
Efficient Object Storage Journaling in a Distributed Parallel File System

Sarp Oral, Feiyi Wang, David Dillow, Galen Shipman, Ross Miller
National Center for Computational Sciences

Oak Ridge National Laboratory
{oralhs,fwang2,gshipman,dillowda,rgmiller}@ornl.gov

Oleg Drokin
Lustre Center of Excellence at ORNL

Sun Microsystem Inc.
oleg.drokin@sun.com

Abstract

Journaling is a widely used technique to increase file sys-
tem robustness against metadata and/or data corruptions.
While the overhead of journaling can be masked by the page
cache for small-scale, local file systems, we found that Lus-
tre’s use of journaling for the object store significantly im-
pacted the overall performance of our large-scale center-
wide parallel file system. By requiring that each write re-
quest wait for a journal transaction to commit, Lustre in-
troduced serialization to the client request stream and im-
posed additional latency due to disk head movement (seeks)
for each request.

In this paper, we present the challenges we faced while
deploying a very large scale production storage system.
Our work provides a head-to-head comparison of two sig-
nificantly different approaches to increasing the overall effi-
ciency of the Lustre file system. First, we present a hardware
solution using external journaling devices to eliminate the
latencies incurred by the extra disk head seeks due to jour-
naling. Second, we introduce a software-based optimization
to remove the synchronous commit for each write request,
side-stepping additional latency and amortizing the journal
seeks across a much larger number of requests.

Both solutions have been implemented and experimen-
tally tested on our Spider storage system, a very large scale
Lustre deployment. Our tests show both methods consid-
erably improve the write performance, in some cases up
to 93%. Testing with a real-world scientific application
showed a 37% decrease in the number journal updates,
each with an associated seek – which translated into an av-
erage I/O bandwidth improvement of 56.3%.

1 Introduction

Large-scale HPC systems target a balance of file I/O per-

formance with computational capability. Traditionally, the

standard was 2 bytes per second of I/O bandwidth for each

1,000 FLOPs of computational capacity [18]. Maintain-

ing that balance for a 1 Petaflops (PFLOPs) supercomputer

would require the deployment a storage subsystem capa-

ble of delivering 2 TB/sec of I/O bandwidth at a minimum.

Building such a system with current or near-term storage

technology would require on the order of 100,000 magnetic

disks. This would be cost prohibitive not only due to the

raw material costs of the disks themselves, but also to the

magnitude of the design, installation, and ongoing manage-

ment and electrical costs for the entire system, including

the RAID controllers, network links, and switches. At this

scale, reliability metrics for each component would virtu-

ally guarantee that such a system would continuously oper-

ate in a degraded mode due to ongoing simultaneous recon-

struction operations [22].

The National Center for Computational Sciences

(NCCS) at Oak Ridge National Laboratory (ORNL) hosts

the world’s fastest supercomputer, Jaguar [8] with over 300

TB of total system memory. Rather than rely on a traditional

I/O performance metric such as 2 byte/sec of I/O through-

put for each 1000 FLOP of computational capacity a sur-

vey of application requirements was conducted prior to the

design of the parallel I/O environment for Jaguar. This re-

sulted in a requirement of delivered bandwidth of over 166

GB/sec based on the ability to checkpoint 20% of total sys-

tem memory, once per hour, using no more than 10% of

total compute time. Based on application I/O profiles and

available resources, the Jaguar upgrade targeted 240 GB/s

of storage bandwidth. Achieving this target on Jaguar has

required a careful attention to detail and optimization of the

1

system at multiple levels, including the storage hardware,

network topology, OS, I/O middleware, and application I/O

architecture.

There are many studies on user-level file system perfor-

mance of different Cray XT platforms and their respective

storage subsystems. These provide important information

for scientific application developers and system engineers

such as peak system throughput and the impact of Lustre

file striping patterns [33, 1, 32]. However – to the best of

our knowledge – there has been no work done to analyze

the efficiency of the object storage system’s journaling and

its impact of overall I/O throughput in a large-scale parallel

file system such as Lustre.

Journaling is widely used by modern file systems to in-

crease file system robustness against metadata corruptions

and to minimize file system recovery times after a system

crash. Aside from journaling, there are several other tech-

niques for preventing metadata corruption. Soft updates

handle the metadata update problem by guaranteeing that

blocks are written to disk in their required order without

using synchronous disk I/O [10, 23]. Vendors such as Net-

work Appliance [3], have addressed the issue with a hard-

ware assisted approach (non-volatile RAM) resulting in per-

formance superior to both journaling and soft updates at

the expense of extra hardware. NFS version 3 [20] intro-

duced asynchronous writes to overcome the bottleneck of

synchronous writes. The server is permitted to reply to the

client before the data is on stable storage, which is simi-

lar to our Lustre asynchronous solution. The Log-based file

system [17] took a departure from the conventional update-

in-place approach by writing modified data and metadata in

a log. More recently, ZFS [13] has been coupled with flash-

based devices for intent logging so that synchronous writes

are directed to these log devices with very low latency, im-

proving overall performance.

While the overhead of journaling can be masked by us-

ing the page cache for local file systems, our experiments

show that on a large-scale parallel Lustre file system it can

substantially degrade overall performance.

In this paper, we present our experiences and the chal-

lenges we faced towards deploying a very large scale pro-

duction storage system. Our findings suggest that sub-

optimal object storage file system journaling performance

significantly hurts the overall parallel file system perfor-

mance. Our work provides a head-to-head comparison of

two significantly different approaches to increasing overall

efficiency of the Lustre file system. First, we present a hard-

ware solution using external journaling devices to eliminate

the latencies incurred by the extra disk head seeks for the

journal traffic. Second, we introduce a software-based opti-

mization to remove the synchronous commit for each write

request, side-stepping additional latency and amortizing the

journal seeks across a much larger number of requests.

Major contributions of our work include measurements

and performance characterization of a very large storage

system unique in its scale; The identification and elimina-

tion of serial bottlenecks in a large-scale parallel system; A

cost-effective and novel solution to file system journaling

overheads in a large scale system.

The remainder of this paper is organized as follows: Sec-

tion 2 introduces Jaguar and its large-scale parallel I/O sub-

system, while Section 3 provides a quick overview of the

Lustre parallel file system and presents our initial findings

on the performance problems Lustre file system journaling.

Section 4 introduces our hardware solution to the problem

and Section 5 presents the software solution. Section 6 sum-

marizes and provides a discussion on results of our hard-

ware and software solutions and presents results of real sci-

ence application using our software-based solution. Sec-

tion 7 presents our conclusions.

2 System Architecture

Jaguar is the main simulation platform deployed at

ORNL. Jaguar entered service in 2005 and has undergone

several upgrades and additions since that time. Detailed de-

scriptions and performance evaluations of earlier Jaguar it-

erations can be found in the literature [1].

2.1 Overview of Jaguar

In late 2008, Jaguar was expanded with the addition of a

1.4 PFLOPs Cray XT5 in addition to the existing Cray XT4

segment1. Resulting in a system with over 181,000 pro-

cessing cores connected internally via Cray’s SeaStar2+ [4]

network. The XT4 and XT5 segments of Jaguar are con-

nected via a DDR InfiniBand network that also provides

a link to our center-wide file system, Spider. More infor-

mation about the Cray XT5 architecture and Jaguar can be

found in [5, 19].

Jaguar has 200 Cray XT5 cabinets. Each cabinet has

24 compute blades. Each blade has 4 compute nodes and

each compute node has two AMD Opteron 2356 Barcelona

quad-core processors. Figure 1 shows the high-level Cray

XT5 node architecture. The configuration tested, has 16

GB of DDR2-800 MHz memory per compute node (2

GB per core), for a total of 300 TB of system memory.

Each processor is linked with dual HyperTransport connec-

tions. The HyperTransport interface enables direct high-

bandwidth connections between the processor, memory and

the SeaStar2+ chip. The result is a dual-socket, eight-core

node with a peak processing performance of 73.6 GFLOPS.

1A more recent Jaguar XT5 upgrade swapped the quad-core AMD

Opteron 2356 CPUs (Barcelona) with hex-core AMD Opteron 2435 CPUs

(Istanbul), increasing the installed peak performance of Jaguar XT5 to 2.33

PFLOP and total number of cores to 224,256.

2

The XT5 segment has 214 service and I/O nodes, of which

192 provide connectivity to the Spider center-wide file sys-

tem with 240 GB/s of demonstrated file system bandwidth

over the scalable I/O network (SION). SION is deployed as

a multi-stage InfiniBand network [25], and provides a back-

plane for the integration of multiple NCCS systems such as

Jaguar (the simulation and analysis platform), Spider (the

NCCS-wide Lustre file system), Smoky (the development

platform), and various other compute resources. SION al-

lows capabilities such as streaming data from the simulation

platforms to the visualization center at extremely high rates.

Figure 1. Cray XT5 node (courtesy of Cray)

2.2 Spider I/O subsystem

The Spider I/O subsystem consists of Data Direct Net-

works’ (DDN) S2A9900 storage devices interconnected via

SION. A pair of S2A9900 RAID controllers is called a cou-

plet. Each controller in a couplet works as an active-active

fail-over unit. There are 48 DDN S2A9900 couplets [6] in

the Spider I/O subsystem. Each couplet is configured with

five ultra-high density 4U, 60-bay disk drive enclosures (56

drives populated), giving a total of 280 1TB hard drives per

S2A9900. The system as whole has 13,440 TB or over 10.7

PB of formatted capacity. Fig. 2 illustrates the internal ar-

chitecture of a DDN S2A9900 couplet. Two parity drives

are dedicated in the case of an 8+2 parity group or RAID 6.

A parity group is also known as a Tier.

Spider, the center-wide Lustre [28] file system, is built

upon this I/O subsystem. Spider is the world’s fastest

and largest production Lustre file system and is one of the

14A1A 2A
...

14B1B 2B
...

14P1P 2P
...

14S1S 2S
...

28A15A 16A
...

28B15B 16B
...

28P15P 16P

28S15S 16S
...

...

Channel A

Channel B

Channel P

Channel S

Channel A

Channel B

Channel P

Channel S

Tier1 Tier 2 Tier 14

...
Tier 15 Tier 16 Tier 28

Disk Controller 1 Disk Controller 2

...

Figure 2. Architecture of a S2A9900 couplet

world’s largest POSIX-compliant file systems. It is de-

signed to work with both Jaguar and other computing re-

sources such as the visualization and end-to-end analysis

clusters. Spider has 192 Dell PowerEdge 1950 servers [7]

configured as Lustre servers presenting a global file system

name space. Each server has 16 GB of memory and dual

socket, quad core Intel Xeon E5410 CPUs running at 2.3

GHz. Each server is connected to SION and the DDN ar-

rays via independent 4x DDR InfiniBand links. In aggre-

gate, Spider delivers up to 240 GB/s of file system level

throughput and provides 10.7 PB of formatted disk capac-

ity to it users. Fig. 3 shows the overall Spider architecture.

More details on Spider can be found in [26].

3 Lustre and file system journaling

Lustre is an open-source distributed parallel file system

developed and maintained by Sun Microsystems and li-

censed under the GNU General Public License (GPL). Due

to the extremely scalable architecture of Lustre, deploy-

ments are popular in both scientific supercomputing and in-

dustry. As of June 2009, 70% of the Top 10 systems, 70%

of the Top 20 and 62% of the Top 50 fastest supercomput-

ers systems in the world used Lustre for high-performance

scratch space [9], including Jaguar2.

3.1 Lustre parallel file system

Lustre is an object-based file system and is composed

of three components: Metadata storage, object storage, and

clients. There is a single metadata target (MDT) per file sys-

tem. A metadata server (MDS) is responsible for managing

one or more MDTs. Each MDT stores file metadata, such

as file names, directory structures, and access permissions.

Each object storage server (OSS) manages one or more ob-

ject storage targets (OSTs) and OSTs store file data objects.

2As of November 2009, 60% of the Top 10 fastest supercomputers sys-

tems in the world used Lustre file system for high-performance scratch

space, including Jaguar.

3

192 Spider OSS
servers

7 RAID-6 (8+2) tiers per OSS

96 DDN
S2A9900 couplets

192 4x DDR IB
connections

SION IB network

192 4x DDR IB
connections

Figure 3. Overall Spider architecture

For file data read/write access, the MDS is not on the critical

path, as clients send requests directly to the OSSes. Lustre

uses block devices for file data and metadata storage and

each block device can only be managed by one Lustre ser-

vice (such as an MDT or an OST). The total data capacity of

a Lustre file system is the sum of all individual OST capaci-

ties. Lustre clients concurrently access and use data through

the standard POSIX I/O system calls. More details on the

inner workings of Lustre can be found in [31].

Currently, Lustre version 1.6 employs a heavily patched

and enhanced version of the Linux ext3 file system, known

as ldiskfs, as the back-end local file system for the MDT and

all OSTs. Among the enhancements, improvements over

the regular ext3 file system journaling are of particular in-

terest for this paper and will be covered in the next sections.

3.2 File system journaling in Lustre

A journaling file system, such as ext3, keeps a log of

metadata and/or file data updates and changes so that in

case of a system crash, file system consistency can be re-

stored quickly and easily [30]. The file system can journal

only the metadata updates or both metadata and data up-

dates, depending on the implementation. The design choice

is to balance file system consistency requirements against

performance penalties due to extra journaling write oper-

ations and delays. In Linux ext3, there are three differ-

ent modes of journaling: write-back mode, ordered mode,

and data journaling mode. In write-back mode, updated

metadata blocks are written to the journal device while file

data blocks are written directly to the block device. When

the transaction is committed, journaled metadata blocks are

flushed to the block device without any ordering between

the two events. Write-back mode thus provides metadata

consistency but does not provide any file data consistency.

In ordered mode, file data is guaranteed to be written to their

fixed locations on disk before committing the metadata up-

dates to the journal. This ordering protects the metadata and

prevents stale data from appearing in a file in the event of

a crash. Data journaling mode journals both the metadata

and the file data. More details on ext3 journaling modes and

their performance characteristics can be found in [21].

RUNNING

CLOSED COMMITTED

The running transaction is marked as
CLOSED in memory by Journaling

Block Device (JBD) Layer

File data is flushed
from memory to

disk

The file data must be
flushed to disk prior
to committing the

transaction

Updated metadata
blocks flushed to

disk
Updated metadata

blocks are written from
memory to journaling

device

Figure 4. Flow diagram for the ordered mode
journaling.

Although in the latest Linux kernels the default journal-

ing mode for ext3 file system is a build-time kernel configu-

ration switch (between ordered mode and write-back mode),

ordered mode is the default journaling mode for the ldiskfs
file system used as the object store in Lustre.

Journaling in ext3 is organized such that at any given

time there are two transactions in memory (not written to

the journaling device yet): the currently running transac-
tion and the currently closed transaction (that is being com-

mitted to the disk). The currently running transaction is

open and accepting new threads to join in and has all its

data still in memory. The currently closed transaction is not

accepting any new threads to join in and has started flushing

its updated metadata blocks from memory to the journaling

device. After the flush operation is complete and all trans-

actions are on stable storage, the transaction state will be

changed to “committed.” The currently running transaction

4

can not be closed and committed until the closed transaction

fully commits to the journaling device, which for slow disk

subsystems can be a point of serialization. Also, even when

the disk subsystem is relatively fast, there is another poten-

tial point of serialization due to the size of the journaling

device. The largest transaction size that can be journaled is

limited to 25% of the size of the journal. When a transac-

tion reaches the limit, it is locked and will not accept any

new threads or data.

The following list summarizes the steps taken by ldiskfs
for a Lustre file update in the default ordered journaling

mode. The sequence of events is triggered by a Lustre client

sending a write request to an OST.

1. Server gets the destination object id and offset for this

write operation.

2. Server allocates necessary number of pages in mem-

ory and fetches the data from the remote client into

the these pages via an Remote Memory Access (RMA)

GET operation.

3. Server opens a transaction on its back-end file system.

4. Server updates file metadata in memory, allocates

blocks and extends the file size.

5. Server closes transaction handle and obtains a wait

handle, but does not commit to journaling device.

6. Server writes pages with file data to disk syn-

chronously.

7. After current running transaction is closed, server

flushes updated metadata blocks to the journal device

and then marks the transaction as committed.

8. Once transaction is committed, server can send a reply

to client that the operation was completed successfully

and client marks the request as completed.

Also, the updated metadata blocks, which have been

committed to journal device by now will be written to

disk, without particular ordering requirement. Fig. 4

shows the generic outline of ordered mode journaling.

There is a minor difference between how this sequence

of events happen on an ext3 file system and the Lustre ld-
iskfs file system. In an ext3 file system the sequence of steps

6 and 7 are strictly preserved. However, in Lustre ldiskfs,

the metadata commit can happen before all data from Step

6 is on disk, Step 7 (flushing of updated metadata blocks to

the journaling device) can partially happen before Step 6.

Although Step 5 minimizes the time a transaction is kept

open, the above sequence of events may be sub-optimal. For

example:

• An extra disk head seek is needed for the journal trans-

action commit after flushing file data on a different sec-

tor of the disk if the journaling device is located on the

same device as the block file data.

• The write I/O operation for a new thread is blocked on

the currently closed transaction which is committing

on Step 7.

• The new running journal transaction has to wait for the

previous transaction to be closed.

• New I/O RPCs are not formed until the completion

replies of the previous RPCs have been received by the

client creating yet another point of serialization.

The ldiskfs file system by default performs journaling in

ordered mode by first writing the data blocks to disk fol-

lowed by metadata blocks to the journal. The journal is

then written to disk and marked as committed. In the worst

case, such as appending to a file, this can result in one 16

KB write (on average – for bitmap, inode block map, inode,

and super block data) and another 4 KB write for the jour-

nal commit record for every 1 MB write. These extra small

writes cause at least two extra disk head seeks. Due to the

poor IOP performance of SATA disks, these additional head

seeks and small writes can substantially degrade the aggre-

gate block I/O performance.

A potential optimization (and perhaps the most obvi-

ous one) for ordered mode to improve the journaling effi-

ciency is to minimize the extra disk head seeks. This can be

achieved by either a software or hardware optimization (or

both). Section 4 describes our hardware based optimization

while Section 5 discusses our software based optimization.

Using journaling methods other than ordered mode (or

no journaling at all) in the ldiskfs file system is not con-

sidered in this study, as the OST handler waits for the data

writes to hit the disk before returning, and only the metadata

is updated in an asynchronous manner. Therefore, write-
back mode would not help in our case – Lustre would not

use the write-back functionality. Data journaling mode pro-

vides increased consistency and satisfies the Lustre require-

ments, but we would expect it to result in a reduction of

performance from our pre-optimization baseline due to dou-

bling the amount of bulk data written. Of course, running

without any journaling is a possibility for obtaining better

performance, but the cost of possible file system inconsis-

tencies in a production environment is a price that we could

ill afford.

To better understand the performance characteristics of

each implementation we have performed a series of tests

to obtain a baseline performance of our configuration. In

order to obtain this baseline on the DDN S2A9900, the

XDD benchmark [11] utility was used. XDD allows mul-

tiple clients to exercise a parallel write or read operation

5

synchronously. XDD can be run in sequential or random

read or write mode. Our baseline tests focused on aggre-

gate performance for sequential read or write workloads.

Performance results using XDD from 4 hosts connected to

the DDN via DDR IB are summarized in Fig. 1. The re-

sults presented are a summary of our testing and show per-

formance of sequential read, sequential write, random read,

and random write using 1MB transfers. These tests were

run using a single host for the single LUN tests, and 4 hosts

each with 7 LUNs for the 28 LUN test. Performance results

presented are the best of 5 runs in each configuration.

Table 1. XDD baseline performance

After establishing a baseline of performance using XDD,

we examined Lustre level performance using the IOR

benchmark [24]. Testing was conducted using 4 OSSs

each with 7 OSTs on the DDN S2A9900. Our initial re-

sults showed very poor write performance of only 1,398.99

MB/sec using 28 clients where each client was writing to

different OST. Lustre level write performance was a mere

24.9% of our baseline performance metric of XDD sequen-

tial writes with a 1MB transfer size. Profiling the I/O stream

of the IOR benchmark using the DDN S2A9900 utilities

revealed a large number of 4 KB writes in addition to the

expected 1 MB writes. These small writes were traced to

ldiskfs journal updates.

4 The Hardware Solution

To separate small-sized metadata journal updates from

larger (1 MB) block I/O requests and thus enhance our ag-

gregate block I/O performance, we evaluated two hardware-

based solutions. Our first option was to use SAS drives as

external journal devices. SAS drives are proven to have

higher IOP performance compared to SATA drives. For

this purpose we used two tiers of SAS drives in a DDN

S2A9900, and each tier was split into 14 LUNs. Our sec-

ond option was to use an external solid state device as the

external journaling device. Although the best solution is to

provide a separate disk for journaling for each file block de-

vice (or even a tier of disks as a single journaling device for

each file block device tier), this is highly cost prohibitive at

the scale of Spider.

Unlike rotating magnetic disks, solid state disks (SSD)

have a negligible seek penalty. This makes SSDs an attrac-

tive solution for latency-sensitive storage workloads. SSDs

can be flash memory based or DRAM or SRAM based.

Furthermore, in recent years, solid state disks have be-

come much more reasonable in terms of cost per GB [14].

The nearly zero seek latency of SSDs make them a logical

choice to alleviate our Lustre journaling performance bot-

tleneck.

We have evaluated Texas Memory Systems’ RamSan-

400 device [29] (on loan from the ViON Corp.) to assess

the efficiency of an SSD based Lustre journaling solution

for the Spider parallel file system. The RamSan is a 3U

rackable solution and has been optimized for high transac-

tional aggregate performance (400,000 small I/O operations

per second). The RamSan-400 is a non-volatile SSD with

backup hard drives configured as a RAID-3 set. The front

end non-volatile solid state disks are a proprietary imple-

mentation of Texas Memory Systems’ using highly redun-

dant DDR RAM chips. The RamSan-400’s block I/O per-

formance is advertised by the vendor at an aggregate of 3

GB/sec. It is equipped with four 4x DDR InfiniBand host

ports and supports the SCSI RDMA protocol (SRP).

For our testing purposes, we have connected the Ram-

San device to our SION network via four 4x DDR IB links

directly to the Core 1 switch. This configuration allowed

the Lustre servers (MDS and OSSes) to have direct connec-

tions to the LUNs on the RamSan device. We configured 28

LUNs (one for each Lustre OST, 7 per each IB host port) on

the RamSan device. Fig. 5 presents our experiment layout.

Each LUN on the RamSan was formatted as an exter-

nal ldiskfs journal device and we established a one-to-one

mapping between the external journal devices and the 28

OST block devices on one DDN S2A9900 RAID controller.

The obdfilter-survey benchmark [27] was used for testing

both the SAS disk-based and the RamSan-based solutions.

Obdfilter-survey is part of the Lustre I/O kit and it allows

one to exercise the underlying Lustre file system with se-

quential I/O with varying numbers of threads and objects

(files). Obdfilter can be used to characterize the perfor-

mance of the Lustre network, individual OSTs, and the

striped file system performance (including multiple OSTs

and the Lustre network components). For more details on

obdfilter readers are encouraged to read the Lustre User

Manual [28]. Fig. 6 presents our results for these tests.

For comparative analysis, we ran the same obdfilter-
survey benchmark on three different target configurations.

The first target had external journals on a tier of SAS drives

in the DDN S2A900, the second target had external jour-

nals on the RamSan-400 device, and third target had inter-

nal journals on a tier of SATA drives on our DDN S2A900.

We varied the number of threads for each target while mea-

suring the observed block I/O bandwidth. Both solutions

with external journals provided good performance improve-

ments. Internal journals on the SATA drives performed the

6

Jaguar XT5
partition

VIB VIB

96 DDR

96 DDR

VIB
64 DDR 64 DDR

Spider Phase 2
192 I/O servers

Core 2
Cisco 7024D

288 ports

Core 1
Cisco 7024D

288 ports

Aggregation
Cisco 7024D

288 ports

96 DDR

96 DDR

192 DDR 24 DDR
Flextronic Leaf Switches

To other NCCS Systems

TMS RamSan-400

4 SDR

48 DDN S2A 9900
Couplets

96 DDR

Figure 5. Layout for Lustre external jour-
naling experiment with a RamSan-400 solid
state device. The RamSan-400 was con-
nected to the SION network via 4 DDR links
and each link exported 7 LUNs.

worst for almost all cases. External journals on a tier of SAS

disks showed a gradual performance decrease for more than

256 I/O threads. External journals on the RamSan-400 de-

vice gave the best performance for all cases and this solution

provided sustained performance with an increasing number

of I/O threads. Overall, RamSan-based external journals

achieved 3,292.6 MB/sec or 58.7% of our raw baseline per-

formance. The performance dip for the RamSan-400 device

at 16 threads was unexpected and is believed to be caused by

queue starvation as a result of memory fragmentation push-

ing the SCSI commands beyond the scatter-gather limit.

Unfortunately, we were unable to fully investigate this data

point prior to losing access to the test platform and it should

be noted that the 16 threads data point is outside of our nor-

mal operational envelope.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 100 200 300 400 500 600

A
gg

re
ga

te
 B

lo
ck

 I/
O

 (
M

B
/s

)

Number of Threads

Hardware-based External Journaling Solutions

external journals on RamSan-400 device
external journals on SAS disks

internal journals on SATA disks

Figure 6. SAS disk, solid state disk external
Lustre journaling and SATA disk internal jour-
naling performances.

5 The Software Solution

As explained in Section3.2, Lustre’s use of journals guar-

antees that when a client receives an RPC reply for a write

request, the data is on stable storage and would survive a

server crash. Although this implementation ensures data re-

liability, it serializes concurrent client write requests, as the

currently running transaction cannot be closed and commit-

ted until the prior transaction fully commits to disk. With

multiple RPCs in flight from the same client the overall op-

eration flow would appear as if several concurrent write I/O

RPCs arrive at the OST at the same time. In this case the

serialization in the algorithm still exists, but with more re-

quests coming in from different sources, the OST pipeline is

more efficiently utilized. The OST will start its processing

and then all these requests will block on waiting for their

commits. Then, after each commit, replies for respective

completed operations will be sent to the requesting client

and then the client will send its next chunk of I/O requests.

This algorithm works reasonably well from the aggregate

bandwidth point of view as long as there are multiple writ-

ers that can keep the data flowing at all times. If there is

only one client requesting service from a particular OST the

inherent serialization in this algorithm is more pronounced;

waiting for each transaction to commit introduces signifi-

cant delay.

An obvious solution to this problem would be to send

replies to clients immediately after the file data portion

of a RPC is committed to disk. We have named this al-

gorithm “asynchronous journal commits” and have imple-

mented and tested this on our configuration.

7

Lustre’s existing mechanism for metadata transactions

allows it to send replies to clients about operation comple-

tion without waiting for data to be safe on disk. Every RPC

reply from a server has a special field indicating the “id of

the last transaction on stable storage” from that particular

server’s point of view. The client uses this information to

keep a list of completed, but not committed operations, so

that in case of a server crash these operations could be resent

(replayed) to the server once the server resumes operations.

Our implementation extended this concept to write I/O

RPCs on OSTs. In our implementation, dirty and flushed

data pages are pinned in the client memory once they are

submitted to the network. The client releases these pages

only after it receives a confirmation from the OST indicat-

ing that the data was committed to stable storage.

In order to avoid using up all client memory with pinned

data pages waiting for a confirmation for extended periods

of time, upon receiving a reply with an uncommitted trans-

action id, a special “ping” RPC is scheduled on the client 7

seconds into the future (ext3 flushes transactions to disk ev-

ery 5 seconds). This “ping” RPC is pushed further in time

if there are other RPCs scheduled by the client. This ap-

proach limits the impact to the client’s memory footprint

by bounding the time that uncommitted pages can remain

outstanding. While the “ping” RPC is similar in nature to

NFSv3’s commit operation, Lustre optimizes this away in

many cases by piggy-backing commit information on other

RPCs destined for the same client-server pair.

The “asynchronous journal commits” algorithm results

in a new set of steps taken by an OST processing a file up-

date in the ordered journaling mode as detailed below. The

following sequence of events is triggered by a Lustre client

sending a write I/O request to an OST.

1. Server gets the destination object id and offset for this

write operation.

2. Server allocates the necessary number of pages in

memory and fetched the data from remote client into

the pages via an RMA GET operation.

3. Server opens a transaction on the back-end file system.

4. Server updates file metadata, allocates blocks and ex-

tends the file size.

5. Server closes the transaction handle (not the JBD

transaction) and if the RPC does NOT have the “async”

flag set, then it obtains the wait handle.

6. Server writes pages with file data to disk syn-

chronously.

7. If the “async” flag is set in the RPC, then Server com-

pletes the operation asynchronously.

7a Server sends a reply to client.

7b JBD then flushes the updated metadata blocks

to the journaling device and writes the commit

record.

8. If the “async” flag is NOT set in the RPC, then Server

completes the operation synchronously.

8a JBD flushes transaction closed in Step 5.

8b Server sends a reply to the client that the operation

was completed successfully.

The obdfilter benchmark was used for testing the asyn-

chronous journal commit performance. Fig. 7 presents our

results. The ldiskfs journal devices were created inter-

nally as part of each OST’s block device. A single DDN

S2A9900 couplet was used for this test. This approach re-

sulted in dramatically fewer 4 KB updates (and associated

head seeks) which substantially improved the aggregate per-

formance to over 5,222.95 MB/s or 93% of our baseline per-

formance. The dip at 16 threads is believed to be caused by

the same mechanism as explained in the previous section

and is outside of normal operational window.

 0

 1000

 2000

 3000

 4000

 5000

 0 100 200 300 400 500 600

A
gg

re
ga

te
 B

lo
ck

 I/
O

 (
M

B
/s

)

Number of Threads

Software-based Asynchronous Journaling Solution

async-journaling

Figure 7. Asynchronous journaling perfor-
mance

6 Results and Discussion

A comparative analysis of the hardware-based and

software-based journaling methods is presented in Fig. 8.

Please note that, the data presented in this figure is based

on the data provided in figures 6 and 7. As can be seen,

the software-based asynchronous journaling method clearly

8

outperforms the hardware-based solutions, providing vir-

tually full baseline performance from the DDN S2A9900

couplet. One potential reason for the software-based so-

lution outperforming the RamSan-based external journals

may be the elimination of a network round-trip latency for

each journal update operation as the journal resides on an

SRP target separate from that of the block device in this

configuration. Also, the performance of external journals

on solid-state disks suggests that there may be other perfor-

mance issues in the external journal code path which is en-

couraged by the lack of a performance improvement when

asynchronous commits are used in combination with the

RamSan-based external journal. The performance dip at 16

threads, present in both external journal and asynchronous

journal methods, requires additional analysis.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 100 200 300 400 500 600

A
gg

re
ga

te
 B

lo
ck

 I/
O

 (
M

B
/s

)

Number of Threads

Hardware- and Software-based Journaling Solutions

async internal journals on SATA disks
external journals on RamSan-400 device

external journals on a tier of SAS disks
internal journals on SATA disks

Figure 8. Aggregate Lustre performance
with hardware- and software-based journal-
ing methods.

The software-based asynchronous journaling method

provides the best performance of the presented solutions,

and does so at minimal cost. Therefore, we deployed this

solution on Spider. We then analyzed the performance of

Spider with the asynchronous journaling method on a real

scientific application. For this purpose we used the Gy-

rokinetic Toroidal Code (GTC) application [15]. GTC is

the most I/O intensive code running at scale (at the time

of writing, the largest scale runs were at 120,000 cores on

Jaguar) and is a 3D gyrokinetic Particle-In-Cell (PIC) code

with toroidal geometry. It was developed at the Prince-

ton Plasma Physics Laboratory (PPPL) and was designed to

study turbulent transport of particles and energy in burning

plasma. GTC is part of the US Department of Energy’s Sci-

entific Discovery through Advanced Computing (SciDAC)

program. GTC is coded in standard Fortran 90/95 and MPI.

We used a version of GTC that has been modified to use

the Adaptable IO System (ADIOS) I/O middleware [16]

rather than standard Fortran I/O directives. ADIOS is de-

veloped by Georgia Tech and ORNL to manage I/O with

a simple API and a supplemental, external configuration

file. ADIOS has been implemented in several scientific

production codes, including GTC. Earlier GTC tests with

ADIOS on Jaguar XT4 showed increased scalability and

higher performance when compared to the GTC runs with

Fortran I/O. On the Jaguar XT4 segment, GTC with ADIOS

achieved 75% of the maximum I/O performance measured

with IOR [12].

Fig. 9 shows the GTC run times for 64 and 1,344 cores

on Jaguar with and without asynchronous journals on Lustre

file system. Both runs were configured with the same prob-

lem, and the difference in runtime can be attributed to the

compute load of each core. During these runs, the observed

I/O bandwidth by the application was increased by 56.3%

on average and 64.8% when considering only the median

values.

Translating the I/O bandwidth improvements to shorter

runtimes will depend heavily on the I/O profile of the ap-

plication and domain problem being investigated. In the 64

core case for GTC, the cores have a much larger compute

load, and the percentage of runtime spent performing I/O

drops from 6% to 2.6% when turning asynchronous journals

on, with a 3.3% reduction in overall runtime. The 1,344

core test has much lighter compute load, and the runtime

is dominated by I/O time – 70% of the runtime is I/O with

synchronous journals, and 36% with asynchronous journals.

This is reflected in the 49.5% reduction in overall runtime.

Figure 9. GTC run times for 64 and 1,344
cores on Jaguar with and without asyn-
chronous journals.

Fig. 10 shows the histogram of I/O requests observed by

the DDN S2A9900 during our GTC runs as a percent of to-

tal I/O requests observed. In this figure, “Async Journals”

represents I/O requests observed when the asynchronous

9

journals were turned on and “Sync Journals” represents

when asynchronous journals were turned off. Omitted re-

quest sizes from the graph account for less than 2.3% of the

total I/O requests for the asynchronous journaling method

and 0.76% for the synchronous journaling method. Asyn-

chronous journaling clearly decreased the number of small

I/O requests (0 to 127 KB) from 64% to 26.5%. This re-

duction minimized the disk head seeks, removed the seri-

alization, and increased the overall disk I/O performance.

Fig. 11 shows the same I/O request size histogram for 0

to 127 KB sized I/O requests as a percent of total I/O re-

quests observed. Also in this figure “Async Journals” rep-

resents I/O requests observed when the asynchronous jour-

nals were turned on and “Sync Journals” represents when

asynchronous journals were turned off. It can be seen that

the asynchronous journaling method reduces the number of

small I/O requests (0 to 128 KB) sent to the DDN controller

(by delaying and aggregating the small journal commit re-

quests into relatively larger but still small I/O requests, as

explained in the previous section).

Figure 10. I/O request size histogram ob-
served by the DDN S2A9900 controllers dur-
ing the GTC runs.

Overall, our findings were motivated by the relatively

modest IOPS performance (when compared to the band-

width performance) of our DDN S2A9900 hardware. The

DDN S2A9900 architecture uses “synchronous heads,” or

a variant of RAID3 that provides dual-failure redundancy.

For a given LUN with 10 disks, a seek on the LUN requires

a seek by all devices in the LUN. This approach provides

highly optimized large I/O bandwidth, but it is not very ef-

ficient for small I/O. More traditional RAID5 and RAID6

implementations may not see the same speedup as the DDN

hardware with our approach, as the stripes containing ac-

tive journal data will likely remain resident in the controller

Figure 11. I/O request size histogram for 0
to 127 KB requests observed by the DDN
S2A9900 controllers during the GTC runs.

cache, minimizing the need to do “read-modify-write” cy-

cles to commit the journal records. Still, there will be head

movement for those writes, which will incur a seek-penalty

for the drive the stripe chunk that holds that portion of the

journal. This will have an affect on the aggregate bandwidth

of the RAID array. Some preliminary testing conducted

by Sun Microsystems using their own RAID hardware has

shown improved performance, but the details of that test-

ing is not currently public. We did not have the chance to

test our approach on non-DDN hardware, and are unable to

further qualify the impact of our solution on other RAID

controllers at this time.

Our approach removed the bottleneck out of the criti-

cal write path by providing an asynchronous write/commit

mechanism for the Lustre file system. This solution has

been previously proposed by NFSv3 and others, and we

were able to implement it in an efficient manner to boost

our write performance in a very large scale production stor-

age deployment. Our approach comes with a temporary in-

crease in memory consumption on clients, which we believe

is a fair price for the performance increases. Our changes

are restricted to how Lustre uses the journal, and not the

operation of the journal itself. Specifically, we do not wait

for the journal commit prior to allowing the client to send

more data. As we have not told the client that the data is sta-

ble, it will retain it in the event the OSS (OST) dies and the

client needs to replay its I/O requests. The guarantees about

file system consistency at the local OST remain unchanged.

Also, our limited tests with manually injected power fail-

ures on the server side with active write/modify I/O client

RPCs in flight provided consistent data on the file system,

provided the clients successfully completed recovery.

10

7 Conclusions

Initial IOR testing with Spider’s DDN S2A9900s and

SATA drives on Jaguar showed that Lustre level write per-

formance was 24.9% of the baseline performance with a 1

MB transfer size. Profiling the I/O stream using the DDN

utilities revealed a large number of 4 KB writes in addi-

tion to the expected 1 MB writes. These small writes were

traced to ldiskfs journal updates. This information allowed

us to identify bottlenecks in the way Lustre was using the

journal – each batch of write requests blocked on the com-

mit of a journal transaction, which added serialization to the

request stream and incurred the latency of a disk head seek

for each write.

We developed and implemented both a hardware based

solution as well as a software solution to these issues. We

used external journals on solid state devices to eliminate

head seeks for the journal, which allowed us to achieve

3,292.6 MB/sec or 58.7% of our baseline performance per

DDN S2A9900. By removing the requirement for a syn-

chronous journal commit for each batch of writes, we ob-

served dramatically fewer 4 KB journal updates (up to 37%)

and associated head seeks. This substantially improved our

block I/O performance to over 5,222.95 MB/s or 93% of our

baseline performance per DDN S2A9900 couplet.

Tests with a real-world scientific application such as

GTC have shown an average I/O bandwidth improvement

of 56.3%. Overall, asynchronous journaling has proven to

be a highly efficient solution to our performance problem in

terms of performance as well as cost-effectiveness.

Our approach removed a bottleneck from the critical

write path by providing an asynchronous write/commit

mechanism for the Lustre file system. This solution has

been previously proposed for NFSv3 and other file systems,

and we were able to implement it in an efficient manner

to significantly boost our write performance in a very large

scale production storage deployment.

Our current understanding and testing show that our ap-

proach does not change the guarantees of file system consis-

tency at the local OST level, as the modifications only affect

how Lustre uses the journal, and not the operation of the

journal itself. However, this approach comes with a tempo-

rary increase of memory consumption on clients while wait-

ing for the server to commit the transactions. We find this a

fair exchange for the substantial performance enhancement

it provides on our very large scale production parallel file

system.

Our approach and findings are likely not specific to our

DDN hardware, and are of interest to developers and large-

scale HPC vendors and integrators in our community. Fu-

ture work will include verifying broad applicability as test

hardware becomes available. Other potential future work

includes an analysis of how other scalable parallel file sys-

tems, such as IBM’s GPFS, approach the synchronous write

performance penalties.

8 Acknowledgements

The authors would like to thank our colleagues at the

National Center for Computational Sciences at Oak Ridge

National Laboratory for their support of our work, with spe-

cial thanks to Scott Klasky for his help with the GTC code

and Youngjae Kim and Douglas Fuller for corrections and

suggestions.

The research was sponsored by the Mathematical, In-

formation, and Computational Sciences Division, Office of

Advanced Scientific Computing Research, U.S. Department

of Energy, under Contract No. DE-AC05-00OR22725 with

UT-Battelle, LLC.

References

[1] S. R. Alam, R. F. Barrett, M. R. Fahey, J. A. Kuehn, J. M.

Larkin, R. Sankaran, and P. H. Worley. Cray XT4: An early

evaluation for petascale scientific simulation. In Proceed-
ings of the ACM/IEEE conference on High Performance Net-
working and Computing (SC07), Reno, NV, 2007.

[2] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham,

R. Ross, L. Ward, and P. Sadayappan. Scalable i/o forward-

ing framework for high-performance computing systems. In

Proceedings of the IEEE International Conference on Clus-
ter Computing, Aug, 2009.

[3] M. Baker, S. Asami, E. Deprit, J. Ousterhout, and M. Seltzer.

Non-volatile memory for fast, reliable file systems. In Pro-
ceedings of the 5th ASPLOS, pages 10–22, 1992.

[4] R. Brightwell, K. Pedretti, and K. D. Underwood. Initial

performance evaluation of the cray seastar interconnect. In

HOTI ’05: Proceedings of the 13th Symposium on High
Performance Interconnects, pages 51–57, Washington, DC,

USA, 2005. IEEE Computer Society.
[5] Cray Inc. Cray XT5. http://cray.com/Products/XT/

Systems/XT5.aspx.
[6] Data Direct Networks. DDN S2A9900. http://www.ddn.

com/9900.
[7] Dell. Dell PowerEdge 1950 Server. http:

//www.dell.com/downloads/global/products/

pedge/en/1950_specs.pdf.
[8] J. Dongarra, H. Meuer, and E. Strohmaier. Top500 Novem-

ber 2009 List. http://www.top500.org/lists/2009/

11, 2008.
[9] J. Dongarra, H. Meuer, and E. Strohmaier. Top500 super-

computing sites. http://www.top500.org, 2009.
[10] G. R. Ganger and Y. N. Patt. Metadata update performance

in file systems. In OSDI ’94: Proceedings of the 1st USENIX
conference on Operating Systems Design and Implementa-
tion, page 5, Berkeley, CA, USA, 1994. USENIX Associa-

tion.
[11] ioperformance.com. xdd performance benchmark, version

6.5. http://www.ioperformance.com, 2008.

11

[12] S. Klasky. private communication, Sept. 2009.

[13] A. Leventhal. Hybrid storage pools in the 7410. http:

//blogs.sun.com/ahl/entry/fishworks_launch.

[14] A. Leventhal. Flash storage memory. Communications of
the ACM, 51(7):47–51, 2008.

[15] Z. Lin, T. S. Hahm, W. W. Lee, W. M. Tang, , and R. B.

White. Turbulent transport reduction by zonal flows: Mas-

sively parallel simulations. Science, 18:1835–1837, 1988.

[16] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan. Adaptable,

metadata rich io methods for portable high performance io.

In In Proceedings of IPDPS’09, May 25-29, Rome, Italy,

2009.

[17] R. Mendel and J. K. Ousterhout. The design and implemen-

tation of a log-structured file system. ACM Trans. Comput.
Syst., 10(1):26–52, 1992.

[18] D. A. Nowak and M. Seagar. ASCI terascale simulation:

Requirements and deployments. http://www.ornl.gov/

sci/optical/docs/Tutorial19991108Nowak.pdf.

[19] Oak Ridge National Laboratory, National Center for Com-

putational Sciences. Jaguar. http://www.nccs.gov/

jaguar/.

[20] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel,

and D. Hitz. NFS Version 3 - Design and Implementation.

Proceedings of the Summer 1994 USENIX Technical Con-
ference, pages 137–152, 1994.

[21] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-

Dusseau. Analysis and evolution of journaling file systems.

In Proceedings of the Annual USENIX Technical Confer-
ence, May 2005.

[22] B. Schroeder and G. A. Gibson. Understanding failures in

petascale computers. Journal of Physics Conference Series,

78(1):012022–+, July 2007.

[23] M. Seltzer, G. Ganger, K. McKusick, K. Smith, C. Soules,

and C. Stein. Journaling versus Soft Updates: Asynchronous

Meta-data Protection in File Systems. In Proceedings of the
USENIX Technical Conference, pages 71–84, June 2000.

[24] H. Shan and J. Shalf. Using IOR to analyze the I/O perfor-

mance of XT3. In Proceedings of the 49th Cray User Group
(CUG) Conference 2007, Seattle, WA, 2007.

[25] G. Shipman. Spider and SION: Supporting the I/O Demands

of a Peta-scale Environment. In Cray User Group Meeting,

2008.

[26] G. Shipman, D. Dillow, S. Oral, and F. Wang. The spider

center wide file system: From concept to reality. In Pro-
ceedings,Cray User Group (CUG) Conference, Atlanta, GA,

May 2009.

[27] Sun Microsystems. Lustre i/o kit, obdfilter-

survey. http://manual.lustre.org/manual/

LustreManual16_HTML/LustreIOKit.html.

[28] Sun Microsystems Inc. Luste wiki. http://wiki.

lustre.org, 2009.

[29] Texas Memory Systems Inc. Ramsan-400. http://www.

ramsan.com/products/ramsan-400.htm.

[30] S. C. Tweedie. Journaling the Linux ext2fs Filesystem. In

Proceedings of the fourth annual Linux expo, 1998.

[31] F. Wang, S. Oral, G. Shipman, O. Drokin, T. Wang, and

I. Huang. Understanding lustre filesystem internals. Techni-

cal Report ORNL/TM-2009/117, Oak Ridge National Lab.,

National Center for Computational Sciences, 2009.

[32] W. Yu, S. Oral, S. Canon, J. Vetter, and R. Sankaran. Em-

pirical analysis of a large-scale hierarchical storage system.

In 14th European Conference on Parallel and Distributed
Computing (Euro-Par 2008), 2008.

[33] W. Yu, J. Vetter, and S. Oral. Performance characterization

and optimization of parallel I/O on the Cray XT. In Proceed-
ings of 22nd IEEE International Parallel and Distributed
Processing Symposium (IPDPS’08), Miami, FL, 2008.

12

