentage of total reads
that occur in the write-heavy blocks is presented in the
last column of Table 1. On average, the top 1% of the
blocks in the desktop traces receive 70% of overwrites
but only 2.7% of all reads; for the server traces, they re-
ceive 0-2% of the reads, excepting S-PRXY1.

To gain some insight into the file-level I/O patterns that
cause spatial clustering of overwrites, we compiled a list
of the most overwritten files for desktops and present it
in Table 2. Not surprisingly, files such as mail boxes,
search indexes, registry files, and file system metadata
receive most of the overwrites. Some of these files are
small enough to fit in the cache (e.g., bitmap or registry
entries) and therefore, incur very few reads. We do not
report on the most overwritten files in the server traces
because they did not contain file-level information. We
believe that a similar pattern will be present in other op-
erating systems where majority of overwrites are issued
to application-level metadata (e.g., search indexes) and

 0

 25

 50

 75

 100

0 10 30 60 300 600 900 1800 3600 Inf

C
um

ul
at

iv
e

 T
im

e
In

te
rv

al
 (

%
)

Histogram Buckets (seconds)

WAW
RAW

Figure 3: WAW and RAW Time Intervals.

system-level metadata (e.g., bitmaps).
At a first glance, such a dense spatial locality of over-

written blocks appears as an opportunity for various op-
timizations. First, it might suggest that a small cache of
few tens of megabytes can be used to handle only the
most frequently overwritten blocks. However, separat-
ing blocks in this fashion can break the semantic associ-
ations of logical blocks (for example, within a file) and
make recovery difficult (Section 5.3). Second, a Grif-
fin implementation at the file system-level (Section 7)
can easily relocate heavily overwritten files to the HDD.
However, when Griffin is implemented as a block device,
which is much more tractable in practice, it becomes
quite difficult to make use of overwrite-locality lacking
file system-level and application-level knowledge.

4.4 Temporal Access Patterns
As mentioned earlier, it is also important to find out how
long we can cache a block in the HDD log without incur-
ring expensive reads. To answer this question, we must
first understand the temporal access patterns of I/O traces
and for that purpose, we define two useful metrics.
Write-After-Write (WAW): WAW is the time interval be-
tween two consecutive writes to a block before an inter-
vening read to the same block.
Read-After-Write (RAW): RAW is the time interval be-
tween a write and a subsequent read to the same block.

Figure 3 presents the cumulative distribution of the
WAW time intervals (indicated by black squares) and the
RAW time intervals (indicated by white squares) from 10
seconds to 1 hour for D-1A. Interval larger than 1 hour
is indicated by “Inf” on the x-axis. Table 3 presents the
WAW and RAW distribution for all the traces.

From Figure 3 and Table 3, we notice that a large per-
centage of the WAW intervals on desktops are relatively
small. In other words, most of the consecutive writes to
the same block occur within a short period of time; for
example, on average 54% of the total overwrites occur

WAW RAW

Trace 30
s(

%
)

60
s(

%
)

90
0

s(
%

)

36
00

s(
%

)

30
s(

%
)

60
s(

%
)

90
0

s(
%

)

36
00

s(
%

)

D-1A 68 74 84 88 15 18 53 65
D-1B 71 76 87 90 12 16 49 64
D-1C 69 73 81 86 8 9 19 30
D-1D 76 80 89 93 17 18 27 37
D-2A 51 55 69 75 4 6 22 58
D-2B 38 44 62 70 7 8 13 25
D-2C 28 34 59 68 9 9 16 21
D-2D 25 30 56 66 6 7 16 31
D-3A 40 53 71 78 20 22 31 39
D-3B 57 63 71 75 8 10 27 35
D-3C 60 66 73 77 7 8 40 48
D-3D 62 68 75 79 9 16 50 58
S-EXCH 46 54 100 100 9 16 50 58
S-PRXY1 52 64 98 98 12 37 100 100
S-SRC10 2 2 9 10 0 0 4 6
S-SRC22 15 16 17 85 3 3 14 14
S-STG1 6 7 27 41 1 1 9 9
S-WDEV2 7 20 23 23 0 0 0 0

Table 3: WAW/RAW Distribution

within the first 30 seconds of the previous write. How-
ever, this trend is not so clear in servers, where we see
widely varying behaviors, most likely depending upon
the specific server workloads. But, we still see benefits
from long-term caching: on average, 60% of the over-
writes in the server traces occur within an hour of a pre-
vious write.

In addition, we also notice that the time between a
write to a block and a subsequent read to the same block
(i.e., RAW) is relatively long. For example, only an aver-
age of 30% the written data is read within 900 seconds of
a block write. As with the WAW results, the RAW distri-
bution for the server traces also varies depending on the
specific workload.

We believe that the time interval from a write to a sub-
sequent read is large due to large OS-level buffer caches
and a smaller percentage of most overwritten blocks; as
a result, the buffer cache can service most reads that oc-
cur soon after a write, exposing only later reads that are
issued after the block evict to the block device. These re-
sults are similar to the WAW and RAW results presented
in earlier work by Hsu et al. [9].

We calculated the WAW and RAW time intervals for
the most overwritten files from Table 2. Even though
the WAW distribution was similar to the overall traces,
RAW time intervals were longer. For example, for the
frequently overwritten files, only an average of 21% of
the written data is read within 900 seconds of a write.

From this temporal analysis, we make two observa-
tions that are important in determining the duration of
caching in HDD: first, intervals between writes and sub-
sequent overwrites are typically short for desktops; sec-

Trace Ti
m

e
(h

r)

N
um

be
r

of
4

K
B

I/
O

s

R
ea

d
(%

)

W
ri

te
(%

)

M
ax

W
ri

te
Sa

vi
ng

s(
%

)

O
ve

rw
ri

te
s

in
to

p
1%

(%
)

R
ea

ds
in

to
p

1%
(%

)

D-DEV 164 4 M 27 73 62 72 0
S-SVN 165 241 K 32 68 81 50 0
S-WEB 5 7 M 91 9 81 21 0

Table 4: Linux Traces.

WAW RAW

Trace 30
s(

%
)

60
s(

%
)

90
0

s(
%

)

36
00

s(
%

)

30
s(

%
)

60
s(

%
)

90
0

s(
%

)

36
00

s(
%

)

D-DEV 9 24 35 45 6 24 84 85
S-SVN 23 32 53 67 2 2 6 10
S-WEB 5 22 46 100 5 9 54 95

Table 5: Linux WAW/RAW Distribution

ond, the time interval between a block write and its con-
secutive read is large (tens of minutes).

These observations provide us with insight on how
long to cache blocks in the HDD before migrating them
to the SSD: long enough to capture a substantial number
of overwrites (i.e., higher than some fraction of WAW in-
tervals) but not long enough to receive a substantial num-
ber of reads to the HDD (i.e., lower than some fraction of
RAW intervals). Using different values for the migration
interval clearly allows Griffin to trade-off write savings
against read penalty.

4.5 Results from Linux

We also examined Linux block-level traces to find out if
they exhibit similar behavior. We used traces from pre-
vious work by Bhadkamkar et al. [3]. Table 4 presents
results from 3 traces: D-DEV is a trace from a develop-
ment environment; S-SVN consists of traces from SVN
and Wiki server; and S-WEB contains traces from a web
server. We can see certain similarities between the Linux
and Windows traces. For example, in the desktop trace,
coalescing of overwrites leads to only 38% of the total
writes going to the SSD (and thereby resulting in 62%
write savings). Also, we can notice spatial locality in
overwrites, with no read I/Os in the top 1% of the most
written blocks. Table 5 presents the distribution of WAW
and RAW time intervals as was presented for the Win-
dows traces. Unlike Windows, only 50% or less of the
overwrites happen within 1 hour, which motivates longer
caching time periods in the HDD. Although shown here
for completeness, we do not use Linux traces for the rest
of the analysis.

4.6 Summary

We find that block overwrites occur frequently in real-
world desktop and server workloads, validating the cen-
tral idea behind Griffin. In addition, overwrites exhibit
both spatial and temporal locality, providing useful in-
sight into practical caching policies that can maximize
write savings without incurring a high read penalty.

5 Prototype Design and Implementation

Thus far, we have discussed HDD-based write caching in
abstract terms, with a view to defining policies that indi-
cate what data to cache in the HDD and when to move it
to the SSD. The only metrics of concern have been write
savings and read penalty.

However, Griffin’s choice and implementation of poli-
cies are also heavily impacted by other real-world fac-
tors. An important consideration is migration overhead,
both direct (total bytes) and indirect (loss of HDD se-
quentiality). For example, a migration schedule provided
by a hypothetical oracle may be optimal from the stand-
point of write savings and read penalty, but might require
data to be migrated constantly in small increments, de-
stroying the sequentiality of the HDD’s access patterns.

Another major concern is fault tolerance; the HDD in
Griffin represents an extra point of failure, and certain
policies may leave the hybrid system much more unreli-
able than an unmodified SSD. For example, a migration
schedule that pushes data to the SSD while leaving asso-
ciated file system metadata on the HDD would be very
vulnerable to data loss.

Keeping these twin concerns of migration overhead
and fault tolerance in mind, Griffin uses two mechanisms
to support policies on what data to cache and how long
to cache it: overwrite ratios and migration triggers.

5.1 Overwrite Ratios

Griffin’s default policy is full caching, where the HDD
caches every write that is issued to the logical address
space. An alternate policy is selective caching, where
only the most overwritten blocks are cached in the HDD.
In order to implement selective caching, Griffin com-
putes an overwrite ratio for each block, which is the ratio
of the number of overwrites to the number of writes that
the block receives. If the overwrite ratio of a block ex-
ceeds a predefined value (which we call the overwrite
threshold), it is written to the HDD log. Full caching
is enabled simply by setting the overwrite threshold to
zero. As the overwrite threshold is increased, only those
blocks which have a higher overwrite ratio – as a result
of being frequently overwritten – are cached.

Selective caching has the potential to lower read
penalty, as Section 4.3 showed, and to reduce the amount
of data migrated. However, an obvious downside of se-
lective caching is its high overhead; it requires Griffin to
compute and store per-block overwrite ratios. Addition-
ally, as we will shortly discuss, selective caching also
complicates recovery from failures.

5.2 Migration Triggers

Griffin’s policy on how long to cache data is deter-
mined not by per-block time values, which would be
prohibitively expensive to maintain and enforce, but by
coarse-grained triggers that cause the entire contents of
the HDD cache to be flushed to the SSD. Griffin supports
three types of triggers:

Timeout Trigger: This trigger fires if a certain time
elapses without a migration. The main advantages of this
trigger are that it is simple and predictable. It also bounds
the recency of data lost due to HDD failure; a timeout
value of 5 minutes will ensure that no write older than
5 minutes will be lost. However, since it does not react
to the workload, certain workloads can incur high read
penalties.

Read-Threshold Trigger: The read-threshold trigger
fires when the measured read penalty since the last mi-
gration goes beyond a threshold. The advantage of such
an approach is that it allows the read penalty, which could
be a reason for Griffin’s performance hit, to be bounded.
If used in isolation, however, the read-penalty trigger can
be subject to pathological scenarios; for example, if data
is never read from the device, the measured read penalty
will stay at zero and the data will never be moved from
the HDD to the SSD. This can result in the HDD running
out of space, and also leave the system more vulnerable
to data loss on the failure of the HDD.

Migration-Size Trigger: The migration-size trigger
fires when the total size of migratable data exceeds a cer-
tain size. It is useful in bounding the quantity of data lost
on HDD failure. On its own, this trigger is inadequate in
ensuring low read penalties or constant migration rates.

Used in concert, these triggers can enable complex mi-
gration policies that cover all bases: for example, a pol-
icy could state that the read penalty should never be more
than 5%, and that no more than 100 MB or 5 minutes
worth of data should be lost if the HDD fails.

The actual act of migration is very quick and simple;
data is simply read sequentially from the HDD log and
written to the SSD. Since the log and the actual file sys-
tem are on different devices, this process does not suf-
fer from the performance drawbacks of cleaning mecha-
nisms in log-structured file systems [26], where shuttling
between the log and the file system on the same device
can cause random seeks.

5.3 Failure Handling

Since Griffin uses more than one device to store data,
failure recovery is more involved than on a single device.

Power Failures. Power failures and OS crashes can
leave the storage system state distributed across the HDD
log and the SSD. Recovering the state from the HDD log
to the primary SSD storage is simple; Griffin leverages
well-developed techniques from log-structured and jour-
naling systems [8, 26] for this purpose. On a restart after
a crash, Griffin reads the blockmap that stores the log-
block to SSD-block mapping and restores the data that
were issued before the system crash.

Device Failures. The HDD or SSD can fail irrecov-
erably. Since SSD is the primary storage, its failure is
simply treated as the failure of the entire hybrid storage,
even though the recent writes to the log can be recov-
ered from the HDD. HDD failure can result in the loss of
writes that are logged to the disk but not yet migrated to
the SSD. The magnitude of the loss depends on both the
overwrite ratio and the migration triggers used.

In full caching, since every write is cached, the amount
of lost data can be high. However, full caching exports a
simple failure semantics; that is, every data block that is
available from the SSD is older than every missing write
from the HDD. This recovery semantics, where the most
recent data writes are lost, is simple and well-understood
by file systems. In fact, this can happen even in a single
device if the data stored on the device’s buffer cache is
lost due to say, a power failure.

On the other hand, selective caching minimizes the
amount of data loss because it writes fewer blocks in the
HDD. However, the semantics of the recovered data is
more complex and can lead to unexpected errors: that is,
some of the data that is present in the SSD might be more
recent than the data that is lost from the HDD because of
selective caching.

The migration triggers used directly impact the
amount of data loss, as explained in the previous sub-
section. Timeout and migration-size triggers can be used
to tightly bound the recency and quantity of lost data.

5.4 Prototype

We implemented a trace-driven simulator and a user-
level implementation for evaluating Griffin. The sim-
ulator is used to measure the write savings, HDD read
penalties, and migration overheads, whereas the user-
level implementation is used for obtaining real latency
measurements by issuing the I/Os from the trace to an
actual HDD/SSD combo using raw device interfaces.

On a write to a block, Griffin redirects the I/O to the
tail of the HDD log and records its new location in an
internal in-memory map. The recent contents of the in-

memory map are periodically flushed to the HDD for re-
covery purposes. On a read to the block, Griffin reads the
latest copy of the block from the appropriate device.

Whenever the chosen migration trigger fires, the
cached data is migrated from the HDD to the SSD. In
order to identify the mapping between the log writes
and the logical SSD blocks, Griffin reads the blockmap
from the HDD (if it is not already present in memory)
and reconstructs the mapping. When migrating, Griffin
reads the log contents as sequentially as possible, skip-
ping only the older versions of the data blocks, sorts the
logged data based on their logical addresses and writes
them back to the SSD. As we show later, this migration
improves the sequentiality of the data writes to the SSD.

Even though writes are logged sequentially, the HDD
may incur rotational latency. Such rotational latencies
can be minimized either by using a small buffer (e.g.,
128 KB) to cache writes before writing them to the HDD
or by using new mechanisms such as range writes [2].

6 Evaluation

6.1 Policy Evaluation
Although we have several caching and migration poli-
cies, we must pick those that are not only effective in
reducing the SSD writes but also efficient, practical, and
high performing. In this section, we analyze all the poli-
cies and pick those that will be used for the evaluation of
write savings and performance.

6.1.1 Caching Policies

We evaluate the full and selective caching policies by
running different traces through the trace-driven simu-
lator, for different overwrite thresholds; a value of zero
for the threshold corresponds to full caching. We then
measure the write savings and the read penalty. We dis-
able migrations in these experiments, to compare their
performance independent of migration policies.

Figure 4a shows the write savings on y-axis for differ-
ent traces on x-axis. Each stacked bar per trace plots the
cumulative write savings for a specific overwrite thresh-
old. From the figure, we notice that using an overwrite
threshold can lower write savings, sometimes substan-
tially as in the server traces.

Figure 4b plots the read penalty on y-axis, where each
stacked bar per trace plots the percentage of total reads
that hit the HDD for the corresponding overwrite thresh-
old. We observe that a high overwrite threshold has the
advantage of eliminating a large fraction of HDD reads.

From Figures 4a and 4b, it is apparent that full caching
has the advantage of providing the maximum write sav-
ings, but suffers from a higher read penalty as well. It

is important to note, however, that the read penalty re-
ported in Figure 4b is an upper bound on the actual read
penalty, since in this experiment data is never migrated
from the HDD and all reads to a block that occur after
a preceding write must be served from the HDD. In ad-
dition, as described in Section 5.1, a non-zero value on
the overwrite threshold comes at a high overhead, requir-
ing Griffin to compute and maintain per-block overwrite
ratios. It also complicates recovery from failures.

These factors lead us to the conclusion that full
caching wins in most cases and therefore, in the remain-
ing experiments, we use full caching exclusively.

6.1.2 Migration Policies

Next, we evaluate different migration policies using the
trace-driven simulator. In addition to the write sav-
ings, we also measure the inter-migration interval, read
penalty, and migration sizes. We start by plotting the
write savings for timeout triggers in Figure 5a. We ob-
serve that logging for 15 minutes (900 s) gives most of
the write savings (over 80% in nearly all cases). For
some traces, such as S-STG1, over 1 hour of caching
is required to derive better write savings. The durability
and large size of the HDD cache allows us to meet such
long caching requirements; alternative mechanisms such
as volatile in-SSD caches are not large enough to hold
writes for more than 10s of seconds.

We also show the read penalty for different timeout
values in Figure 5b. We find that the read penalty is low
(less than 20%) in most cases except one (S-PRXY1).
In particular, read penalty is much lower than the no-
migration upper bound reported in Figure 4b, underlin-
ing the fact that full caching is not hampered by high
read penalties because of frequent migrations. In addi-
tion, we also find that timeout-based migration bounds
the migration size. The average migration size varied be-
tween 91 MB to 344 MB for timeout values of 900 to
3600 seconds.

Figure 6a shows the write savings for read-threshold
triggers. Even a tight read-threshold bound of 1% pro-
duces write savings similar to those for timeout triggers
for most traces. However, the drawback of a smaller
read-threshold is frequent migration. Figure 6b plots the
average time between two consecutive migrations as a
log scale on y-axis for various traces and read penalties.
We observe that for most traces, a smaller read-threshold
triggers more frequent migrations, separated by as low as
6 seconds as in S-PRXY1. Interestingly, for some traces
such as S-WDEV2, which has a very small percentage
of reads, even a small read-trigger such as 1% never fires
and therefore, the data remains on HDD cache for a long
time. As explained earlier (Section 5.3), such behavior
increases the magnitude of data loss on HDD failure. The

Overwrite threshold 0.5
Overwrite threshold 0.25
Overwrite threshold 0

Overwrite threshold 0.95

D
−

2C

D
−

2D

D
−

3A

D
−

3B

D
−

3C

D
−

3D

S
−

E
X

C
H

S
−

P
R

X
Y

1

S
−

S
R

C
10

S
−

S
R

C
22

S
−

S
T

G
1

S
−

W
D

E
V

2

(p
er

ce
nt

ag
e

of
 to

ta
l w

rit
es

)

Traces

S
S

D
 w

rit
e

sa
vi

ng
s

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

D
−

1A

D
−

1B

D
−

1C

D
−

1D

D
−

2A

D
−

2B

(a) Write Savings

Overwrite threshold 0.5
Overwrite threshold 0.25
Overwrite threshold 0

Overwrite threshold 0.95

 0

 100

D
−

1A

D
−

1B

D
−

1C

D
−

1D

D
−

2A

D
−

2B

D
−

2C

D
−

2D

D
−

3A

D
−

3B

D
−

3C

D
−

3D

S
−

E
X

C
H

S
−

P
R

X
Y

1

S
−

S
R

C
10

S
−

S
R

C
22

S
−

S
T

G
1

S
−

W
D

E
V

2

H
D

D
 r

ea
d

pe
na

lty
(p

er
ce

nt
ag

e
of

 to
ta

l r
ea

ds
)

Traces

 60

 40

 20

 80

(b) Read Penalty

Figure 4: Write Savings and Read Penalty Under Full and Selective Caching.

migration size varied widely from an average of 129 MB
to 1823 MB for 1% to 10% read-thresholds.

Since timeout-based migration was also bounding the
migration size, we simplified our composite trigger to
consist of a timeout-based trigger combined with a read-
threshold trigger. For the rest of the analysis, we use full
caching with the composite migration trigger.

6.2 Increased Sequentiality
One of the additional benefits of aggressive write caching
is that as writes get accumulated for random blocks, the
sequentiality of writes to the SSD increases. Such in-
creased sequentiality in write traffic is an important fac-
tor in improving the performance and lifetime of SSDs
as it reduces write amplification [10].

Figure 7 plots the percentage of sequential page writes
sent to the SSD with and without Griffin, on the desktop
and server traces. We use the trace-driven simulator to
obtain these results. We count a page write as sequential
if the preceding write occurs to an adjacent page. For
most traces, Griffin substantially increases the sequen-
tiality of writes observed by the SSD.

6.3 Lifetime Improvement
As mentioned in Section 2, it is not straightforward to
compute the exact lifetime improvement from write sav-
ings as it depends heavily on the workload and flash
firmware. However, given the write I/O accesses, we can
find the lower bound and upper bound of the flash block
erasures, assuming a perfectly optimal and an extremely
simple FTL, respectively.

We ran all the traces on our simulator with full caching
and composite migration trigger. The I/O writes are fed
into two FTL models to calculate the erasure savings.
Ideal FTL assumes a page-level mapping and issues all

writes sequentially, incurring fewer erasures. Therefore,
erasure savings are smaller on ideal FTL because it is
already good at reducing erasures. Simple FTL uses a
coarse-grained block-level mapping, where if a write is
issued to a physical page that cannot be overwritten, then
the block is erased. Based on these models, Figure 8
presents the SSD block-erasure savings, which can di-
rectly translate into lifetime improvement.

6.4 Latency Measurements

Finally, we measure Griffin’s performance on real HDDs
and SSDs using our user-level implementation. We use
four different configurations for Griffin’s write cache: a
slow HDD, a fast HDD, a slow SSD, and a fast SSD.
In all the measurements, an MLC-based SSD was used
as the primary store. We used the following devices: a
Barracuda 7200 RPM HDD, a Western Digital 10K RPM
HDD, an Intel X25-M 80 GB SSD with MLC flash, and
an Intel X25-E 32 GB SSD with SLC flash with a se-
quential write throughput of 80 MB/s, 118 MB/s, 70
MB/s, and 170 MB/s respectively. When MLC-based
SSD is used for write caching, we used Intel X25-M
SSDs as the write cache as well as the primary storage.

Since each trace is several days long, we picked only
2 hours of I/Os that stress the Griffin framework. Specif-
ically, we selected two 2-hour segments, T1 and T2, out
of all the desktop traces that have a large number of total
reads and writes per second that hit the cache. T2 also
happened to contain the most number of I/Os in a 2 hour
segment. These two trace segments represent I/O streams
that stress Griffin to a large extent. We ran each of these
trace segments under full caching with a migration time-
out of 900 seconds; Griffin’s in-memory blockmap was
flushed every 30 seconds. The average migration sizes
are 2016 MB and 2728 MB for T1 and T2.

Figure 9 compares the latencies (relative to the de-

Migration timeout 3600 s

Migration timeout 900 s
Migration timeout 1800 s

D
−

3D

S
−

E
X

C
H

S
−

P
R

X
Y

1

S
−

S
R

C
10

S
−

S
R

C
22

S
−

S
T

G
1

S
−

W
D

E
V

2

(p
er

ce
nt

ag
e

of
 to

ta
l w

rit
es

)

Traces

S
S

D
 w

rit
e

sa
vi

ng
s

 0

 20

 40

 60

 80

 100

D
−

1A

D
−

1B

D
−

1C

D
−

1D

D
−

2A

D
−

2B

D
−

2C

D
−

2D

D
−

3A

D
−

3B

D
−

3C

(a) Write Savings

Migration timeout 3600 s

Migration timeout 900 s
Migration timeout 1800 s

D
−

3D

S
−

E
X

C
H

S
−

P
R

X
Y

1

S
−

S
R

C
10

S
−

S
R

C
22

S
−

S
T

G
1

S
−

W
D

E
V

2

(p
er

ce
nt

ag
e

of
 to

ta
l r

ea
ds

)

Traces

H
D

D
 r

ea
d

pe
na

lty

 0

 20

 40

 60

 80

 100

D
−

1A

D
−

1B

D
−

1C

D
−

1D

D
−

2A

D
−

2B

D
−

2C

D
−

2D

D
−

3A

D
−

3B

D
−

3C

(b) Read Penalty

Figure 5: Write Savings and Read Penalty in Timeout-based Migration.

HDD reads 1%
HDD reads 5%
HDD reads 10%

D
−

3D

S
−

E
X

C
H

S
−

P
R

X
Y

1

S
−

S
R

C
10

S
−

S
R

C
22

S
−

S
T

G
1

S
−

W
D

E
V

2

(p
er

ce
nt

ag
e

of
 to

ta
l w

rit
es

)

Traces

S
S

D
 w

rit
e

sa
vi

ng
s

 0

 20

 40

 60

 80

 100

D
−

1A

D
−

1B

D
−

1C

D
−

1D

D
−

2A

D
−

2B

D
−

2C

D
−

2D

D
−

3A

D
−

3B

D
−

3C

(a) Write Savings

HDD reads 1%
HDD reads 5%
HDD reads 10%

 0.1

 1,000

 10,000

 100,000

 1e+06

 1e+07

D
−

1A
D

−
1B

D
−

1C
D

−
1D

D
−

2A
D

−
2B

D
−

2C
D

−
2D

D
−

3A
D

−
3B

D
−

3C
D

−
3D

S
−

E
X

C
H

S
−

P
R

X
Y

1
S

−
S

R
C

10
S

−
S

R
C

22
S

−
S

T
G

1
S

−
W

D
E

V
2

In
te

r−
m

ig
ra

tio
n

in
te

rv
al

(s
ec

on
ds

)

Traces

 10

 1

 100

(b) Inter-migration Interval

Figure 6: Write Savings and Inter-migration Interval in Reads-Threshold Migration.

fault MLC-based SSD) of all I/Os, reads, and writes with
different write caches. Unsurprisingly, Griffin performs
better than the default SSD in all the configurations (with
HDDs or SSDs as its write cache). This is because of
two reasons: first, write performance improves because
of the excellent sequential throughput of the write caches
(HDD or SSD); second, read latency also improves be-
cause of the reduced write load on the primary SSD. For
example, even when using a slower 7200 RPM HDD as
a cache, Griffin’s average relative I/O latency is 0.44.
That is, Griffin reduces the I/O latencies by 56%. Over-
all performance of Griffin when using an MLC-based
or SLC-based SSD as the write cache is better than the
HDD-based write cache because of the better read laten-
cies of SSD. While it is not a fair comparison, this per-
formance analysis brings the high-level point that even
when a HDD, which is slower than an SSD for most
cases, is introduced in the storage hierarchy the perfor-
mance of the overall system does not degrade. Figure 9
also shows that using another SSD as a write cache in-

stead of an HDD gives faster performance. But, this
comes at a much higher cost because of the price dif-
ferences between an HDD and SSD. Given the excellent
performance of Griffin even with a single HDD, we may
explore setups where a single HDD is used as a cache for
multiple SSDs (Section 7).

7 Discussion

• File system-based designs: Griffin could have been
implemented at the file system level instead of the block
device level. There are three potential advantages of such
an approach. First, a file system can leverage knowl-
edge of the semantic relationships between blocks to bet-
ter exploit the spatial locality described in Section 4.3.
Second, it is possible that Griffin can be easily imple-
mented by modifying existing journaling file systems to
store the update journal on the HDD and the actual data
on the SSD, though current journaling file systems are

Griffin
Default

 0

 60

 80

 100

D
−

1A

D
−

1B

D
−

1C

D
−

1D

D
−

2A

D
−

2B

D
−

2C

D
−

2D

D
−

3A

D
−

3B

D
−

3C

D
−

3D

S
−

E
X

C
H

S
−

P
R

X
Y

1

S
−

S
R

C
10

S
−

S
R

C
22

S
−

S
T

G
1

S
−

W
D

E
V

2

S
eq

ue
nt

ia
l w

rit
es

(p
er

ce
nt

ag
e

of
 to

ta
l w

rit
es

)

Traces

 20

 40

Figure 7: Improved Sequentiality.

Savings with a simple FTL
Savings with an ideal FTL

 0

 60

 80

 100

D
−

1A

D
−

1B

D
−

1C

D
−

1D

D
−

2A

D
−

2B

D
−

2C

D
−

2D

D
−

3A

D
−

3B

D
−

3C

D
−

3D

S
−

E
X

C
H

S
−

P
R

X
Y

1

S
−

S
R

C
10

S
−

S
R

C
22

S
−

S
T

G
1

S
−

W
D

E
V

2

S
S

D
 b

lo
ck

er
as

ur
e

sa
vi

ng
s

(%
)

Traces

 20

 40

Figure 8: Improved Lifetime.

typically designed to store only metadata updates in the
journal and many of the overwrites we want to buffer oc-
cur within user data.

The third advantage of a file system design is its access
to better information, which can enable it to approach the
performance of an idealized HDD write cache. Recall
that the idealized cache requires an oracle that notifies it
of impending reads to blocks just before they occur, so
dirty data can be migrated in time to avoid reads from
the HDD. At the block level, such an oracle does not
exist and we had to resort to heuristic-based migration
policies. However, at the file system level, evictions of
blocks from the buffer cache can be used to signal im-
pending reads. As long as the file system stores a block
in its buffer cache, it will not issue reads for that block
to the storage device; once it evicts the block, any subse-
quent read has to be serviced from the device. Accord-
ingly, a policy of migrating blocks from the HDD to the
SSD upon eviction from the buffer cache will result in
the maximum write savings with no read penalty.

However, a block device has the significant advantage
of requiring no modification to the software stack, work-
ing with any OS or architecture. Additionally, our evalu-
ation showed that the simple device-level migration poli-

 0

 0.2

 0.4

 0.6

 0.8

 1

Total Read Write Total Read Write

R
el

at
iv

e
I/

O
 l

at
en

cy

Workload T1 Workload T2

HDD 7.2K
HDD 10K

MLC
SLC

Figure 9: Relative I/O Latencies for Different Write
Caches.

cies we use are very effective in approximating the per-
formance of an idealized cache.
• Flash as write cache: While Griffin uses an HDD as a
write cache, it could alternatively have used a small SSD
and achieved better performance (Section 6.4). Since
SLC flash is expensive, it is crucial that the size of the
write cache be small. However, the write cache must also
sustain at least as many erasures as the backing MLC-
based SSD, requiring a certain minimum size.

Since each SLC block can endure 10 times the era-
sures of an MLC block, an SLC device subjected to the
same number of writes as the MLC device would need to
be a tenth as large as the MLC to last as long. If the SLC
receives twice as many writes as the MLC, it would need
to be a fifth as large.

Consequently, a caching setup that achieves a write
savings of 50% – and as a result, sends twice as many
writes to the SLC than the MLC – requires an SLC cache
that’s at least a fifth of the MLC. For example, if the
MLC device is 80 GB, then we need an SLC cache of
at least 16 GB. In this analysis we assumed an ideal FTL
that performs page-level mapping, a perfectly sequential
write stream, and identical block sizes for MLC and SLC
devices. If the MLC’s block size is twice as large as the
SLC’s block size, as is the case for current devices, the
required SLC size stays at a fifth for a perfectly sequen-
tial workload, but will drop for more random workloads;
we omit the details of the block size analysis for brevity.
We believe that a 16 GB SLC write cache (for an 80
GB MLC primary store) will continue to be expensive
enough to justify Griffin’s choice of caching medium.
• Power consumption: One of the main concerns that
might arise in the design of Griffin is its power con-
sumption. Since HDDs consume more power than SSDs,
Griffin’s power budget is higher than that of a regu-
lar SSD. One way to mitigate this problem is to use a
smaller, more power-efficient HDD such as an 1.8 inch
drive that offers marginally lower bandwidth; for exam-
ple, Toshiba’s 1.8 inch HDD [28] consumes about 1.1
watts to seek and about 1.0 watts to read or write, which

is comparable to the power consumption of Micron
SSD [18], thereby offering a tradeoff between power,
performance, and lifetime. Additionally, desktop work-
loads are likely to have intervals of idle time during
which the HDD cache can be spun down to save power.

Finally, we can potentially use a single HDD as a write
cache for multiple SSDs, reducing the power premium
per SSD (as well as the hardware cost). Going by the In-
tel X25-M’s specifications, a single SSD supports 3.3K
random write IOPS, or around 13 MB/s, whereas a HDD
can support 70 to 80 MB/s of sequential writes. Accord-
ingly, a single HDD can keep up with multiple SSDs if
they are all operating on completely random workloads,
though non-trivial engineering is required for disabling
caching whenever the data rate of the combined work-
loads exceeds HDD speed.

8 Related Work

SSD Lifetimes: SSD lifetimes have been evaluated in
several previous studies [6, 7, 20]. The consensus from
these studies is that both the reliability and performance
of the MLC-based SSDs degrade over time. For ex-
ample, the bit error rates increase sharply and the erase
times increase (by as much as three times) as SSDs reach
the end of their lifetime. These trends motivate the pri-
mary goal of our work, which is to reduce the number
of SSD erasures, thus increasing its lifetime. With less
wear, an SSD can provide a higher performance as well.
Disk + SSD: Various hybrid storage devices have been
proposed in order to combine the positive properties of
rotating and solid state media. Most previous work em-
ploys the SSD as a cache on top of the hard disk to
improve read performance. For example, Intel’s Turbo
Memory [17] uses NAND-based non-volatile memory as
an HDD cache. Operating system technologies such as
Windows ReadyBoost [19] use flash memory, for exam-
ple in the form of USB drives, to cache data that would
normally be paged out to an HDD. Windows Ready-
Drive [24] works on hybrid ATA drives with integrated
flash memory, which allow reads and writes even when
the HDD is spun down.

Recently, researchers have considered placing HDDs
and SSDs at the same level of the storage hierarchy. For
example, Combo Drive [25] is a heterogeneous storage
device in which sectors from the SSD and the HDD are
concatenated to form a continuous address range, where
data is placed based on heuristics. Since the storage ad-
dress space is divided among two devices, a failure in
the HDD can render the entire file system unusable. In
contrast, Griffin uses the HDD only as a cache allowing
it to expose an usable file system even in the event of an
HDD failure (albeit with some lost updates). Similarly,
Koltsidas et al. have proposed to split a database store

between the two media based on a set of on-line algo-
rithms [15]. Sun’s Hybrid Storage Pools consist of large
clusters of SSDs and HDDs to improve the performance
of data access on multi-core systems [4].

In contrast to the above mentioned works, we use the
HDD as a write cache to extend SSD lifetime. Although
using the SSD as a read cache may offer some benefit
in laptop and desktop scenarios, Narayanan et al. have
demonstrated that their benefit in the enterprise server
environment is questionable [22]. Moreover, any system
that forces all writes through a relatively small amount
of flash memory will wear through the available erase cy-
cles very quickly, greatly diminishing the utility of such a
scheme. Setups with the HDD and SSD arranged as sib-
lings may reduce erase cycles and provide low-latency
read access, but can incur seek latency on writes if the
hard disk is not structured as a log. Additionally, HDD
failure can result in data loss since it is a first-class parti-
tion and not a cache.
SLC + MLC: Recently, hybrid SSD devices with both
SLC and MLC memory have been introduced. For exam-
ple, Samsung has developed a hybrid memory chip that
contains both SLC and MLC flash memory blocks [27].
Alternatively, an MLC flash memory cell can be pro-
grammed either as a single-level or multi-level cell;
FlexFS utilizes this by partitioning the storage dynam-
ically into SLC and MLC regions according to the appli-
cation requirements [16].

Other architectures use SLC chips as a log for caching
writes to MLC [5, 12]. These studies emphasize the per-
formance gains that the SLC log provides but do not in-
vestigate the effect on system lifetime. As we described
in Section 7, a small SLC write cache will wear out faster
than the MLC device, and larger caches are expensive.
Disk + Disk: Hu et al. proposed an architecture called

Disk Caching Disk (DCD), where an HDD is used as a
log to convert the small random writes into large log ap-
pends. During idle times, the cached data is de-staged
from the log to the underlying primary disk [11, 23].
While DCD’s motivation is to improve performance, our
primary goal is to increase the SSD lifetime.

9 Conclusion

As new technologies are born, older technology might
take a new role in the process of system evolution. In
this paper, we show that hard disk drives, which have
been extensively used as a primary store, can be used
as a cache for MLC-based SSDs. Griffin’s design is
motivated by the workload and hardware characteristics.
After a careful evaluation of Griffin’s policies and per-
formance, we show that Griffin has the potential to im-
prove SSD lifetime significantly without sacrificing per-
formance.

10 Acknowledgments

We are grateful to our shepherd, Jason Nieh, and the
anonymous reviewers for their valuable feedback and
suggestions. We thank Vijay Sundaram and David Fields
from the Windows Performance Team for providing us
the Windows desktop traces. We also thank Dushyanth
Narayanan from Microsoft Research Cambridge and
Prof. Raju Rangaswami from Florida International Uni-
versity for keeping their traces publicly available. Fi-
nally, we extend our thanks to Marcos Aguilera, John
Davis, Moises Goldszmidt, Butler Lampson, Roy Levin,
Dahlia Malkhi, Mike Schroeder, Kunal Talwar, Yinglian
Xie, Fang Yu, Lidong Zhou, and Li Zhuang for their in-
sightful comments.

References
[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,

and R. Panigrahy. Design tradeoffs for SSD performance. In
Proceedings of USENIX Annual Technical Conference, pages 57–
70, 2008.

[2] A. Anand, S. Sen, A. Krioukov, F. Popovici, A. Akella, A. C.
Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Banerjee. Avoid-
ing File System Micromanagement with Range Writes. In Pro-
ceedings of the 8th Symposium on Operating Systems Design and
Implementation (OSDI ’08), San Diego, CA, December 2008.

[3] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Liptak,
R. Rangaswami, and V. Hristidis. BORG: Block-reORGanization
for Self-optimizing Storage Systems. In Proceedings of the File
and Storage Technologies Conference, pages 183–196, San Fran-
cisco, CA, Feb. 2009.

[4] R. Bitar. Deploying Hybrid Storage Pools With Sun Flash Tech-
nology and the Solaris ZFS File System. Technical Report SUN-
820-5881-10, Sun Microsystems, October 2008.

[5] L.-P. Chang. Hybrid solid-state disks: Combining heterogeneous
NAND flash in large SSDs. In Proceedings of the 13th Asia
South Pacific Design Automation Conference, pages 428–433,
Jan. 2008.

[6] P. Desnoyers. Empirical evaluation of nand flash memory per-
formance. In First Workshop on Hot Topics in Storage and File
Systems (HotStorage’09), 2009.

[7] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi,
P. H. Siegel, and J. K. Wolf. Characterizing flash mem-
ory: Anomalies, observations and applications. In Proceedings
of IEEE/ACM International Symposium on Microarchitecture,
pages 24–33, 2009.

[8] R. Hagmann. Reimplementing the Cedar file system using log-
ging and group commit. In Proceedings of the 11th ACM Sympo-
sium on Operating Systems Principles, pages 155–162, 1987.

[9] W. W. Hsu and A. J. Smith. Characteristics of I/O traffic in
personal computer and server workloads. IBM Systems Journal,
42(2):347–372, 2003.

[10] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka. Write
amplification analysis in flash-based solid state drives. In SYS-
TOR 2009: The Israeli Experimental Systems Conference, 2009.

[11] Y. Hu and Q. Yang. Dcd - disk caching disk: A new approach
for boosting i/o performance. In Proceedings of the International
Symposium on Computer Architecture, pages 169–178, 1996.

[12] S. Im and D. Shin. Storage architecture and software support
for SLC/MLC combined flash memory. In Proceedings of the
2009 ACM symposium on Applied Computing, pages 1664–1669,
2009.

[13] Intel Corporation. Intel X18-M/X25-M SATA
Solid State Drive. http://download.intel.
com/design/flash/nand/mainstream/
mainstream-sata-ssd-datasheet.pdf.

[14] H. Kim and S. Ahn. BPLRU: a buffer management scheme for
improving random writes in flash storage. In Proceedings of the
6th USENIX Conference on File and Storage Technologies, pages
1–14, 2008.

[15] I. Koltsidas and S. Viglas. Flashing up the storage layer. Pro-
ceedings of the VLDB Endowment, 1(1):514–525, 2008.

[16] S. Lee, K. Ha, K. Zhang, J. Kim, and J. Kim. FlexFS: A Flexible
Flash File System for MLC NAND Flash Memory. In Proceed-
ings of the USENIX Annual Technical Conference, San Diego,
CA, June 2009.

[17] J. Matthews, S. Trika, D. Hensgen, R. Coulson, and K. Grim-
srud. Intel R©turbo memory: Nonvolatile disk caches in the stor-
age hierarchy of mainstream computer systems. Transactions on
Storage, 4(2):1–24, 2008.

[18] Micron. C200 1.8-Inch SATA NAND Flash SSD.
http://download.micron.com/pdf/datasheets/
realssd/realssd_c200_1_8.pdf.

[19] Microsoft Corporation. Microsoft Windows Ready-
Boost. http://www.microsoft.com/windows/
windows-vista/features/readyboost.aspx.

[20] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal,
E. Schares, F. Trivedi, E. Goodness, and L. R. Nevill. Bit error
rate in NAND Flash memories. In IEEE International Reliability
Physics Symposium (IRPS), pages 9–19, April 2008.

[21] D. Narayanan, A. Donnelly, and A. I. T. Rowstron. Write off-
loading: Practical power management for enterprise storage. In
Proceedings of the File and Storage Technologies Conference,
pages 253–267, San Jose, CA, Feb. 2008.

[22] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and
A. Rowstron. Migrating server storage to SSDs: analysis of trade-
offs. In Proceedings of the 4th ACM European conference on
Computer systems, pages 145–158, 2009.

[23] T. Nightingale, Y. Hu, and Q. Yang. The design and implemen-
tation of a dcd device driver for unix. In Proceedings of the
USENIX Annual Technical Conference, pages 295–307, 1999.

[24] Panabaker, Ruston. Hybrid Hard Disk and ReadyDrive Tech-
nology: Improving Performance and Power for Windows
Vista Mobile PCs . http://www.microsoft.com/whdc/
system/sysperf/accelerator.mspx.

[25] H. Payer, M. A. Sanvido, Z. Z. Bandic, and C. M. Kirsch. Combo
drive: Optimizing cost and performance in a heterogeneous stor-
age device. First Workshop on Integrating Solid-state Memory
into the Storage Hierarchy, 1(1):1–8, 2009.

[26] M. Rosenblum and J. Ousterhout. The Design and Implementa-
tion of a Log-Structured File System. ACM Trans. Comput. Syst.,
10(1):26–52, Feb. 1992.

[27] Samsung. Fusion Memory: Flex-OneNAND. http://www.
samsung.com/global/business/semiconductor/
products/fusionmemory/Products_FlexOneNAND.
html.

[28] Toshiba. MK1214GAH (HDD1902) 1.8-inch HDD PMR 120GB.
http://sdd.toshiba.com/main.aspx?Path=
StorageSolutions/1.8-inchHardDiskDrives/
MK1214GAH/MK1214GAHSpecifications.

