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Abstract timized for magnetic disk drives. Since flash memory is

This paper presents the design, implementation and evafibstantially different from magnetic disks, the rati@nal
tion of Direct File System (DFS) for virtualized flash stogag of our work is to study how to design new abstraction
Instead of using traditional layers of abstraction, ouetayof |ayers including a file system to exploit the potential of
abstraction are designed for directly accessing flash medesr NAND flash memory.
vices. DFS has two main novel features. First, it lays out itS__ . . .
files directly in a very large virtual storage address space p 1hiS paper presents the design, implementation, and
vided by FusionlO's virtual flash storage layer. Secondviet- evaluation of the Direct File System (DFS) and describes
ages the virtual flash storage layer to perform block allooat the virtualized flash memory abstraction layer it uses for

and atomic updates. As a result, DFS performs better and igjgsjon|O’s ioDrive hardware. The virtualized storage ab-
much simpler than a traditional Unix file system with similar

functionalities. Our microbenchmark results show that RES straction layer prov_ides avery Iarge_, virt_ualized blqck ad
deliver 94,000 I/O operations per second (IOPS) for direatls dressed space, which can greatly simplify the design of a
and 71,000 IOPS for direct writes with the virtualized flagirs file system while providing backward compatibility with
age layer on FusionlO's ioDrive. For direct access perfoirea the traditional block storage interface. Instead of push-

DFS is consistently better than ext3 on the same platformeso ; : : ; ;
fimes by 20%. For buffered access performance, DFS is ing the flash translation layer into disk controllers, this

consistently better than ext3, and sometimes by over 14936. yer Comb_ines virtua_lization Wi_th intelligent transtai )
application benchmarks show that DFS outperforms ext3 by 7d allocation strategies for hiding bulk erasure lateicie

to 250% while requiring less CPU power. and performing wear leveling.
DFS is designed to take advantage of the virtualized
1 Introduction flash storage layer for simplicity and performance. A

traditional file system is known to be complex and typ-

Flash memory has traditionally been the province of eiaally requires four or more years to become mature.
bedded and portable consumer devices. Recently, thBie complexity is largely due to three factors: complex
has been significant interest in using it to run primary figgorage block allocation strategies, sophisticated buffe
systems for laptops as well as file servers in data ceache designs, and methods to make the file system crash-
ters. Compared with magnetic disk drives, flash can stiécoverable. DFS dramatically simplifies all three aspects
stantially improve reliability and random 1/O performandé uses virtualized storage spaatisectly as a true single-
while reducing power consumption. However, these fievel store and leverages the virtual to physical block al-
systems are originally designed for magnetic disks whilgigations in the virtualized flash storage layer to avoid ex-
may not be optimal for flash memory. A key systems dglicit file block allocations and reclamations. By doing
sign question is to understand how to build the entire spe, DFS uses extremely simple metadata and data layout.
tem stack including the file system for flash memory. As aresult, DFS has a short datapath to flash memory and

Past research work has focused on building firmwa@courages users to access data directly instead of going
and software to support traditional layers of abstractioifisough a large and complex buffer cache. DFS leverages
for backward compatibility. For example, recently prdhe atomic update feature of the virtualized flash storage
posed techniques such as the flash translation layer (FIBgr to achieve crash recovery.
are typically implemented in a solid state disk controller We have implemented DFS for the FusionlQ’s virtu-
with the disk drive abstraction [5, 6, 26, 3]. Systems softilized flash storage layer and evaluated it with a suite
ware then uses a traditional block storage interface to sapbenchmarks. We have shown that DFS has two main
port file systems and database systems designed andadpantages over the ext3 filesystem. First, our file sys-



tem implementation is about one eighth that of ext3 withnges from as little as 5,000 cycles for consumer grade
similar functionality. Second, DFS has much better p&.C NAND flash to 100,000 or more cycles for enter-
formance than ext3 while using the same memory pise grade SLC NAND flash.

sources and less CPU. Our microbenchmark results show

that DFS can deliver 94,000 I/O operations per seco

(IOPS) for direct reads and 71,000 IOPS direct writes wigﬂ% Related Work

the virtualized flash storage layer on FusionlO’s ioDrivgoyglis et al. studied the effects of using flash memory
For direct access performance, DFS is consistently lgfthout a special software stack [11]. They showed that
ter than ext3 on the same platform, sometimes by 20§4sh could improve read performance by an order of mag-
For buffered access performance, DFS is also consisteffllide and decrease energy consumption by 90%, but that
better than ext3, and sometimes by over 149%. Our @pe to bulk erasure latency, write performance also de-
plication benchmarks show that DFS outperforms ext3 faased by a factor of ten. They further noted that large

7% to 250% while requiring less CPU power. erasure block size causes unnecessary copies for cleaning,
an effect often referred to as “write amplification”.
2 Background and Related Work Kawaguchiet al. [14] describe a transparent device

driver that presents flash as a disk drive. The driver dy-
In order to present the details of our design, we first pieamically maps logical blocks to physical addresses, pro-
vide some background on flash memory and the chédes wear-leveling, and hides bulk erasure latencies us-
lenges to using it in storage systems. We then provifig a log-structured approach similar to that of LFS [27].

an overview of related work. State-of-the art implementations of this idea, typically
called the Flash Translation Layer, have been imple-
2.1 NAND Flash Memory mented in the controllers of several high-performance

Solid State Drives (SSDs) [3, 16].

Flash memory is a type of electrically erasable solid-statéMore recent efforts focus on high-performance in
memory that has become the dominant technology for &SDs, particularly for random writes. Birredt al. [6],
plications that require large amounts of non-volatilegolifor instance, describe a design that significantly improves
state storage. These applications include music playeasidom write performance by keeping a fine-grained map-
cell phones, digital cameras, and shock sensitive appliparg between logical blocks and physical flash addresses
tions in the aerospace industry. in RAM. Similarly, Agrawalet al. [5] argue that SSD per-

Flash memory consists of an array of individual celligrmance and longevity is strongly workload dependent
each of which is constructed from a single floating-gaaad further that many systems problems that previously
transistor. Single Level Cell (SLC) flash stores a sindh@ve appeared higher in the storage stack are now relevant
bit per cell and is typically more robust; Multi-Level Celto the device and its firmware. This observation has lead to
(MLC) flash offers higher density and therefore lower coite investigation of buffer management policies for a vari-
per bit. Both forms support three operations: read, writéy of workloads. Some policies, such as Clean First LRU
(or program), and erase. In order to change the va(@#LRU) [24] trade off a reduced number of writes for
stored in a flash cell it is necessary to perform an erasiglitional reads. Others, such as Block Padding Least Re-
before writing new data. Read and write operations tygently Used (BPLRU) [15] are designed to improve per-
cally take tens of microseconds whereas the erase optaemance for fine-grained updates or random writes.
tion may take more than a millisecond. eNVy [33] is an early file system design effort for flash

The memory cells in a NAND flash device are arrangetemory. It uses flash memory as fast storage, a battery-
into pages which vary in size from 512 bytes to as muchtzacked SRAM module as a non-volatile cache for com-
16KB each. Read and write operations are page-orientsding writes into the same flash block for performance,
NAND flash pages are further organized into erase bloc&sd copy-on-write page management to deal with bulk
which range in size from tens of kilobytes to megabytegasures
Erase operations apply only to entire erase blocks; anMore recently, a number of file systems have been de-
data in an erase block that is to be preserved mustsigned specifically for flash memory devices. YAFFS,
copied. JFFS2, and LogFS [19, 32] are example efforts that

There are two main challenges in building storage sysde bulk erasure latencies and perform wear-leveling of
tems using NAND flash. The first is that an erase op&AND flash memory devices at the file system level using
ation typically takes about one or two milliseconds. Thbe log-structured approach. These file systems were ini-
second is that an erase block may be erased successfiallly designed for embedded applications instead of high-
only a limited number of times. The endurance of grerformance applications and are not generally suitable
erase block depends upon a number of factors, but usuidlyuse with the current generation of high-performance



flash devices. For instance, YAFFS and JFFS2 manag&he virtualized flash storage layer is implemented at the
raw NAND flash arrays directly. Furthermore, JFFS#evice driver level which can freely cooperate with spe-
must scan the entire physical device at mount time whicific hardware support offered by the flash memory con-
can take many minutes on large devices. All three filesysller. The virtualized flash storage layer implements a
tems are designed to access NAND flash chips directiyge virtual block addressed space and maps it to physi-
negating the performance advantages of the hardware ealdlash pages. It handles multiple flash devices and uses
software in emerging flash device. LogFS does have soankg-structured allocation strategy to hide bulk erasure
support for a block-device compatibility mode that can betencies, perform wear leveling, and handle bad page re-
used as a fall-back at the expense of performance, tonery. This approach combines the virtualization and
none are designed to take advantage of emerging fleSh together instead of pushing FTL into the disk con-
storage devices which perform their own flash managmsller layer. The virtualized flash storage layer can still
ment. provide backward compatibility to run existing file sys-
tems and database systems. The existing software can
benefit from the intelligence in the device driver and hard-
ware rather than having to implement that functionality

This section presents the three main aspects of our Rgependently in order to use flash memory. More impor-
proach: (a) new layers of abstraction for flash memoﬁptly' flash devices are free to export a richer interface
storage systems which yield substantial benefits in si gq that e?(posed by d|sk—basgd |ntgrfaces. N

plicity and performance; (b) a virtualized flash storagePirect File System (DFS) is designed to utilize the

layer, which provides a very large address space and Hpctionality p_r(_)wded by the_ virtualized flash storage

plements dynamic mapping to hide bulk erasure latendi@4€"- In addition to leveraging the support for wear-

and to perform wear leveling: and (c) the design of DR&€ling and for hiding the latency of bulk erasures, DFS
which takes full advantage of the virtualized flash storargées the virtualized flash storage layer to perform file

layer. We further show that DFS is simple and perfor lock allocations and reclamations and uses atomic flash
better than the popular Linux ext3 file system. page updates for crash recovery. This architecture allows

the virtualized flash storage layer to provide an object-

e i based interface. Our main observation is that the sep-
3.1 Existingvs. New Abstraction Layers aration of the file system from block allocations allows

Figure 1 shows the architecture block diagrams for ¢R€ Storage hardware and block management algorithms
isting flash storage systems and our proposed archit@c€velve jointly and independently from the file system
ture. The traditional approach is to package flash mem user-level applications. Th|§ approach makes it easier
as a solid-state disk (SSD) that exports a disk interfd@&the block managementalgorithms to take advantage of
such as SATA or SCSI. An advanced SSD implement&TProvements in the underlying storage subsystem.
flash translation layer (FTL) in its controller that main-
tains a dynamic ma_pping from logical bloc_:ks to phys8 2 \vsjrtualized Flash Storage L ayer
cal flash pages to hide bulk erasure latencies and to per-
form wear leveling. Since a SSD uses the same intéhe virtual flash storage layer provides an abstraction to
face as a magnetic disk drive, it supports the traditiorealable client software such as file systems and database
block storage software layer which can be either a sisystems to take advantage of flash memory devices while
ple device driver or a sophisticated volume manager. Treviding backward compatibility with the traditional
block storage layer then supports traditional file systerb#gck storage interface. The primary novel feature of the
database systems, and other software designed for nvitgdalized flash storage layer is the provision for a very
netic disk drives. This approach has the advantagelaspe, virtual block-addressed space. There are three rea-
disrupting neither the application-kernel interface riar tsons for this design. First, it provides client softwarehwit
kernel-physical storage interface. On the other handsit ltlae flexibility to directly access flash memory in a single
a relatively thick software stack and makes it difficult fdevel store fashion across multiple flash memory devices.
the software layers and hardware to take full advantageSefcond, it hides the details of the mapping from virtual
the benefits of flash memory. to physical flash memory pages. Third, the flat virtual
We advocate an architecture in which a greatly simplilock-addressed space provides clients with a backward
fied file system is built on top of a virtualized flash stocompatible block storage interface.
age layer implemented by the cooperation of the deviceThe mapping from virtual blocks to physical flash
driver and novel flash storage controller hardware. Themory pages deals with several flash memory issues.
controller exposes direct access to flash memory chipstash memory pages are dynamically allocated and re-
the virtualized flash storage layer. claimed to hide the latency of bulk erasures, to distribute

3 Our Approach



. iti Traditi |
File System Database o o DFSs [:-I}ﬁgdslgﬁgﬂl] Bi,tg%‘;’s‘g
Logical block ) . Virtual block " .
(physical size) "Ops. Read, Write, ... (64-bit block address) i Ops: Read, Write, Deallocate, ...

Virtualized Flash Storage Layer

Traditional Block Storage Layer
(Remapping, Wear-Leveling, Reliability)

A A
Read Read
Sector Write Sector Write Block “Page Block ‘Page
v v erase "read, write erase "read, write
| FTL (Remapping) | | FTL (Remapping)
yY = Controller Controller
Block [erase Page “I"page Block |erase Page }Page
write | read write | read Buffer and Log Buffer and Log
A 4 v \ 4 A 4
Block Block
Page Page
Page Page
NAND Flash Memory NAND Flash Memory NAND Flash Memory NAND Flash Memory
Solid State Disk Solid State Disk ioDrive ioDrive
(a) Traditional layers of abstractions (b) Our layers of abstractions

Figure 1: Flash Storage Abstractions

writes evenly to physical pages for wear-leveling, and itmplement the control path in the device driver and the
detect and recover bad pages to achieve high reliabiligita path in hardware. The data path on the ioDrive card
Unlike a conventional Flash Translation Layer (FTL), theontains numerous individual flash memory packages ar-
mapping supports a very large number of virtual pagesiged in parallel and connected to the host via PCI Ex-
— orders-of-magnitude larger than the available physipaéss. As a consequence, the device achieves highest
flash memory pages. throughput with moderate parallelism in the 1/O request
The virtualized flash storage layer currently suppostieam. The use of PCI Express rather than an existing
three operations: read, write, and trim or deallocate. Afbrage interface such as SCSI or SATA simplifies the par-
operations are block-based operations, and the block $ittening of control and data paths between the hardware
in the currentimplementation is 512 bytes. The write opnd device driver.
eration triggers a dynamic mapping from a virtual to phys-The device provides hardware support of checksum
ical page, thus there is no explicit allocation operatiogeneration and checking to allow for the detection and
The deallocate operation deallocates a range of virtual edrrection of errors in case of the failure of individual flas
dresses. It removes the mappings of all mapped physidsips. Metadata is stored on the device in terms of physi-
flash pages in the range and hands them to a garbageaadladdresses rather than virtual addresses in order to sim-
lector to recycle for future use. We anticipate that futupdify the hardware and allow greater throughput at lower
versions of the VFSL will also support a move operati@tonomic cost. While individual flash pages are relatively
to allow data to be moved from one virtual address to asmall (512 bytes), erase blocks are several megabytes in
other without incurring the cost of a read, write, and deaize in order to amortize the cost of bulk erase operations.
locate operation for each block to be copied. The mapping between virtual and physical addresses is
The currentimplementation of the virtualized flash stamaintained by the kernel device driver. The mapping be-
age layer is a combination of a Linux device driver and Ftween 64-bit virtual addresses and physical addresses is
sionlO's ioDrive special purpose hardware. The ioDriversaintained using a variation on B-trees in memory. Each
a PCI Express card densely populated with either 160@édress points to a 512-byte flash memory page, allow-
or 320GB of SLC NAND flash memory. The softwaring a virtual address space @f® bytes. Updates are
for the virtualized flash storage layer is implemented asmade stable by recording them in a log-structured fashion:
device driver in the host operating system and leveragies hardware interface is append-only. The device driver
hardware support from the ioDrive itself. is also responsible for reclaiming unused storage using
The ioDrive uses a novel partitioning of the virtualized garbage collection algorithm. Bulk erasure scheduling
flash storage layer between the hardware and device dravedt wear leveling algorithms for flash endurance are inte-
to achieve high performance. The overarching design pdiated into the garbage collection component of the device
losophy is to separate the data and control paths anditiwer.



A primary rationale for implementing the virtual td12 bytes, the logical address space spandytes. DFS
physical address translation and garbage collection in ta@ then use this logical address space to map file system
device driver rather than in an embedded processor ondbgects to physical storage.
ioDrive itself is that the device driver can automatically DFS allocates virtual address space in contiguous “al-
take advantage of improvements in processor and méaeation chunks”. The size of these chunks is configurable
ory bus performance on commodity hardware without rgt file system initialization time but 232 blocks or 2TB
quiring significant design work on a proprietary embegy default. User files and directories are partitioned into
ded platform. This approach does have the drawbackwb types: large and small. A large file occupies an en-
requiring potentially significant processor and memory nére chunk whereas multiple small files reside in a sin-

sources on the host. gle chunk. When a small file grows to become a large
file, it is moved to a freshly allocated chunk. The current
33 DFS implementation must implement this by copying the file

contents, but we anticipate that future versions of the vir-
DFS is a full-fledged implementation of a Unix file systeftal flash storage layer will support changing the virtual to
and it is designed to take advantage of several featuregfysical translation map without having to copy data. The
the virtualized flash storage layer, including large viktugurrent implementation does not support remapping large
ized address space, direct flash access and its crash rddgg-into the small file range should a file shrink.
ery mechanism. The implementation runs as a loadabl¥Vhen the filesystem is initialized, two parameters must
kernel module in the Linux 2.6 kernel. The DFS kernbe chosen: the maximum size of a small file, which must
module implements the traditional Unix file system APRke a power of two, and the size of allocation chunks,
via the Linux VFS layer. It supports the usual methodi¢hich is also the maximum size of a large file. These
such as open, close, read, write, pread, pwrite, Iseek, twid parameters are fixed once the filesystem is initialized.
mmap. The Linux kernel requires basic memory mappeébey can be chosen in a principled manner given the antic-
I/O support in order to facilitate the execution of binaridgated workload. There have been many studies of file size
residing on DFS file systems. distributions in different environments, for instancegbo
by Tannenbaurst al. [28] and Docuer and Bolosky [10].
By default, small files are those less than 32KB.

The current DFS implementation uses a 32-bit I-node
DFS delegates I-node and file data block allocations amtember to identify individual files and directories and a
deallocations to the virtualized flash storage layer. TB2-bit block offset into a file. This means that DFS can
virtualized flash storage layer is responsible for block aupport up to-1 + 232 files and directories in total since
locations and deallocations, for hiding the latency of bullke first I-node number is reserved for the system. The
erasures, and for wear leveling. largest supported file size is 2TB with 512-byte blocks

We have considered two design alternatives. The firssigce the block offset is 32 bits. The I-node itself stores
to let the virtualized storage layer export an object-bagbé base virtual address for the logical extent containing
interface. In this case, a separate object is used to refe-file data. This base address together with the file off-
sent each file system object and the virtualized flash stegt identifies the virtual address of a file block. Figure 2
age layer is responsible for managing the underlying flad#picts the mapping from file descriptor and offset to log-
blocks. The main advantage of this approach is that it daal block address in DFS.
provide a close match with what a file system implemen-The very simple mapping from file and offset to logi-
tation needs. The main disadvantage is the complexitycaf block address has another beneficial implication. Each
an object-based interface that provides backwards cdile- is represented by a single logical extent, making it
patibility with the traditional block storage interface.  straightforward for DFS to combine multiple small 1/O re-

The second is to ask the virtualized flash storage laggrests to adjacent regions into a single larger I/O. No com-
to implement a large logical address space that is spapdieated block layout policies are required at the filesys-
Each file system object will be assigned a contiguotgsn layer. This strategy can improve performance because
range of logical block addresses. The main advantatfes flash device delivers higher transfer rates with larger
of this approach are its simplicity and its natural suppd®s. Our current implementation aggressively merges
for the backward compatibility with the traditional block/O requests; a more nuanced policy might improve per-
storage interface. The drawback of this approach is its fl@smance further.
tential waste of the virtual address space. DFS has takeDFS leverages the three main operations supported by
this approach for its simplicity. the virtualized flash storage layer: read from a logical

We have configured the ioDrive to export a sparse @#leck, write to a logical block, and discard a logical block
bit logical block address space. Since each block contaiasge. The discard directive marks a logical block range

3.3.1 Leveraging Virtualized Flash Storage



<fd, byte-offset> file is a “large” file and occupies the first allocation chunk

at the beginning of the raw device. The boot block oc-
Fi#| i-nodes —#— cupies the first few blocks (sectors) of the raw device. A

- . | File block# | block offset i I
oA = == e L superblock immediately follows the boot block. At mount

32 bits

time, the file system can compute the location of the su-
> = perblock directly. The remainder of the system file con-
tains all I-nodes as an array of block-aligned I-node data

Wirtualized Flash structures.
DFS Storage Layer

o]

E 7] hits\'- 64 bits

AL
r

Linux fd table

» Each I-node is identified by a 32-bit unique identifier or

=dev, block, page>

Figure 2: DFS logical block address mapping for larg@10de number. Given the I-node number, the logical ad-
files; only the width of the file block number differs fofiréss of the l-node within the I-node file can be computed

small files directly. Each I-node data structure is stored in a single
512-byte flash block. Each I-node contains the I-number,
Syé:gm Adoction: Alociten base virtual address of the corresponding file, mode, link
count, file size, user and group IDs, any special flags, a
Bootblock asent e generation count, and access, change, birth, and modifica-
tion times with nanosecond resolution. These fields take
Supwhlok oo 'n:': a total of 72 bytes, leaving 440 bytes for additional at-
I-node, e Lange el tributes and future use. Since an I-node fits in a single

directory ) . . . .
i-nods, : flash page, it will be updated atomically by the virtualized

flash storage layer.

The implementation of DFS uses a 32-bit block-
addressed allocation chunk to store the content of a reg-
2T3:| ular file. Since a file is stored in a contiguous, flat space,
Figure 3: Layout of DFS system and user files in virtudhe address of each block offset can be simply computed
ized flash storage. The first 2TB is used for system fild¥. adding the offset to the virtual base address of the space
The remaining 2TB allocation chunks are for user datafor the file. A block read simply returns the content of the
directory files. A large file takes the whole chunk; multphysical flash page mapped to the virtual block. A write
ple small files are packed into a single chunk. operation writes the block to the mapped physical flash

page directly. Since the virtualized flash storage laygr tri
as garbage for the garbage collector and ensures that aqélpg a mapping or remapping on write, DFS does the write

sequent reads to the range return only zeros. A versifh oyt performing an explicit block allocation. Note that
of the discard directive already exists in many flash dggg aliows holes in a file without using physical flash
vices as a hint 'Fo th_e garbage collector; DFS, by contr ges because of the dynamic mapping. When a file is
depends upon it to implement truncate and remove. Ii§ieted, the DFS will issue a deallocation operation pro-

also possible to interrogate a logical block range to detgjyeq py the virtualized flash storage layer to deallocate
mine if it contains allocated blocks. The current versigy, g unmap virtual space of the entire file.

of DFS does not make use of this feature, but it could be
used by archival programs suchtear that have special A DFS directory is mapped to flash storage in the same

| 2° 2TB) FE@EIB) 22 (2TB)

representations for sparse files. manner as ordinary files. The only difference is its in-
ternal structure. A directory contains contains an array
332 DFSLayout and Objects of name, I-node number, type triples. The current imple-

mentation is very similar to that found in FFS [22]. Up-

The DFS file system uses a simple approach to store filases to directories, including operations such as rename,
and their metadata. It divides the 64-bit block addressghich touch multiple directories and the on-flash I-node
virtual flash storage space (DFS volume) into block aalfocator, are made crash-recoverable through the use of
dressed subspaces or allocation chunks. The size of thesgite-ahead log. Although widely used and simple to
two types of subspaces are configured when the filesysiaiplement, this approach does not scale well to large di-
is initialized. DFS places large files in their own allocatiorectories. The current version of the virtualized flash-stor
chunks and stores multiple small files in a chunk. age layer does not export atomic multi-block updates. We

As shown in Figure 3, there are three kinds of files anticipate reimplementing directories using hashing and a
the DFS file system. The first file is a system file whictparse virtual address space made crash recoverable with
includes the boot block, superblock and all I-nodes. Tkigomic updates.



3.3.3 Direct Data Accesses netic disk drives. NVRAMs can substantially reduce the

DFS tes direct dat Th L file system write performance because every write must
promoles direct dala access. 1he current Linux | ) through the NVRAM. For a network file system, each

plementation of DFS allows the use of the buffer cache ite will have to go through the I/O bus three times, once

order to support memory mapped 1/ which is requir? the NIC, once for NVRAM, and once for writing to
for theexec system call. However, for many workload isks ’ '

of interest, particularly databases, clients are expG:q:e Since flash memory is a form of NVRAM, DFS lever-
bypass the buffer cache altogether. The current imple-

mentation of DFS provides direct access via the diréges the support from the virtualized flash storage layer

/O buffer cache bypass mechanism already present in Ef}ﬁchleve crash recoverability. When a DFS file system

Linux kernel. Using direct /O, page-aligned reads aggject is extended, DFS passes the write request to the vir-

writes are converted directly into 1/O requests to the blogf(ahzed flash storage- layer which then aIIocgtes aphysical
device driver by the kernel. page of the flash device and logs the result internally. Af-

. . . . ter a crash, the virtualized flash storage layer runs recov-
There are two main rationales for this approach. First ge lay

traditional buffer cache design has several drawbacks. Orlaéusmg the internal log. The consistency of the contents

traditional buffer cache typically uses a large amount of hdividual files is the responsibility O.f applicationsjtb
memory. Buffer cache design is quite complex sinceti c qn-ﬂash §tate of the m? system is guaranteed to be

ds to deal with multiple clients. implement so hisﬁan'Stem' Since the wrtuahzed_ﬂash storage layer uses a
gzteed cache re Iacemer?t lici ,t P d ri orgl‘;_-structured approach to tracking allocations for perfo

P ! polcies fo accommodate VA, o \easons and must handle crashes in any case, DFS
ous access patterns of different workloads, and malntgbn < not impose anv additional onerous requirements
consistency between the buffer cache and disk drives, and P y q '
support crash recovery. In addition, having a buffer cache
imposes a memory copy in the storage software stack.3.3.5 Discussion
Second, flash memory devices provide low-latency ac- ) ) o

cesses, especially for random reads. Since the virtualiZ&§ current DFS implementation has several limitations.
flash storage layer can solve the write latency problefii€ firstis that it does not yet support snapshots. One of
the main motivation for the buffer cache is largely elimfl€ reasons we did notimplement snapshot is that we plan
nated. Thus, applications can benefit from the DFS dird2SUPPOrt snapshots natively in the virtualized flash stor-
data access approach by utilizing most of the main me@@€ layer which will greatly simplify the snapshotimple-

ory space typically used for the buffer cache for a |ard@'entati0n in DFS. Since the virtualized flash storage layer
in memory working set. Is already log-structured for performance and hence takes

a copy-on-write approach by default, one can implement
snapshots in the virtualized flash storage layer efficiently
The second is that we are currently implementing sup-
The virtualized flash storage layer implements the bapiert for atomic multi-block updates in the virtualized flash
functionality of crash recovery for the mapping from logstorage layer. The log-structured, copy-on-write nattire o
ical block addresses to physical flash storage locatiote flash storage layer makes it possible to export such
DFS leverages this property to provide crash recoveayp interface efficiently. For example, Prabhakagaal.
Unlike traditional file systems that use non-volatile ranecently described an efficient commit protocol to imple-
dom access memory (NVRAM) and their own logging inment atomic multi-block writes [25]. This type of meth-
plementation, DFS piggybacks on the flash storage lay@ds will allow DFS to guarantee the consistency of direc-
log. tory contents and I-node allocations in a simple fashion.
NVRAM and file system level logging require comple¥ the interim, DFS uses a straightforward extension of
implementations and introduce additional costs for the tthe traditional UFS/FFS directory structure.
ditional file systems. NVRAM is typically used in high- The third is the limitations on the number of files and
end file systems so that the file system can achieve Idfie maximum file size. We have considered a design that
latency operations while providing fault isolations amslipports two file sizes: small and very large. The file lay-
avoiding data loss in case of power failures. The tradidt algorithm initially assumes a file is smad.g., less
tional logging approach is to log every write and perforntisan 2GB). If it needs to exceed the limit, it will become a
group commits to reduce overhead. Logging writes to digéry large file €.9., up to 2PB). The virtual block address
can impose significant overheads. A more efficient sgpace is partitioned so that a large number of small file
proach is to log updates to NVRAM, which is the methadnges are mapped in one partition and a smaller number
typically used in high-end file systems [12]. NVRAMs aref very large file ranges are mapped into the remaining
typically implemented with battery-backed DRAMs on partition. A file may be promoted from the small partition
PCI card whose price is similar to a few high-density matp the very large partition by copying the mapping of a
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virtual flash storage address space to another at the viaiod ext3. For both purposes, we designed a simple mi-
alized flash storage layer. We plan to export such suppmdbenchmark which opens the raw block device in di-
and implement this design in the next version of DFS. rect I/O mode, bypassing the kernel buffer cache. Each
thread in the program attempts to execute block-aligned
reads and writes as quickly as possible.

To evaluate the benefits of the virtualized flash storage
layer and its hardware, one would need to compare a tra-
ditional block storage software layer with flash memory

e How do the layers of abstraction perform? hardware equivalent to the FusionlO ioDrive but with a

« How does DFS compare with existing file SystemsI_,"aditic?nal disk interface FTI__. Since such hardware dqes

not exist, we have used a Linux block storage layer with
To answer the first question, we use a microbenchmarlatointel X25-E SSD, which is a well-regarded SSD in the
evaluate the number of I/O operations per second (IORSarketplace. Although this is not a fair comparison, the
and bandwidth delivered by the virtualized flash storagssults give us some sense of the performance impact of
layer and by the DFS layer. To answer the second qug abstractions designed for flash memory.
tion, we compare DFS with ext3 by using a microbench-we measured the number of sustained random 1/0O
mark and an application suite. Ideally, we would compatansactions per second. While both flash devices are
with existing flash filesystems as well, however filesyenterprise class devices, the test platform is the typical
tems such as YAFFS and JFFS2 are designed to usewigilte box workstation we described earlier. The results
NAND flash and are not compatible with next-generatieiie shown in Figure 4. Performance, while impressive
flash storage that exports a block interface. compared to magnetic disks, is less than that advertised

All of our experiments were conducted on a desktdy the manufacturers. We suspect that the large IOPS per-
with Intel Quad Core processor running at 2.4GHz withfarmance gaps, particularly for write IOPS, are partially
4MB cache and 4GB DRAM. The host operating systelimited by the disk drive interface and limited resources
was a stock Fedora Core installation running the Linirxa drive controller to run sophisticated remapping algo-
2.6.27.9 kernel. Both DFS and the virtualized flash steithms.
age layer implemented by the FusionlO device driver were

4 Evaluation

We are interested in answering two main questions:

compiled as loadable kernel modules. Device | Read IOPS| Write IOPS
We used a FusionlO ioDrive with 160GB of SLC Intel 33,400 3,120
NAND flash connected via PCI-Express x4 [1]. The ad- FusionlO | 98,800 75,100

vertised read latency of the FusionlO devicélg.s. For
a single reader, this translates to a theoretical maximum
throughput of 20,000 IOPS. Multiple readers can take

Figure 4: Device 4KB Peak Random IOPS

advantage of the hardware parallelism in the device tq Device | Threads| Read (MB/s)| Write (MB/s)
achieve much higher aggregate throughput. For the sakg Intel 2 221 162
of comparison, we also ran the microbenchmarks on g FusionlO 2 769 686

32GB Intel X25-E SSD connected to a SATA |l host bus
adapter [2]. This device has an advertised typical read la-

tency of aboufsys. Figure 5 shows the peak bandwidth for both cases. We
Our results show that the virtualized flash storage laygeasured sequential /0 bandwidth by computing the ag-
delivers performance close to the limits of the hardwagﬁegate throughput of multiple readers and writers. Each
both in terms of IOPS and bandwidth. Our results alggent transferred 1MB blocks for the throughput test
show that DFS is much simpler than ext3 and achievgs used direct I/0 to bypass the kernel buffer cache.
better performance in both the micro- and applicatiqthe results in the table are the bandwidth results using
benchmarks than ext3, often using less CPU power.  two writers. The virtualized flash storage layer with io-
Drive achieves 769MB/s for read and 686MB/s for write,
whereas the traditional block storage layer with the Intel
SSD achieves 221MB/s for read and 162MB/s for write.
We have two goals in evaluating the performance of the
virtualized flash storage layer. First, to examine the Pe-
tential benefits of the proposed abstraction layer in com-
bination with hardware support that exposes parallelisfigure 6 shows the number of lines of code for the ma-
Second, to determine the raw performance in termsjof modules of DFS and ext3 file systems. Although both
bandwidth and 10Ps delivered in order to compare Di8plement Unix file systems, DFS is much simpler. The

Figure 5: Device Peak Bandwidth 1MB Transfers

4.1 Virtualized Flash Storage Performance
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Module DFS | Ext3 goal is to understand the additional overhead due to DFS
Headers 392 | 1583 compared to the virtualized flash storage layer. The re-
Kernel Interface (Superblockic.) | 1625 | 2973 sults indicate that DFS is indeed lightweight and imposes
Logging 0| 7128 much less overhead than ext3. Compared to the raw de-
Block Allocator 0| 1909 vice, DFS delivers about 5% fewer IOPS for both read
I-nodes 250 | 6544 and write whereas ext3 delivers 9% fewer read I0PS and
Files 286 | 283 more than 20% fewer write IOPS. In terms of bandwidth,
Directories 561 670 DFS delivers about 3% less write bandwidth whereas ext3
ACLs, Extended Attrs. N/A | 2420 delivers 9% less write bandwidth.

Resizing N/A 1085

Miscellaneous 175 113 File System| Threads| Read (MB/s)| Write (MB/s)

Total 3289 | 24708 ext3 2 760 626

DFS 2 769 667

Figure 6: Lines of Code in DFS and Ext3 by Module

simplicity of DFS is mainly due to delegating block al- Figure 7: Peak Bandwidth 1MB Transfers on ioDrive

locations and reclamations to the virtualized flash storagep_—igure 7 shows the peak bandwidth for sequential LMB
layer. The ext3 file system, for example, has a total g, ransfers. This microbenchmark is the filesystem
17,500 lines of code and relies on an additional 7,000 Il%bg of the raw device bandwidth performance shown
of code to implement logging (JBD) for a total of nearly, rjgure 5. Although the performance difference between
25,000 lines of code compared to roughly 3,300 lines §F5 anq ext3 for large block transfers is relatively mod-
code in DFS. Of the total lines in ext3, about 8.,000 Im@gt, DFS does narrow the gap between filesystem and raw
(33%) are related to block allocations, deallocations angibjice performance for both sequential reads and writes.
node layout. Of the remainder, another 3,500 lines (15%):igure 8 shows the average direct random /O perfor-
implement _support fo_r on-line resizing and extended Jznce on DFS and ext3 as a function of the number of
tributes, nelt.her of which are supported by DFS. concurrent clients on the FusionlO ioDrive. Both of the
Although it may not be fair to compare a research priy, ystems also exhibit a characteristic that may at first
totype file system with a file system that has evolved fggo surprisingaggregateperformance often increases
several years, the percentages of block allocation and Iga, an increasing number of clients, even if the client
ging in the file systems give us some indication of the rekq ests are independent and distributed uniformly at ran-
ative complexity of different components in a file systerjom_ This behavior is due to the relatively long latency of

individual 1/O transactions and deep hardware and soft-
4.3 Microbenchmark Performance of DFS Wware request queues in the flash storage subsystem. This
Vs, ext3 behavior is quite different from what most applications ex-
pect and may require changes to them in order to realize
We use lozone [23] to evaluate the performance of DE® full potential of the storage system.
and ext3 on the ioDrive when using both direct and Unlike read throughput, write throughput peaks at
buffered access. We record the number of 4KB I/O traradout 16 concurrent writers and then decreases slightly.
actions per second achieved with each file system and &sth the aggregate throughput and the number of concur-
compute the CPU usage required in each case as the ratid writers at peak performance are lower than when ac-
between user plus system time to elapsed wall time. [Eessing the raw storage device. The additional overhead
both file systems, we ran lozone in three different modé@sposed by the filesystem on the write path reduces both
in the default mode in which I/O requests pass through the total aggregate performance and the number of con-
kernel buffer cache, in direct I/O mode without the buffeurrent writers that can be handled efficiently.
cache, and in memory-mapped mode usingtimep sys-  We have also measured CPU utilization per 1,000 IOPS
tem call. delivered in the microbenchmarks. Figure 9 shows the
In our experiments, both file systems run on top of tiraprovement of DFS over ext3. We report the average
virtualized flash storage layer. The ext3 file system in thufive runs of the I0Zone based microbenchmark with a
case uses the backward compatible block storage interfstedard deviation of one to three percent. For reads, DFS
supported by the virtualized flash storage layer. CPU utilization is comparable to ext3; for writes, partic-
ularly with small numbers of threads, DFS is more effi-
cient. Overall, DFS consumes somewhat less CPU power,
further confirming that DFS is a lighter weight file system
For both reads and writes, we consider sequential and thén ext3.
form random access to previously allocated blocks. OurtOne anomaly worthy of note is that DFS is actually
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Figure 8: Aggregate IOPS for 4K Random Direct I/O as a Funadithe Number of Threads
Random . Random Seq. Read IOPS x 1K Rand. Read IOPS x 1K
Threads Read | "o | Write |\ .o Thr.| ext3 | DFS (Speedup)ext3| DFS (Speedup)
1 81 58 52 138 1 | 1255[191.2(1.52) | 17.5] 19.0 (1.09)
2 13 1.6 12.8 115 2 147.6| 194.1(1.32) | 32.9| 34.0(1.03)
3 0.4 58 104 153 3 | 137.1] 192.7 (1.41) | 44.3| 46.6 (1.05)
4 13 6.8 155! -171 4 | 133.6] 193.9(1.45) | 55.2| 57.8(1.05)
8 0.3 -1.0 3.9 1.2 8 134.4| 193.5(1.44) | 78.7| 80.5(1.02)
16 1.0 1.7 2.0 6.7 16 | 132.6| 193.9(1.46) | 79.6| 81.1(1.02)
32 4.1 8.5 4.8 4.4 32 | 132.3| 194.8(1.47) | 95.4| 101.2 (1.06)

. . . I Seq. Write IOPS x 1K| Rand. Write IOPS x 1K
Figure 9: Improvement in CPU Utilization per, 000 Thr.| ext3 | DFS (Speedup)ext3| DFS (Speedup)

IOPS using 4K Direct I/O with DFS relative to Ext3 678 | 1549 (228) | 612 685 (L12)

716 | 165.6 (2.31) | 56.7| 64.6 (1.14)
73.0 | 156.9 (2.15) | 59.6] 62.8 (1.05)
65.5 | 161.5(2.47) | 57.5| 63.3 (1.10)
64.9 | 148.1(2.28) | 57.0| 58.7 (1.03)
6 | 653 | 147.8 (2.26) | 52.6] 56.5 (1.07)
32 | 65.3 | 150.1 (2.30) | 55.2] 50.6 (0.92)

more expensive than ext3 per I/O when running with four
clients, particularly if the clients are writers. This isedu
to the fact that there are four cores on the test machine
and the device driver itself has worker threads that r
quire CPU and memory bandwidth. The higher perfor
mance of DFS translates into more work for the device
driver and particularly for the garbage collector. SinceFigure 10: Buffer Cache Performance with 4KB 1/0Os
there are more threads than cores, cache hit rates suffer
and scheduling costs increase; under higher offered logiglst, both DFS and ext3 have similar random read IOPS
the effect is more pronounced, although it can be mitind random write IOPS to their performance results us-
gated somewhat by binding the garbage collector to a ditg direct 1/0. Although this is expected, DFS is better
gle processor core. than ext3 on average by about 5%. This further shows
that DFS has less overhead than ext3 in the presence of a
buffer cache.
Second, we observe that the traditional buffer cache is
To evaluate the performance of DFS in the presence of fieé effective when there are a lot of parallel accesses. In
kernel buffer cache, we ran a similar set of experimentsthg sequential read case, the number of IOPS delivered by
in the case of direct I/O. Each experiment touched 8GH-S basically doubles its direct I/O access performance,
worth of data using 4K block transfers. The buffer cachéereas the I0PS of ext3 is only modestly better than its
was invalidated after each run by unmounting the file sygndom access performance when there are enough paral-
tem and the total data referenced exceeded the phydrlatccesses. For example, when there are 32 threads, its
memory available by a factor of two. The first run of ead®PS is 132,000, which is only 28% better than its random
experiment was discarded and the average of the sutséad IOPS of 95,400!
guent ten runs reported. Third, DFS is substantially better than ext3 for both se-
Figures 10 and 11 show the results via the Linux buffguential read and sequential write cases. For sequential
cache and via memory-mapped I/O data path which atsads, it outperforms ext3 by more than a factor of 1.4.
uses the buffer cache. There are several observatidis.sequential writes, it outperforms ext3 by more than a

= WIN| -
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Seq. Read IOPS x 1K | Rand. Read IOPS x 1K Applications| Description 1/0 Patterns
Thr. | ext3 | DFS (Speedup) ext3 | DFS (Speedup)l ["Quicksort | A quicksortonalarge | Mem-mapped
1 | 426 | 522(1.23) | 139| 181(13 dataset e
2 72.6 84.6 (1.17) 22.2 28.2 (1.27) N-Gram A program for querying | Direct, random
3 94.7 1149 (1.21) | 27.4 32.1(1.17) n-gram data read
4 110.2 | 117.1(1.06) | 29.7 35.0(1.18) KNNImpute | Processes bioinformatic§ Mem-mapped
Seq. Write IOPS x 1K | Rand. Write IOPS x 1K microarray data o
Thr. | ext3 | DFS (Speedup) ext3 | DFS (Speedup) \led Updatel ofan IOS OE. zquentlal read
pdate several virtual machines | & write
1 | 288 | 402(14) | 11.8| 135 (L14)
2 | 399 55.5(1.4) 16.7 18.1(1.08) e gtéicrilgizrr(]isbjncgrr:lark o gﬂeosljgntial read
3 | 419 | 684(16) | 19.1] 20.0(L05) PP 9
4 | 443 70.8(1.6) | 201 | 22.0(1.09) Figure 12: Applications and their characteristics.

Figure 11: Memory Mapped Performance of Ext3 & DF\‘?Ice into an inexpensive replacement for DRAM as it pro-

factor of 2.15. This is largely due to the fact that DFS Wdes the illusion of word-addressable access.
simple and can easily combines 1/Os. N-Gram. This program indexes all of the.grams in

The story for memory-mapped /0 performance the Google:-gram corpus by building a single large hash
much the same as it is for buffered 1/0. Random accéable that contains 26GB worth of key-value pairs. The
performance is relatively poor compared to direct I/O p&Booglen-gram corpus is a large set nfgrams and their
formance. The simplicity of DFS and the short codgpearance counts taken from a crawl of the Web that has
paths in the filesystem allow it to outperform ext3 in thigroved valuable for a variety of computational linguistics
case. The comparatively large speedups for sequentiaks. There are just over 13.5 million wordslegrams
I/O, particularly sequential writes, is again due to the faand just over 1.1 billiorb grams. Indexing the data set
that DFS readily combines multiple small I/Os into largavith an SQL database takes a week on a computer with
ones. In the next section we show that I/O combiningaslly 4GB of DRAM [9]. Our indexing program uses 4KB
an important effect; the quicksort benchmark is a gobdckets with the first 64 bytes reserved for metadata. The
example of this phenomenon with memory mapped l/mplementation does not support overflows, rather an oc-
We count both the number of I/O transactions during thapancy histogram is constructed to find the smaliest
course of execution and the total number of bytes trassch that2® hash buckets will hold the dataset without
ferred. DFS greatly reduces the number of write opemerflows. With a variant of the standard Fowler-Nolls-
tions and more modestly the number of read operation¥o hash, the entire data set fits in 16M buckets and the
histogram in 64MB of memory. Our evaluation program
C uses synthetically generated query traces of 200K queries
4.4 Application Benchmarks Performance each; results are based upon the average of twenty runs.

of DFSvs. ext3 Queries are drawn either uniformly at random or accord-

We have used five applications as an application bentl§ t0 @ Zipf distribution witha = 1.0001. The results

mark suite to evaluate the application-level performang/&"e qualitatively similar for other values afuntil lock-
on DFS and ext3. ing overhead dominated I/O overhead.

KNNImpute. This program is a very popular bionfor-
matics code for estimating missing values in data obtained
from microarray experiments. The program uses the KN-
The table in Figure 12 summarizes the characteristics\impute [29] algorithm for DNA microarrays which takes
the applications and the reasons why they are chosend®rinput a matrix with G rows representing genes and
our performance evaluation. E columns representing experiments. Then a symmetric

In the following, we describe each application, its inf5XG distance matrix with the Euclidean distance between
plementation and workloads in detail: all gene pairs is calculated based on all experiment values

Quicksort. This quicksort is implemented as a singldor both genes. Finally, the distance matrix is written to
threaded program to sort 715 million 24 byte key-val@sk as its output. The program is a multi-threaded imple-
pairs memory mapped from a single 16GB file. AlthougRentation using memory-mapped I/O. Our input data is a
quicksort exhibits good locality of reference, this benchatrix with 41,768 genes and 200 experiments results in
mark program nonetheless stresses the memory ma@@tﬁtrix of about 32MB, and a distance matrix of 6.6GB.
I/O subsystem. The memory-mapped interface has tHere are 2079 genes with missing values.
advantages of being simple, easy to understand, and ¥M Update. This benchmark is a simple update of
straightforward way to transform a large flash storage aweultiple virtual machines hosted on a single server. We

Application Benchmarks
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Wall Time for each application. The main observation is that DFS is-
Application | Ext3 | DFS | Speedup sues a smaller number of larger I/O transactions than ext3,
Quick Sort | 1268 822 1.54 though the behaviors of reads and writes are quite dif-
N-Gram (Zipf) | 4718 1912 2.47 ferent. This observation explains partially why DFS im-
KNNImpute | 303 | 248 1.22 proves the performance of all applications, since we know
VM Update 685 | 640 1.07 from the microbenchmark performance that DFS achieves
TPC-H 5059 | 4154 | 1.22 better IOPS than ext3 and significantly better throughput

when the I/O transaction sizes are large.
Figure 13: Application Benchmark Execution Time Im- One reason for larger 1/O transactions is that in the
provement: Best of DF8s Best of Ext3 Linux kernel, file offsets are mapped to block numbers

choose this application because virtual machines have Y82 per-f!le—syfterg%tl bl ko (.:k functlon_. ThebDFS Im_k
come popular from both a cost and management persp g[lnentatlon (}get _h oc |s_;ggresswe about mj‘ ) |
tive. Since each virtual machine typically runs the sarffd 'arge transfers when possible. A more nuanced pol-

operating system but has its own copy, operating syst@ﬁmight improve performance further, particularly in the

updates can pose a significant performance problem. ESPC of applications such as KNNImpute and the VM Up-

virtual machine needs to apply critical and periodic S)ggte workload which actually see an increase in the total
tem software updates at the same time. This procesgqg'ber of bytes transferred. In most cases, however,_the
both CPU and /O intensive. To simulate such an envirt{r‘?—su“ of the currentimplementation is a modest reduction
ment, we installed 4 copies of Ubuntu 8.04 in four diffel” the number of bytes transferred. )
ent VirtualBox instances. In each image, we downloaded®Ut: the smaller number of larger I/O transactions does
all of the available updates and then measured the amdlfffcompletely explain the performance results. In the fol-
of time it took to install these updates. There were a {gWing, we will describe our understanding of the perfor-
tal of 265 packages updated containing 343MB of coffiance of each application individually.
pressed data and about 38,000 distinct files. Quicksort. The Quicksort benchmark program sees a
TPC-H. This is a standard benchmark for decision supreedup of 1.54 when using DFS instead of ext3 on the
port workloads. We used the Ingres database to run ifgrive. Unlike the other benchmark applications, the
Transaction Processing Council's Benchmark H (TP@uicksort program sees a large increase in CPU utiliza-
H) [4]. The benchmark consists of 22 business orienfé@n When using DFS instead of ext3. CPU utilization in-
queries and two functions that respectively insert afiides both the CPU used by the FusionlO device driver
delete rows in the database. We used the default cBRd by the application itself. When running on ext3, this
figuration for the database with two storage devices: thnchmark program is 1/0 bound; the higher throughput
database itself, temporary files, and backup transac$Avided by DFS leads to higher CPU utilization, which
log were placed on the flash device and the executatifeadctually a desirable outcome in this particular case. In
and log files were stored on the local disk. We report tpddition, we collected statistics from the virtualizedlflas
results of running TPC-H with a scale factor of 5, whicfforage layer to count the number of read and write trans-
corresponds to about 5GB of raw input data and 90GB fyitions issued in each of the three cases. When running

the data, indexes, and logs stored on flash once loaded H&Xt3, .the number of read transactions is si_milar to that
the database. found with DFS, whereas the number of write transac-

tions is roughly twenty-five times larger than that of DFS,
which contributed to the speedup. The average transaction
size with ext3 is about 4KB instead of 64KB with DFS.
This section first reports the performance results of DFSGoogle N-Gram Corpus. The N-gram query bench-
and ext3 for each application, and then analyzes the resuigk program running on DFS achieves a speedup of 2.5
in detail. over that on ext3. Figure 15 illustrates the speedup as a
The main performance result is that DFS improves dpnction of the number of concurrent threads; in all cases,
plications substantially over ext3. Figures 13 shows ttfe internal cache is 1,024 hash buckets and all 1/O by-
elapsed wall time of each application running with extgsses the kernel's buffer cache.
and DFS on the same execution environment mentioned he hash table implementation is able to achieve about
at the beginning of the section. The results show tf#8% of the random 1/O performance delivered in the
DFS improves the performance all applications and thezone microbenchmarks given sufficient concurrency.
speedups range from a factor of 1.07 to 2.47. As expected, performance is higher when the queries
To explain the performance results, we will first usare Zipf-distributed as the internal cache captures many
Figure 14 to show the number of read and write IOP&, the most popular queries. For Zipf parameter=
and the number of bytes transferred for reads and write8001, there are about 156,000 4K random reads to sat-

Per for mance Results of DFSvs. ext3
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Read IOPS x 1000 Read Bytes x 1M Write IOPS x 1000 Write Bytes x 1M
Application Ext3 | DFS (Change)| Ext3 DFS (Change)| Ext3 | DFS (Change) Ext3 DFS (Change)

Quick Sort | 1989 | 1558 (0.78) | 114614 | 103991 (0.91)| 49576 | 1914 (0.04) | 203063 | 192557 (0.95)
N-Gram (Zipf) | 156 | 157 (1.01) 641 646 (LO1) | N/A N/A N/A N/A
KNNImpute | 2387 | 1916 (0.80) | 42806 | 36146 (0.84) | 2686 | 179 (0.07) | 11002 | 12696 (1.15)
VMUpdate | 244 | 193(0.79) | 9930 | 9760 (0.98) | 3712 | 1144 (0.31) | 15205 | 19767 (1.30)
TPC-H 6375 | 3760 (0.59) | 541060 | 484985 (0.90)| 52310 | 3626 (0.07) | 214265 | 212223 (0.99)

Figure 14: App. Benchmark Improvement in IOPS Required ayté8Transferred: Best of DR% Best of Ext3

Wall Time in Sec. || Ctx Switch x 1K ration of the benchmark. We found that each VirtualBox
Threads|| Ext3 | DFS Ext3 | DFS instance kept a single processor busy almost 25% percent
1 10.82 | 10.48 156.66 | 156.65 of the time even when the guest operating system was idle.
4 4.25 3.40 308.08 | 160.60 As a result, the virtual machine update workload quickly
8 4.58 2.46 291.91 | 167.36 became CPU bound. If the virtual machine implementa-
16 465 | 245 || 295.02] 168.57 tion itself were more efficient or more virtual machines
32 472 | 191 || 299.73] 172.34 shared the same storage system we would expect to see a

Figure 15: Zipf-Distributed N-Gram Queries: Ela séarger benefit to using DFS.
Ti?ne and Con![Oext Switches(= 1 0001)Q P TPC-H. We ran the TPC-H benchmark with a scale fac-

tor of five on both DFS and ext3. The average speedup

isfy 200,000 queries. Moreover, query performance f@Yer five runs was 1.22. For the individual queries DFS
hash tables backed by DFS scales with the number@f¥ays performs better than ext3, with the speedup rang-
concurrent threads much as it did in thezone random ing from 1.04 (Q1: pricing summary report) to 1.51 (RF2:
read benchmark. The performance of hash tables backébsales refresh function). However, the largest contribu
by ext3 do not scale with the number of threads neafgn to the overall speedup is the 1.20 speedup achieved
so well. This is due to increased per-file lock contentid@ Q5 (local supplier volume), which consumes roughly
in ext3. We measured the number of voluntary conte’@% of the total execution time.
switches when running on each file system as reported by here is alarge reduction (14.4x) in the number of write
get rusage. A voluntary context switch indicates tharansactions when using DFS as compared to ext3 and a
the application was unable to acquire a resource in gfgaller reduction (1.7x) in the number of read transac-
kernel such as a lock. When running on ext3, the nufiens. As in the case of several of the other benchmark ap-
ber of voluntary context switches increased dramaticaijcations, the large reduction in the number of I/O trans-
with the number of concurrent threads; it did not do @stionsis largely offset by larger transfers in each transa
on DFS. Although it may be possible to overcome the féan, resulting in a modest decrease in the total number of
source contention in ext3, the simplicity of DFS allows igytes transferred.
to sidestep the issue altogether. This effect was less prd=PU utilization is lower when running on DFS as op-
nounced in the microbenchmarks becausaone never Posed to ext3, but the Ingres database thread runs with
assigns more than one thread to each file by default. close to 100% CPU utilization in both cases. The reduc-
Bioinformatics Missing Value Estimation. KNNIm- tion in CPU usage is due instead to greater efficiency in

pute takes about 18% less time to run when using DFS“?;% kernel §t0rage software stack, particularly the flash de
opposed to ext3 with a standard deviation of about 1%'éf€ driver's worker threads.

the mean run time. About 36% of the total execution time

when running on ext3 is devoted to writing the distang® Conclusion

matrix to stable storage. Most of the improvement in run

time when running on DFS is during this phase of execphis paper presents the design, implementation, and eval-
tion. CPU utilization increases by almost 7% on averaggtion of DFS and describes FusionlO’s virtualized flash
when using DFS instead of ext3. This is due to increasggrage layer. We have demonstrated that novel layers of
system CPU usage during the distance matrix write phaggtraction specifically for flash memory can yield sub-
by the FusionlO device driver's worker threads, particgtantial benefits in software simplicity and system perfor-
larly the garbage collector. mance.

Virtual Machine Update. On average, it took 648 sec- We have learned several things from DFS design. First,
onds to upgrade virtual machines hosted on DFS and TIHS is simple and has a short and direct way to access
seconds to upgrade those hosted on ext3 file systemsfl&ah memory. Much of its simplicity comes from lever-

a net speed up of 7.6%. In both cases, the four virtaging the virtualized flash storage layer such as large vir-
machines used nearly all of the available CPU for the dual storage space, block allocation and deallocation, and
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atomic block updates.
Second, the simplicity of DFS translates into perfor-

mance. Our microbenchmark results show that DFS can
deliver 94,000 IOPS for random reads and 71,000 IOP8]

random writes with the virtualized flash storage layer on
FusionlO’s ioDrive. The performance is close to the hard-
ware limit.

Third, DFS is substantially faster than ext3. For direct

access performance, DFS is consistently faster than ext3
] DOUCEUR, J. R.,AND BoLOsKY, W. J. Alarge

on the same platform, sometimes by 20%. For buffe

access performance, DFS is also consistently faster than
ext3, and sometimes by over 149%.

Our application

benchmarks show that DFS outperforms ext3 by 7% to
250% while requiring less CPU power.

We have also observed that the impact of the traditiortﬂ

buffer cache diminishes when using flash memory. Wh

there are 32 threads, the sequential read throughput of

n

DFS is about twice that for direct random reads with DFS,

whereas ext3 achieves only a 28% improvement over di-

rect random reads with ext3.

(12]
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