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Abstract
Many file systems reorganize data on disk, for example to
defragment storage, shrink volumes, or migrate data be-
tween different classes of storage. Advanced file system
features such as snapshots, writable clones, and dedupli-
cation make these tasks complicated, as moving a single
block may require finding and updating dozens, or even
hundreds, of pointers to it.

We present Backlog, an efficient implementation of
explicit back references, to address this problem. Back
references are file system meta-data that map physi-
cal block numbers to the data objects that use them.
We show that by using LSM-Trees and exploiting the
write-anywhere behavior of modern file systems such
as NetApp R© WAFL R© or btrfs, we can maintain back
reference meta-data with minimal overhead (one extra
disk I/O per 102 block operations) and provide excel-
lent query performance for the common case of queries
covering ranges of physically adjacent blocks.

1 Introduction

Today’s file systems such as WAFL [12], btrfs [5], and
ZFS [23] have moved beyond merely providing reliable
storage to providing useful services, such as snapshots
and deduplication. In the presence of these services, any
data block can be referenced by multiple snapshots, mul-
tiple files, or even multiple offsets within a file. This
complicates any operation that must efficiently deter-
mine the set of objects referencing a given block, for
example when updating the pointers to a block that has
moved during defragmentation or volume resizing. In
this paper we present new file system structures and al-
gorithms to facilitate such dynamic reorganization of file
system data in the presence of block sharing.

In many problem domains, a layer of indirection pro-
vides a simple way to relocate objects in memory or on
storage without updating any pointers held by users of

the objects. Such virtualization would help with some of
the use cases of interest, but it is insufficient for one of
the most important—defragmentation.

Defragmentation can be a particularly important is-
sue for file systems that implement block sharing to sup-
port snapshots, deduplication, and other features. While
block sharing offers great savings in space efficiency,
sub-file sharing of blocks necessarily introduces on-disk
fragmentation. If two files share a subset of their blocks,
it is impossible for both files to have a perfectly sequen-
tial on-disk layout.

Block sharing also makes it harder to optimize on-disk
layout. When two files share blocks, defragmenting one
file may hurt the layout of the other file. A better ap-
proach is to make reallocation decisions that are aware of
block sharing relationships between files and can make
more intelligent optimization decisions, such as priori-
tizing which files get defragmented, selectively breaking
block sharing, or co-locating related files on the disk.

These decisions require that when we defragment a
file, we determine its new layout in the context of other
files with which it shares blocks. In other words, given
the blocks in one file, we need to determine the other
files that share those blocks. This is the key obstacle
to using virtualization to enable block reallocation, as
it would hide this mapping from physical blocks to the
files that reference them. Thus we have sought a tech-
nique that will allow us to track, rather than hide, this
mapping, while imposing minimal performance impact
on common file operations. Our solution is to introduce
and maintain back references in the file system.

Back references are meta-data that map physical block
numbers to their containing objects. Such back refer-
ences are essentially inverted indexes on the traditional
file system meta-data that maps file offsets to physical
blocks. The challenge in using back references to sim-
plify maintenance operations, such as defragmentation,
is in maintaining them efficiently.

We have designed Log-Structured Back References,



or Backlog for short, a write-optimized back reference
implementation with small, predictable overhead that re-
mains stable over time. Our approach requires no disk
reads to update the back reference database on block al-
location, reallocation, or deallocation. We buffer updates
in main memory and efficiently apply them en masse
to the on-disk database during file system consistency
points (checkpoints). Maintaining back references in the
presence of snapshot creation, cloning or deletion incurs
no additional I/O overhead. We use database compaction
to reclaim space occupied by records referencing deleted
snapshots. The only time that we read data from disk
is during data compaction, which is an infrequent activ-
ity, and in response to queries for which the data is not
currently in memory.

We present a brief overview of write-anywhere file
systems in Section 2. Section 3 outlines the use cases that
motivate our work and describes some of the challenges
of handling them in a write-anywhere file system. We
describe our design in Section 4 and our implementation
in Section 5. We evaluate the maintenance overheads and
query performance in Section 6. We present related work
in Section 7, discuss future work in Section 8, and con-
clude in Section 9.

2 Background

Our work focuses specifically on tracking back refer-
ences in write-anywhere (or no-overwrite) file systems,
such as btrfs [5] or WAFL [12]. The terminology across
such file systems has not yet been standardized; in this
work we use WAFL terminology unless stated otherwise.

Write-anywhere file systems can be conceptually
modeled as trees [18]. Figure 1 depicts a file system tree
rooted at the volume root or a superblock. Inodes are the
immediate children of the root, and they in turn are par-
ents of indirect blocks and/or data blocks. Many modern
file systems also represent inodes, free space bitmaps,
and other meta-data as hidden files (not shown in the fig-
ure), so every allocated block with the exception of the
root has a parent inode.

Write-anywhere file systems never update a block in
place. When overwriting a file, they write the new file
data to newly allocated disk blocks, recursively updating
the appropriate pointers in the parent blocks. Figure 2
illustrates this process. This recursive chain of updates
is expensive if it occurs at every write, so the file system
accumulates updates in memory and applies them all at
once during a consistency point (CP or checkpoint). The
file system writes the root node last, ensuring that it rep-
resents a consistent set of data structures. In the case
of failure, the operating system is guaranteed to find a
consistent file system state with contents as of the last
CP. File systems that support journaling to stable storage
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Figure 1: File System as a Tree. The conceptual view of a
file system as a tree rooted at the volume root (superblock) [18],
which is a parent of all inodes. An inode is a parent of data
blocks and/or indirect blocks.
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Figure 2: Write-Anywhere file system maintenance. In
write-anywhere file systems, block updates generate new block
copies. For example, upon updating the block “Data 2”, the file
system writes the new data to a new block and then recursively
updates the blocks that point to it – all the way to the volume
root.

(disk or NVRAM) can then recover data written since the
last checkpoint by replaying the log.

Write-anywhere file systems can capture snapshots,
point-in-time copies of previous file system states, by
preserving the file system images from past consistency
points. These snapshots are space efficient; the only dif-
ferences between a snapshot and the live file system are
the blocks that have changed since the snapshot copy was
created. In essence, a write-anywhere allocation policy
implements copy-on-write as a side effect of its normal
operation.

Many systems preserve a limited number of the most
recent consistency points, promoting some to hourly,
daily, weekly, etc. snapshots. An asynchronous process
typically reclaims space by deleting old CPs, reclaiming
blocks whose only references were from deleted CPs.
Several file systems, such as WAFL and ZFS, can cre-
ate writable clones of snapshots, which are useful es-
pecially in development (such as creation of a writable
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Figure 3: Snapshot Lines. The tuple (line, version), where
version is a global CP number, uniquely identifies a snapshot
or consistency point. Taking a consistency point creates a new
version of the latest snapshot within each line, while creating a
writable clone of an existing snapshot starts a new line.

duplicate for testing of a production database) and virtu-
alization [9].

It is helpful to conceptualize a set of snapshots and
consistency points in terms of lines as illustrated in Fig-
ure 3. A time-ordered set of snapshots of a file system
forms a single line, while creation of a writable clone
starts a new line. In this model, a (line ID, version) pair
uniquely identifies a snapshot or a consistency point. In
the rest of the paper, we use the global consistency point
number during which a snapshot or consistency point
was created as its version number.

The use of copy-on-write to implement snapshots and
clones means that a single physical block may belong
to multiple file system trees and have many meta-data
blocks pointing to it. In Figure 2, for example, two dif-
ferent indirect blocks, I-Block 2 and I-Block 2’, refer-
ence the block Data 1. Block-level deduplication [7, 17]
can further increase the number of pointers to a block by
allowing files containing identical data blocks to share
a single on-disk copy of the block. This block sharing
presents a challenge for file system management opera-
tions, such as defragmentation or data migration, that re-
organize blocks on disk. If the file system moves a block,
it will need to find and update all of the pointers to that
block.

3 Use Cases

The goal of Backlog is to maintain meta-data that facil-
itates the dynamic movement and reorganization of data
in write-anywhere file systems. We envision two ma-
jor cases for internal data reorganization in a file system.
The first is support for bulk data migration. This is useful
when we need to move all of the data off of a device (or
a portion of a device), such as when shrinking a volume
or replacing hardware. The challenge here for traditional
file system designs is translating from the physical block
addresses we are moving to the files referencing those
blocks so we can update their block pointers. Ext3, for

example, can do this only by traversing the entire file sys-
tem tree searching for block pointers that fall in the target
range [2]. In a large file system, the I/O required for this
brute-force approach is prohibitive.

Our second use case is the dynamic reorganization
of on-disk data. This is traditionally thought of as
defragmentation—reallocating files on-disk to achieve
contiguous layout. We consider this use case more
broadly to include tasks such as free space coalescing
(to create contiguous expanses of free blocks for the effi-
cient layout of new files) and the migration of individual
files between different classes of storage in a file system.

To support these data movement functions in write-
anywhere file systems, we must take into account the
block sharing that emerges from features such as snap-
shots and clones, as well as from the deduplication of
identical data blocks [7, 17]. This block sharing makes
defragmentation both more important and more chal-
lenging than in traditional file system designs. Fragmen-
tation is a natural consequence of block sharing; two files
that share a subset of their blocks cannot both have an
ideal sequential layout. And when we move a shared
block during defragmentation, we face the challenge of
finding and updating pointers in multiple files.

Consider a basic defragmentation scenario where we
are trying to reallocate the blocks of a single file. This
is simple to handle. We find the file’s blocks by reading
the indirect block tree for the file. Then we move the
blocks to a new, contiguous, on-disk location, updating
the pointer to each block as we move it.

But things are more complicated if we need to defrag-
ment two files that share one or more blocks, a case that
might arise when multiple virtual machine images are
cloned from a single master image. If we defragment
the files one at a time, as described above, the shared
blocks will ping-pong back and forth between the files
as we defragment one and then the other. A better ap-
proach is to make reallocation decisions that are aware
of the sharing relationship. There are multiple ways we
might do this. We could select the most important file,
and only optimize its layout. Or we could decide that
performance is more important than space savings and
make duplicate copies of the shared blocks to allow se-
quential layout for all of the files that use them. Or we
might apply multi-dimensional layout techniques [20] to
achieve near-optimal layouts for both files while still pre-
serving block sharing.

The common theme in all of these approaches to lay-
out optimization is that when we defragment a file, we
must determine its new layout in the context of the other
files with which it shares blocks. Thus we have sought
a technique that will allow us to easily map physical
blocks to the files that use them, while imposing minimal
performance impact on common file system operations.



Our solution is to introduce and maintain back reference
meta-data to explicitly track all of the logical owners of
each physical data block.

4 Log-Structured Back References

Back references are updated significantly more fre-
quently than they are queried; they must be updated on
every block allocation, deallocation, or reallocation. It is
crucial that they impose only a small performance over-
head that does not increase with the age of the file sys-
tem. Fortunately, it is not a requirement that the meta-
data be space efficient, since disk is relatively inexpen-
sive.

In this section, we present Log-Structured Back Ref-
erences (Backlog). We present our design in two parts.
First, we present the conceptual design, which provides
a simple model of back references and their use in query-
ing. We then present a design that achieves the capabili-
ties of the conceptual design efficiently.

4.1 Conceptual Design
A naı̈ve approach to maintaining back references re-
quires that we write a back reference record for every
block at every consistency point. Such an approach
would be prohibitively expensive both in terms of disk
usage and performance overhead. Using the observation
that a given block and its back references may remain un-
changed for many consistency points, we improve upon
this naı̈ve representation by maintaining back references
over ranges of CPs. We represent every such back refer-
ence as a record with the following fields:

• block: The physical block number
• inode: The inode number that references the block
• offset: The offset within the inode
• line: The line of snapshots that contains the inode
• from: The global CP number (time epoch) from

which this record is valid (i.e., when the reference
was allocated to the inode)

• to: The global CP number until which the record
is valid (exclusive) or∞ if the record is still alive

For example, the following table describes two blocks
owned by inode 2, created at time 4 and truncated to one
block at time 7:

block inode offset line from to
100 2 0 0 4 ∞
101 2 1 0 4 7

Although we present this representation as operating
at the level of blocks, it can be extended to include a
length field to operate on extents.

Let us now consider how a table of these records, in-
dexed by physical block number, lets us answer the sort
of query we encounter in file system maintenance. Imag-
ine that we have previously run a deduplication process
and found that many files contain a block of all 0’s. We
stored one copy of that block on disk and now have mul-
tiple inodes referencing that block. Now, let’s assume
that we wish to move the physical location of that block
of 0’s in order to shrink the size of the volume on which
it lives. First we need to identify all the files that ref-
erence this block, so that when we relocate the block,
we can update their meta-data to reference the new loca-
tion. Thus, we wish to query the back references to an-
swer the question, “Tell me all the objects containing this
block.” More generally, we may want to ask this query
for a range of physical blocks. Such queries translate
easily into indexed lookups on the structure described
above. We use the physical block number as an index to
locate all the records for the given physical block num-
ber. Those records identify all the objects that reference
the block and all versions in which those blocks are valid.

Unfortunately, this representation, while elegantly
simple, would perform abysmally. Consider what is re-
quired for common operations. Every block deallocation
requires replacing the∞ in the to field with the current
CP number, translating into a read-modify-write on this
table. Block allocation requires creating a new record,
translating into an insert into the table. Block realloca-
tion requires both a deallocation and an allocation, and
thus a read-modify-write and an insert. We ran experi-
ments with this approach and found that the file system
slowed down to a crawl after only a few hundred con-
sistency points. Providing back references with accept-
able overhead during normal operation requires a feasi-
ble design that efficiently realizes the conceptual model
described in this section.

4.2 Feasible Design

Observe that records in the conceptual table described
in Section 4.1 are of two types. Complete records refer
to blocks that are no longer part of the live file system;
they exist only in snapshots. Such blocks are identified
by having to < ∞. Incomplete records are part of the
live file system and always have to =∞. Our actual de-
sign maintains two separate tables, From and To. Both
tables contain the first four columns of the conceptual ta-
ble (block, inode, offset, and line). The From
table also contains the from column, and the To table
contains the to column. Incomplete records exist only
in the From table, while complete records appear in both
tables.

On a block allocation, regardless of whether the block
is newly allocated or reallocated, we insert the corre-



sponding entry into the From table with the from field
set to the current global CP number, creating an incom-
plete record. When a reference is removed, we insert
the appropriate entry into the To table, completing the
record. We buffer new records in memory, committing
them to disk at the end of the current CP, which guar-
antees that all entries with the current global CP number
are present in memory. This facilitates pruning records
where from = to, which refer to block references that
were added and removed within the same CP.

For example, the Conceptual table from the previous
subsection (describing the two blocks of inode 2) is bro-
ken down as follows:

From:
block inode offset line from
100 2 0 0 4
101 2 1 0 4

To:
block inode offset line to
101 2 1 0 7

The record for block 101 is complete (has both From
and To entries), while the record for 100 is incomplete
(the block is currently allocated).

This design naturally handles block sharing arising
from deduplication. When the file system detects that a
newly written block is a duplicate of an existing on-disk
block, it adds a pointer to that block and creates an entry
in the From table corresponding to the new reference.

4.2.1 Joining the Tables

The conceptual table on which we want to query is the
outer join of the From and To tables. A tuple F ∈ From
joins with a tuple T ∈ To that has the same first four
fields and that has the smallest value of T.to such that
F.from < T.to. If there is a From entry without a
matching To entry (i.e., a live, incomplete record), we
outer-join it with an implicitly-present tuple T′ ∈ To with
T′.to =∞.

For example, assume that a file with inode 4 was cre-
ated at time 10 with one block and then truncated at time
12. Then, the same block was assigned to the file at time
16, and the file was removed at time 20. Later on, the
same block was allocated to a different file at time 30.
These operations produce the following records:

From:

block inode offset line from
103 4 0 0 10
103 4 0 0 16
103 5 2 0 30

To:
block inode offset line to
103 4 0 0 12
103 4 0 0 20

Observe that the first From and the first To record

form a logical pair describing a single interval during
which the block was allocated to inode 4. To reconstruct
the history of this block allocation, a record from = 10
has to join with to = 12. Similarly, the second From
record should join with the second To record. The third
From entry does not have a corresponding To entry, so
it joins with an implicit entry with to =∞.

The result of this outer join is the Conceptual view.
Every tuple C ∈ Conceptual has both from and to
fields, which together represent a range of global CP
numbers within the given snapshot line, during which
the specified block is referenced by the given inode
from the given file offset. The range might include
deleted consistency points or snapshots, so we must ap-
ply a mask of the set of valid versions before returning
query results.

Coming back to our previous example, performing an
outer join on these tables produces:

block inode offset line from to
103 4 0 0 10 12
103 4 0 0 16 20
103 5 2 0 30 ∞

This design is feasible until we introduce writable
clones. In the rest of this section, we explain how we
have to modify the conceptual view to address them.
Then, in Section 5, we discuss how we realize this de-
sign efficiently.

4.2.2 Representing Writable Clones

Writable clones pose a challenge in realizing the concep-
tual design. Consider a snapshot (l, v), where l is the line
and v is the version or CP. Naı̈vely creating a writable
clone (l′, v′) requires that we duplicate all back refer-
ences that include (l, v) (that is, C.line = l ∧ C.from ≤
v < C.to, where C ∈ Conceptual), updating the line
field to l′ and the from and to fields to represent all
versions (range 0 −∞). Using this technique, the con-
ceptual table would continue to be the result of the out-
erjoin of the From and To tables, and we could express
queries directly on the conceptual table. Unfortunately,
this mass duplication is prohibitively expensive. Thus,
our actual design cannot simply rely on the conceptual
table. Instead we implicitly represent writable clones in
the database using structural inheritance [6], a technique
akin to copy-on-write. This avoids the massive duplica-
tion in the naı̈ve approach.

The implicit representation assumes that every block
of (l, v) is present in all subsequent versions of l′, unless
explicitly overridden. When we modify a block, b, in a
new writable clone, we do two things: First, we declare
the end of b’s lifetime by writing an entry in the To table
recording the current CP. Second, we record the alloca-



tion of the new block b′ (a copy-on-write of b) by adding
an entry into the From table.

For example, if the old block b = 103 was originally
allocated at time 30 in line l = 0 and was replaced by a
new block b′ = 107 at time 43 in line l′ = 1, the system
produces the following records:

From:
block inode offset line from
103 5 2 0 30
107 5 2 1 43

To:
block inode offset line to
103 5 2 1 43

The entry in the To table overrides the inheritance
from the previous snapshot; however, notice that this new
To entry now has no element in the From table with
which to join, since no entry in the From table exists
with the line l′ = 1. We join such entries with an im-
plicit entry in the From table with from = 0. With the
introduction of structural inheritance and implicit records
in the From table, our joined table no longer matches
our conceptual table. To distinguish the conceptual table
from the actual result of the join, we call the join result
the Combined table.

Summarizing, a back reference record C ∈ Combined
of (l, v) is implicitly present in all versions of l′, un-
less there is an overriding record C′ ∈ Combined
with C.block = C′.block ∧ C.inode =
C′.inode ∧ C.offset = C′.offset ∧ C′.line =
l′ ∧ C′.from = 0. If such a C′ record exists, then it
defines the versions of l′ for which the back reference is
valid (i.e., from C′.from to C′.to). The file system con-
tinues to maintain back references as usual by inserting
the appropriate From and To records in response to al-
location, deallocation and reallocation operations.

While the Combined table avoids the massive copy
when creating writable clones, query execution becomes
a bit more complicated. After extracting initial result
from the Combined table, we must iteratively expand
those results as follows. Let Initial be the initial re-
sult extracted from Combined containing all records that
correspond to blocks b0, . . . , bn. If any of the blocks bi

has one or more override records, they are all guaranteed
to be in this initial result. We then initialize the query
Result to contain all records in Initial and proceed
as follows. For every record R ∈ Result that refer-
ences a snapshot (l, v) that was cloned to produce (l′, v′),
we check for the existence of a corresponding override
record C′ ∈ Initial with C′.line = l′. If no such
record exists, we explicitly add records C′.line ← l′,
C′.from ← 0 and C′.to ← ∞ to Result. This pro-
cess repeats recursively until it fails to insert additional
records. Finally, when the result is fully expanded we
mask the ranges to remove references to deleted snap-

shots as described in Section 4.2.1.
This approach requires that we never delete the back

references for a cloned snapshot. Consequently, snapshot
deletion checks whether the snapshot has been cloned,
and if it has, it adds the snapshot ID to the list of zombies,
ensuring that its back references are not purged during
maintenance. The file system is then free to proceed with
snapshot deletion. Periodically we examine the list of
zombies and drop snapshot IDs that have no remaining
descendants (clones).

5 Implementation

With the feasible design in hand, we now turn towards
the problem of efficiently realizing the design. First
we discuss our implementation strategy and then discuss
our on-disk data storage (section 5.1). We then proceed
to discuss database compaction and maintenance (sec-
tion 5.2), partitioning the tables (section 5.3), and recov-
ering the tables after system failure (section 5.4). We im-
plemented and evaluated the system in fsim, our custom
file system simulator, and then replaced the native back
reference support in btrfs with Backlog.

The implementation in fsim allows us to study the
new feature in isolation from the rest of the file system.
Thus, we fully realize the implementation of the back
reference system, but embed it in a simulated file sys-
tem rather than a real file system, allowing us to consider
a broad range of file systems rather than a single spe-
cific implementation. Fsim simulates a write-anywhere
file system with writable snapshots and deduplication. It
exports an interface for creating, deleting, and writing
to files, and an interface for managing snapshots, which
are controlled either by a stochastic workload generator
or an NFS trace player. It stores all file system meta-
data in main memory, but it does not explicitly store any
data blocks. It stores only the back reference meta-data
on disk. Fsim also provides two parameters to con-
figure deduplication emulation. The first specifies the
percentage of newly created blocks that duplicate exist-
ing blocks. The second specifies the distribution of how
those duplicate blocks are shared.

We implement back references as a set of callback
functions on the following events: adding a block ref-
erence, removing a block reference, and taking a consis-
tency point. The first two callbacks accumulate updates
in main memory, while the consistency point callback
writes the updates to stable storage, as described in the
next section. We implement the equivalent of a user-level
process to support database maintenance and query. We
verify the correctness of our implementation by a util-
ity program that walks the entire file system tree, recon-
structs the back references, and then compares them with
the database produced by our algorithm.



5.1 Data Storage and Maintenance

We store the From and To tables as well as the pre-
computed Combined table (if available) in a custom
row-oriented database optimized for efficient insert and
query. We use a variant of LSM-Trees [16] to hold the
tables. The fundamental property of this structure is that
it separates an in-memory write store (WS or C0 in the
LSM-Tree terminology) and an on-disk read store (RS
or C1).

We accumulate updates to each table in its respec-
tive WS, an in-memory balanced tree. Our fsim im-
plementation uses a Berkeley DB 4.7.25 in-memory B-
tree database [15], while our btrfs implementation uses
Linux red/black trees, but any efficient indexing structure
would work. During consistency point creation, we write
the contents of the WS into the RS, an on-disk, densely
packed B-tree, which uses our own LSM-Tree/Stepped-
Merge implementation, described in the next section.

In the original LSM-Tree design, the system selects
parts of the WS to write to disk and merges them with the
corresponding parts of the RS (indiscriminately merging
all nodes of the WS is too inefficient). We cannot use this
approach, because we require that a consistency point
has all accumulated updates persistent on disk. Our ap-
proach is thus more like the Stepped-Merge variant [13],
in which the entire WS is written to a new RS run file,
resulting in one RS file per consistency point. These RS
files are called the Level 0 runs, which are periodically
merged into Level 1 runs, and multiple Level 1 runs are
merged to produce Level 2 runs, etc., until we get to a
large Level N file, where N is fixed. The Stepped-Merge
Method uses these intermediate levels to ensure that the
sizes of the RS files are manageable. For the back refer-
ences use case, we found it more practical to retain the
Level 0 runs until we run data compaction (described in
Section 5.2), at which point, we merge all existing Level
0 runs into a single RS (analogous to the Stepped-Merge
Level N ) and then begin accumulating new Level 0 files
at subsequent CPs. We ensure that the individual files
are of a manageable size using horizontal partitioning as
described in Section 5.3.

Writing Level 0 RS files is efficient, since the records
are already sorted in memory, which allows us to con-
struct the compact B-tree bottom-up: The data records
are packed densely into pages in the order they appear
in the WS, creating a Leaf file. We then create an Inter-
nal 1 (I1) file, containing densely packed internal nodes
containing references to each block in the Leaf file. We
continue building I files until we have an I file with only
a single block (the root of the B-tree). As we write the
Leaf file, we incrementally build the I1 file and itera-
tively, as we write I file, In, to disk, we incrementally
build the I(n + 1) file in memory, so that writing the I

files requires no disk reads.
Queries specify a block or a range of blocks, and

those blocks may be present in only some of the Level 0
RS files that accumulate between data compaction runs.
To avoid many unnecessary accesses, the query system
maintains a Bloom filter [3] on the RS files that is used
to determine which, if any, RS files must be accessed. If
the blocks are in the RS, then we position an iterator in
the Leaf file on the first block in the query result and re-
trieve successive records until we have retrieved all the
blocks necessary to satisfy the query.

The Bloom filter uses four hash functions, and its de-
fault size for From and To RS files depends on the max-
imum number of operations in a CP. We use 32 KB for
32,000 operations (a typical setting for WAFL), which
results in an expected false positive rate of up to 2.4%. If
an RS contains a smaller number of records, we appropri-
ately shrink its Bloom filter to save memory. This opera-
tion is efficient, since a Bloom filter can be halved in size
in linear time [4]. The default filter size is expandable
up to 1 MB for a Combined read store. False positives
for the latter filter grow with the size of the file system,
but this is not a problem, because the Combined RS is
involved in almost all queries anyway.

Each time that we remove a block reference, we prune
in real time by checking whether the reference was both
created and removed during the same interval between
two consistency points. If it was, we avoiding creating
records in the Combined table where from = to. If such
a record exists in From, our buffering approach guaran-
tees that the record resides in the in-memory WS from
which it can be easily removed. Conversely, upon block
reference addition, we check the in-memory WS for the
existence of a corresponding To entry with the same CP
number and proactively prune those if they exist (thus a
reference that exists between CPs 3 and 4 and is then re-
allocated in CP 4 will be represented with a single entry
in Combined with a lifespan beginning at 3 and contin-
uing to the present). We implement the WS for all the
tables as balanced trees sorted first by block, inode,
offset, and line, and then by the from and/or to
fields, so that it is efficient to perform this proactive prun-
ing.

During normal operation, there is no need to delete
tuples from the RS. The masking procedure described in
Section 4.2.1 addresses blocks deleted due to snapshot
removal.

During maintenance operations that relocate blocks,
e.g., defragmentation or volume shrinking, it becomes
necessary to remove blocks from the RS. Rather than
modifying the RS directly, we borrow an idea from the
C-store, column-oriented data manager [22] and retain a
deletion vector, containing the set of entries that should
not appear in the RS. We store this vector as a B-tree in-



Figure 4: Database Maintenance. This query plan merges
all on-disk RS’s, represented by the “From N”, precomputes
the Combined table, which is the join of the From and To

tables, and purges old records. Incomplete records reside in the
on-disk From table.

dex, which is usually small enough to be entirely cached
in memory. The query engine then filters records read
from the RS according to the deletion vector in a man-
ner that is completely opaque to query processing logic.
If the deletion vector becomes sufficiently large, the sys-
tem can optionally write a new copy of the RS with the
deleted tuples removed.

5.2 Database Maintenance

The system periodically compacts the back reference in-
dexes. This compaction merges the existing Level 0
RS’s, precomputes the Combined table by joining the
From and To tables, and purges records that refer to
deleted checkpoints. Merging RS files is efficient, be-
cause all the tuples are sorted identically.

After compaction, we are left with one RS containing
the complete records in the Combined table and one
RS containing the incomplete records in the From table.
Figure 4 depicts this compaction process.

5.3 Horizontal Partitioning

We partition the RS files by block number to ensure that
each of the files is of a manageable size. We main-
tain a single WS per table, but then during a check-
point, we write the contents of the WS to separate par-
titions, and compaction processes each partition sepa-
rately. Note that this arrangement provides the com-
paction process the option of selectively compacting dif-
ferent partitions. In our current implementation, each
partition corresponds to a fixed sequential range of block
numbers.

There are several interesting alternatives for partition-
ing that we plan to explore in future work. We could start
with a single partition and then use a threshold-based
scheme, creating a new partition when an existing par-
tition exceeds the threshold. A different approach that
might better exploit parallelism would be to use hashed
partitioning.

Partitioning can also allow us to exploit the paral-
lelism found in today’s storage servers: different par-
titions could reside on different disks or RAID groups
and/or could be processed by different CPU cores in par-
allel.

5.4 Recovery
This back reference design depends on the write-
anywhere nature of the file system for its consistency.
At each consistency point, we write the WS’s to disk and
do not consider the CP complete until all the resulting
RS’s are safely on disk. When the system restarts after a
failure, it is thus guaranteed that it finds a consistent file
system with consistent back references at a state as of the
last complete CP. If the file system has a journal, it can
rebuild the WS’s together with the other parts of the file
system state as the system replays the journal.

6 Evaluation

Our goal is that back reference maintenance not interfere
with normal file-system processing. Thus, maintaining
the back reference database should have minimal over-
head that remains stable over time. In addition, we want
to confirm that query time is sufficiently low so that util-
ities such as volume shrinking can use them freely. Fi-
nally, although space overhead is not of primary concern,
we want to ensure that we do not consume excessive disk
space.

We evaluated our algorithm first on a syntheti-
cally generated workload that submits write requests as
rapidly as possible. We then proceeded to evaluate our
system using NFS traces; we present results using part of
the EECS03 data set [10]. Next, we report performance
for an implementation of Backlog ported into btrfs. Fi-
nally, we present query performance results.

6.1 Experimental Setup
We ran the first part of our evaluation in fsim. We
configured the system to be representative of a common
write-anywhere file system, WAFL [12]. Our simula-
tion used 4 KB blocks and took a consistency point af-
ter every 32,000 block writes or 10 seconds, whichever
came first (a common configuration of WAFL). We con-
figured the deduplication parameters based on measure-
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Figure 5: Fsim Synthetic Workload Overhead during Normal Operation. I/O overhead due to maintaining back references
normalized per persistent block operations (adding or removing a reference with effects that survive at least one CP) and the time
overhead normalized per block operation.

ments from a few file servers at NetApp. We treat 10%
of incoming blocks as duplicates, resulting in a file sys-
tem where approximately 75 – 78% of the blocks have
reference counts of 1, 18% have reference counts of 2,
5% have reference counts of 3, etc. Our file system kept
four hourly and four nightly snapshots.

We ran our simulations on a server with two dual-core
Intel Xeon 3.0 GHz CPUs, 10 GB of RAM, running
Linux 2.6.28. We stored the back reference meta-data
from fsim on a 15K RPM Fujitsu MAX3073RC SAS
drive that provides 60 MB/s of write throughput. For the
micro-benchmarks, we used a 32 MB cache in addition to
the memory consumed by the write stores and the Bloom
filters.

We carried out the second part of our evaluation in a
modified version of btrfs, in which we replaced the orig-
inal implementation of back references by Backlog. As
btrfs uses extent-based allocation, we added a length
field to both the From and To described in Section 4.1.
All fields in back reference records are 64-bit. The re-
sulting From and To tuples are 40 bytes each, and a
Combined tuple is 48 bytes long. All btrfs workloads
were executed on an Intel Pentium 4 3.0 GHz, 512 MB
RAM, running Linux 2.6.31.

6.2 Overhead
We evaluated the overhead of our algorithm in fsim
using both synthetically generated workloads and NFS
traces. We used the former to understand how our algo-
rithm behaves under high system load and the latter to
study lower, more realistic loads.

6.2.1 Synthetic Workload

We experimented with a number of different configu-
rations and found that all of them produced similar re-

 0

 5

 10

 15

 20

 25

 100  200  300  400  500  600  700  800  900  1000

S
pa

ce
 O

ve
rh

ea
d 

(%
)

Global CP Number

No maintenance
Maintenance every 200 CPs
Maintenance every 100 CPs

Figure 6: Fsim Synthetic Workload Database Size. The
size of the back reference meta-data as a percentage of the total
physical data size as it evolves over time. The disk usage at the
end of the workload is 14.2 GB after deduplication.

sults, so we selected one representative workload and
used that throughout the rest of this section. We config-
ured our workload generator to perform at least 32,000
block writes between two consistency points, which cor-
responds to the periods of high load on real systems. We
set the rates of file create, delete, and update operations
to mirror the rates observed in the EECS03 trace [10].
90% of our files are small, reflecting what we observe on
file systems containing mostly home directories of de-
velopers – which is similar to the file system from which
the EECS03 trace was gathered. We also introduced cre-
ation and deletion of writable clones at a rate of approxi-
mately 7 clones per 100 CP’s, although the original NFS
trace did not have any analogous behavior. This is sub-
stantially more clone activity than we would expect in a
home-directory workload such as EECS03, so it gives us
a pessimal view of the overhead clones impose.

Figure 5 shows how the overhead of maintaining back
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references changes over time, ignoring the cost of peri-
odic database maintenance. The average cost of a block
operation is 0.010 block writes or 8-9 µs per block op-
eration, regardless of whether the operation is adding or
removing a reference. A single copy-on-write operation
(involving both adding and removing a block from an in-
ode) adds on average 0.020 disk writes and at most 18
µs. This amounts to at most 628 additional writes and
0.5–0.6 seconds per CP. More than 95% of this overhead
is CPU time, most of which is spent updating the write
store. Most importantly, the overhead is stable over time,
and the I/O cost is constant even as the total data on the
file system increases.

Figure 6 illustrates meta-data size evolution as a per-
centage of the total physical data size for two frequencies
of maintenance (every 100 or 200 CPs) and for no main-
tenance at all. The space overhead after maintenance
drops consistently to 2.5%–3.5% of the total data size,
and this low point does not increase over time.

The database maintenance tool processes the original
database at the rate 7.7 – 10.4 MB/s. In our experi-
ments, compaction reduced the database size by 30 –
50%. The exact percentage depends on the fraction of
records that could be purged, which can be quite high if
the file system deletes an entire snapshot line as we did
in this benchmark.

6.2.2 NFS Traces

We used the first 16 days of the EECS03 trace [10],
which captures research activity in home directories of a
university computer science department during February
and March of 2003. This is a write-rich workload, with
one write for every two read operations. Thus, it places
more load on Backlog than workloads with higher read-
/write ratios. We ran the workload with the default con-
figuration of 10 seconds between two consistency points.

Figure 7 shows how the overhead changes over time
during the normal file system operation, omitting the cost
of database maintenance. The time overhead is usually
between 8 and 9 µs, which is what we saw for the syn-
thetically generated workload, and as we saw there, the
overhead remains stable over time. Unlike the overhead
observed with the synthetic workload, this workload ex-
hibits occasional spikes and one period where the over-
head dips (between hours 200 and 250).

The spikes align with periods of low system load,
where the constant part of the CP overhead is amortized
across a smaller number of block operations, making the
per-block overhead greater. We do not consider this be-
havior to pose any problem, since the system is under
low load during these spikes and thus can better absorb
the temporarily increased overhead.

The period of lower time overhead aligns with periods
of high system load with a large proportion of setattr
commands, most of which are used for file truncation.
During this period, we found that only a small fraction



Benchmark Base Original Backlog Overhead
Creation of a 4 KB file (2048 ops. per CP) 0.89 ms 0.91 ms 0.96 ms 7.9%
Creation of a 64 KB file (2048 ops. per CP) 2.10 ms 2.11 ms 2.11 ms 1.9%
Deletion of a 4 KB file (2048 ops. per CP) 0.57 ms 0.59 ms 0.63 ms 11.2%
Creation of a 4 KB file (8192 ops. per CP) 0.85 ms 0.87 ms 0.87 ms 2.0%
Creation of a 64 KB file (8192 ops. per CP) 1.91 ms 1.92 ms 1.92 ms 0.6%
Deletion of a 4 KB file (8192 ops. per CP) 0.45 ms 0.46 ms 0.48 ms 7.1%
DBench CIFS workload, 4 users 19.59 MB/s 19.20 MB/s 19.19 MB/s 2.1%
FileBench /var/mail, 16 threads 852.04 ops/s 835.80 ops/s 836.70 ops/s 1.8%
PostMark 2050 ops/s 2032 ops/s 2020 ops/s 1.5%

Table 1: Btrfs Benchmarks. The Base column refers to a customized version of btrfs, from which we removed its original
implementation of back references. The Original column corresponds to the original btrfs back references, and the Backlog column
refers to our implementation. The Overhead column is the overhead of Backlog relative to the Base.

of the block operations survive past a consistency point.
Thus, the operations in this interval tend to cancel each
other out, resulting in smaller time overheads, because
we never materialize these references in the read store.

This workload exhibits I/O overhead of approximately
0.010 to 0.015 page writes per block operation with oc-
casional spikes, most (but not all) of which align with the
periods of low file system load.

Figure 8 shows how the space overhead evolves over
time for the NFS workload. The general growth pat-
tern follows that of the synthetically generated workload
with the exception that database maintenance frees less
space. This is expected, since unlike the synthetic work-
load, the NFS trace does not delete entire snapshot lines.
The space overhead after maintenance is between 6.1%
and 6.3%, and it does not increase over time. The exact
magnitude of the space overhead depends on the actual
workload, and it is in fact different from the synthetic
workload presented in Section 6.2.1. Each maintenance
operation completed in less than 25 seconds, which we
consider acceptable, given the elapsed time between in-
vocations (8 or 48 hours).

6.3 Performance in btrfs
We validated our simulation results by porting our imple-
mentation of Backlog to btrfs. Since btrfs natively sup-
ports back references, we had to remove the native im-
plementation, replacing it with our own. We present re-
sults for three btrfs configurations—the Base configura-
tion with no back reference support, the Original config-
uration with native btrfs back reference support, and the
Backlog configuration with our implementation. Com-
paring Backlog to the Base configuration shows the ab-
solute overhead for our back reference implementation.
Comparing Backlog to the Original configuration shows
the overhead of using a general purpose back reference
implementation rather than a customized implementation
that is more tightly coupled to the rest of the file system.

Table 1 summarizes the benchmarks we executed on
btrfs and the overheads Backlog imposes, relative to
baseline btrfs. We ran microbenchmarks of create,
delete, and clone operations and three application bench-
marks. The create microbenchmark creates a set of 4 KB
or 64 KB files in the file system’s root directory. Af-
ter recording the performance of the create microbench-
mark, we sync the files to disk. Then, the delete mi-
crobenchmark deletes the files just created. We run these
microbenchmarks in two different configurations. In the
first, we take CPs every 2048 operations, and in the sec-
ond, we take CP after 8192 operations. The choice of
8192 operations per CP is still rather conservative, con-
sidering that WAFL batches up to 32,000 operations. We
also report the case with 2048 operations per CP, which
corresponds to periods of a light server load as a point for
comparison (and we can thus tolerate higher overheads).
We executed each benchmark five times and report the
average execution time (including the time to perform
sync) divided by the total number of operations.

The first three lines in the table present microbench-
mark results of creating and deleting small 4 KB files,
and creating 64 KB files, taking a CP (btrfs transaction)
every 256 operations. The second three lines present re-
sults for the same microbenchmarks with an inter-CP in-
terval of 1024 operations. We show results for the three
btrfs configurations—Base, Original, and Backlog. In
general, the Backlog performance for writes is compara-
ble to that of the native btrfs implementation. For 8192
operations per CP, it is marginally slower on creates than
the file system with no back references (Base), but com-
parable to the original btrfs. Backlog is unfortunately
slower on deletes – 7% as compared to Base, but only
4.3% slower than the original btrfs. Most of this over-
head comes from updating the write-store.

The choice of 4 KB (one file system page) as our file
size targets the worst case scenario, in which only a small
number of pages are written in any given operation. The
overhead decreases to as little as 0.6% for the creation of
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a 64 KB file, because btrfs writes all of its data in one
extent. This generates only a single back reference, and
its cost is amortized over a larger number of block I/O
operations.

The final three lines in Table 1 present application
benchmark results: dbench [8], a CIFS file server work-
load; FileBench’s /var/mail [11] multi-threaded mail
server; and PostMark [14], a small file workload. We
executed each benchmark on a clean, freshly format-
ted volume. The application overheads are generally
lower (1.5% – 2.1%) than the worst-case microbench-
mark overheads (operating on 4 KB files) and in two
cases out of three comparable to the original btrfs.

Our btrfs implementation confirms the low overheads
predicted via simulation and also demonstrates that
Backlog achieves nearly the same performance as the
btrfs native implementation. This is a powerful result
as the btrfs implementation is tightly integrated with
the btrfs data structures, while Backlog is a general-
purpose solution that can be incorporated into any write-
anywhere file system.

6.4 Query Performance

We ran an assortment of queries against the back ref-
erence database, varying two key parameters, the se-
quentiality of the requests (expressed as the length of a
run) and the number of block operations applied to the
database since the last maintenance run. We implement
runs with length n by starting at a randomly selected al-
located block, b, and returning back references for b and
the next n − 1 allocated blocks. This holds the amount
of work in each test case constant; we always return n
back references, regardless of whether the area of the file
system we select is densely or sparsely allocated. It also
gives us conservative results, since it always returns data
for n back references. By returning the maximum pos-
sibly number of back references, we perform the maxi-
mum number of I/Os that could occur and thus report the
lowest query throughput that would be observed.

We cleared both our internal caches and all file sys-
tem caches before each set of queries, so the numbers we
present illustrate worst-case performance. We found the



query performance in both the synthetic and NFS work-
loads to be similar, so we will present only the former for
brevity. Figure 9 summarizes the results.

We saw the best performance, 36,000 queries per sec-
ond, when performing highly sequential queries imme-
diately after database maintenance. As the time since
database maintenance increases, and as the queries be-
come more random, performance quickly drops. We
can process 290 single-back-reference queries per sec-
ond immediately after maintenance, but this drops to 43
– 197 as the interval since maintenance increases. We ex-
pect queries for large sorted runs to be the norm for main-
tenance operations such as defragmentation, indicating
that such utilities will experience the better throughput.
Likewise, it is reasonable practice to run database main-
tenance prior to starting a query intensive task. For ex-
ample, a tool that defragments a 100 MB region of a disk
would issue a sorted run of at most 100 MB / 4 KB =
25,600 queries, which would execute in less than a sec-
ond on a database immediately after maintenance. The
query runs for smaller-scale applications, such as file
defragmentation, would vary considerably – anywhere
from a few blocks per run on fragmented files to thou-
sands for the ones with a low degree of fragmentation.

Issuing queries in large sorted runs provides two ben-
efits. It increases the probability that two consecutive
queries can be satisfied from the same database page,
and it reduces the total seek distance between operations.
Queries on recently maintained database are more effi-
cient for for two reasons: First, a compacted database
occupies fewer RS files, so a query accesses fewer files.
Second, the maintenance process shrinks the database
size, producing better cache hit ratios.

Figure 10 shows the result of an experiment in which
we evaluated 8192 queries every 100 CP’s just before and
after the database maintenance operation, also scheduled
every 100 CP’s. The figure shows the improvement in the
query performance due to maintenance, but more impor-
tantly, it also shows that once the database size reaches
a certain point, query throughput levels off, even as the
database grows larger.

7 Related Work

Btrfs [2, 5] is the only file system of which we are aware
that currently supports back references. Its implementa-
tion is efficient, because it is integrated with the entire
file system’s meta-data management. Btrfs maintains a
single B-tree containing all meta-data objects.

A file extent back reference consists of the four fields:
the subvolume, the inode, the offset, and the number of
times the extent is referenced by the inode. Btrfs encap-
sulates all meta-data operations in transactions analogous
to WAFL consistency points. Therefore a btrfs transac-

tion ID is analogous to a WAFL CP number. Btrfs sup-
ports efficient cloning by omitting transaction ID’s from
back reference records, while Backlog uses ranges of
snapshot versions (the from and to fields) and struc-
tural inheritance. A naı̈ve copy-on-write of an inode in
btrfs would create an exact copy of the inode (with the
same inode ID), marked with a more recent transaction
ID. If the back reference records contain transaction IDs
(as in early btrfs designs), the file system would also have
to duplicate the back references of all of the extents ref-
erenced by the inode. By omitting the transaction ID,
a single back reference points to both the old and new
versions of the inode simultaneously. Therefore, btrfs
performs inode copy-on-write for free, in exchange for
query performance degradation, since the file system has
to perform additional I/O to determine transaction ID’s.
In contrast, Backlog enables free copy-on-write by op-
erating on ranges of global CP numbers and by using
structural inheritance, which do not sacrifice query per-
formance.

Btrfs accumulates updates to back references in an in-
memory balanced tree analogous to our write store. The
system inserts all the entries from the in-memory tree to
the on-disk tree during a transaction commit (a part of
a checkpoint processing). Btrfs stores most back refer-
ences directly inside the B-tree records that describe the
allocated extents, but on some occasions, it stores them
as separate items close to these extent allocation records.
This is different from our approach in which we store all
back references together, separately from block alloca-
tion bitmaps or records.

Perhaps the most significant difference between btrfs
back references and Backlog is that the btrfs approach is
deeply enmeshed in the file system design. The btrfs ap-
proach would not be possible without the existence of a
global meta-store. In contrast, the only assumption nec-
essary for our approach is the use of a write-anywhere
or no-overwrite file system. Thus, our approach is easily
portable to a broader class of file systems.

8 Future Work

The results presented in Section 6 provide compelling
evidence that our LSM-Tree based implementation of
back references is an efficient and viable approach. Our
next step is to explore different options for further reduc-
ing the time overheads, the implications and effects of
horizontal partitioning as described in Section 5.3, and
experiment with compression. Our tables of back ref-
erence records appear to be highly compressible, espe-
cially if we to compress them by columns [1]. Com-
pression will cost additional CPU cycles, which must be
carefully balanced against the expected improvements in
the space overhead.



We plan to explore the use of back references, im-
plementing defragmentation and other functionality that
uses back reference meta-data to efficiently maintain and
improve the on-disk organization of data. Finally, we
are currently experimenting with using Backlog in an
update-in-place journaling file system.

9 Conclusion

As file systems are called upon to provide more sophis-
ticated maintenance, back references represent an im-
portant enabling technology. They facilitate hard-to-
implement features that involve block relocation, such as
shrinking a partition or fast defragmentation, and enable
us to do file system optimizations that involve reasoning
about block ownership, such as defragmentation of files
that share one or more blocks (Section 3).

We exploit several key aspects of this problem domain
to provide an efficient database-style implementation of
back references. By separately tracking when blocks
come into use (via the From table) and when they are
freed (via the To table) and exploiting the relationship
between writable clones and their parents (via structural
inheritance), we avoid the cost of updating per block
meta-data on each snapshot or clone creation or deletion.
LSM-trees provide an efficient mechanism for sequen-
tially writing back-reference data to storage. Finally, pe-
riodic background maintenance operations amortize the
cost of combining this data and removing stale entries.

In our prototype implementation we showed that we
can track back-references with a low constant overhead
of roughly 8-9 µs and 0.010 I/O writes per block opera-
tion and achieve query performance up to 36,000 queries
per second.
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