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Message from the Program Co-Chairs

Dear Colleagues,

We welcome you to the 8th USENIX Conference on File and Storage Technologies (FAST ’10). This year we are 
proud to carry on the FAST tradition of presenting high-quality, innovative file and storage systems research. 
The program includes papers on emerging hot topics, with contributions to solid-state storage technology, power-
efficient storage systems, and dealing with latent errors. It displays the breadth of storage systems research with 
sessions on parallel I/O and deduplication. It also contains significant contributions to the core of the field with 
sessions on storage management and file systems.

FAST continues to be a premier venue to bring together researchers and practitioners from the academic and in-
dustrial communities. This, too, is reflected in the program, which includes a balance of papers from universities, 
industrial labs, national labs, and collaborations thereof.

FAST ’10 received 89 submissions, from which 18 papers were selected, for an acceptance rate of 20%. Each paper 
received at least three reviews from PC members. All but two papers received four or more reviews. The 371 total 
reviews consist of 295 PC reviews and 76 reviews from 58 external reviewers.

The review process was conducted online over two months and at a program committee meeting held in Palo Alto, 
CA, in early November 2009. We used Eddie Kohler’s HotCRP software to handle paper submissions, reviews, 
PC discussion, and notifications. Initially, reviews for each paper were assigned to four PC members or to three 
PC members and an external reviewer. Then, controversial papers—those with both strong negative and posi-
tive reviews—were discussed online and additional reviews were obtained for many such papers. 20 of the 23 PC 
members attended the PC meeting, at which the program was selected, in person. In addition to technical merit, the 
discussion at the PC meeting focused on whether papers were new and exciting, of broad interest to the FAST com-
munity, and likely to generate controversy and discussion. These factors weighed heavily in paper selection.

It was an absolute pleasure to assemble this program, and we would like to thank everyone who contributed. First 
and foremost, we are indebted to all of the authors who submitted papers to FAST ’10. We had a large body of high-
quality work from which to select our program. We would also like to thank the attendees of FAST ’10 and future 
readers of these papers. Together with the authors, you form the FAST community and make storage research 
vibrant and fun.

We would also like to recognize USENIX and the USENIX staff, who make all aspects of assembling a conference 
program easy. The USENIX staff dealt with innumerable issues large and small and provided outstanding technical 
and emotional support. They are pleasant and professional and largely responsible for the success of FAST this and 
every year. Thanks!

Finally, we would like to thank the Program Committee members for their countless hours and dedication. Serv-
ing on the FAST PC involves lots of reading, writing many lengthy reviews, participating in online discussion, and 
traveling. FAST and other USENIX systems conferences are distinguished by continuing to have in-person PC 
meetings. The discussion that happened at the PC meeting was invaluable in identifying the most exciting papers to 
include in the program.

We look forward to seeing you in San Jose!

Randal Burns, Johns Hopkins University 
Kimberly Keeton, Hewlett-Packard Labs 
Program Co-Chairs
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quFiles: The right file at the right time

Kaushik Veeraraghavan∗ , Jason Flinn∗, Edmund B. Nightingale† and Brian Noble∗
University of Michigan∗ Microsoft Research (Redmond)†

Abstract
A quFile is a unifying abstraction that simplifies data
management by encapsulating different physical repre-
sentations of the same logical data. Similar to a quBit
(quantum bit), the particular representation of the logi-
cal data displayed by a quFile is not determined until the
moment it is needed. The representation returned by a
quFile is specified by a data-specific policy that can take
into account context such as the application requesting
the data, the device on which data is accessed, screen
size, and battery status. We demonstrate the general-
ity of the quFile abstraction by using it to implement
six case studies: resource management, copy-on-write
versioning, data redaction, resource-aware directories,
application-aware adaptation, and platform-specific en-
coding. Most quFile policies were expressed using less
than one hundred lines of code. Our experimental results
show that, with caching and other performance optimiza-
tions, quFiles add less than 1% overhead to application-
level file system benchmarks.

1 Introduction
It has become increasingly common for new stor-

age systems to implement context-aware adaptation, in
which different representations of the same object are re-
turned based on the context in which the object is ac-
cessed. For instance, many systems transcode data to
meet the screen size constraints of mobile devices [5, 12].
Others display reduced fidelity representations to meet
constraints on resources such as network bandwidth [8,
27] and battery energy [11], display redacted representa-
tions of data files when they are viewed at insecure loca-
tions [22, 42], and create different formats of multimedia
data for diverse devices [29].

These systems, and many others, have been successful
at addressing specific needs for adapting the representa-
tion of data to fit a given context. However, they suffer
from several problems that inhibit their wide-scale adop-
tion. First, building such systems is time-consuming.
Most required several person-years to build a prototype;
porting them to mainstream environments would be dif-
ficult at best. Second, each system presents a different
abstraction and interface, so each has a learning curve.
Third, these systems typically present only a single logi-
cal view of data, making it difficult for users to pierce the
abstraction and explicitly choose different presentations.

Why are there so many systems that share the same
premise, yet have completely separate implementations?
The answer is that, as a community, we have failed to
recognize that there is a fundamental abstraction that un-
derlies all these systems. This simple abstraction is the
ability to view different representations of the same log-
ical data in different contexts.

In this paper, we argue that this new abstraction,
which we refer to as a quFile, should be implemented as
a first-class file system entity. A quFile encapsulates dif-
ferent physical representations of the same logical data.
Similar to a quBit (quantum bit), the particular represen-
tation of the logical data displayed by a quFile is not de-
termined until the moment it is needed. The representa-
tion returned by a quFile is specified by a data-specific
policy that can take into account context such as the ap-
plication requesting the data, the device on which data is
accessed, screen size, and battery status.

quFiles provide a mechanism/policy split. In other
words, they provide a common mechanism for dynam-
ically resolving logical data items to specific represen-
tations in different contexts. A common mechanism re-
duces the time to develop new context-sensitive systems;
developers only need to write code that expresses their
new policies because quFiles already provide the mecha-
nism. A common mechanism also makes deploying new
systems easier. Since the file system provides a unify-
ing mechanism, a new policy can be inserted simply by
creating another quFile.

quFiles provide transparency for quFile-unaware
users and applications. Each quFile policy defines a de-
fault view that makes the observable behavior of the file
system indistinguishable from the behavior of a file sys-
tem without quFiles that happens to contain the correct
data for the current context. This transparency has a pow-
erful property: no application modification is required to
benefit from quFiles. The default view also provides en-
capsulation by hiding the messy details of the physical
representation and exporting only a context-specific log-
ical view of the data.

For users and applications that are quFile-aware, a
single logical representation of the data is often not
enough. For instance, some users may wish to view the
data in the quFile as it is actually stored or see a differ-
ent logical presentation of data than the one provided by
default. quFiles support this functionality through their
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views interface. All quFiles export a raw view that allows
the physical representation of data within a quFile to be
directly viewed and manipulated. In addition, quFile
policies may define any number of custom views, each
of which is an alternate logical representation of the data
contained within the quFile. Users and applications se-
lect views using a special filename suffix, an interface
that allows users to select views even when using un-
modified commercial-off-the-shelf (COTS) applications.

How good is the quFile abstraction? We demonstrate
its generality by implementing both ideas previously
proposed by the research community (application-aware
adaptation, copy-on-write file systems, location-aware
document redaction, and platform-specific caching) and
new ideas enabled by the abstraction (using spare stor-
age to save battery energy and resource-aware directo-
ries). Our experience suggests a “natural fitness” for im-
plementing context-aware policies using quFiles: com-
pared to the multiple developer-years required to imple-
ment each of the existing systems described above, a
single graduate student implemented each new policy in
less than two weeks using quFiles. Further, policies re-
quired only 84 lines of code on average. Our results show
that, with caching and other performance optimizations,
quFiles add less than 1% overhead to application-level
file system benchmarks.

2 Related Work
A quFile is a new abstraction that encapsulates dif-

ferent physical representations of the same logical data
and dynamically returns the correct representation of the
logical data for the context in which it is accessed.

quFiles are not an extensibility mechanism. Instead,
they are an abstraction that uses safe extensibility mech-
anisms (Sprockets [30] in our implementation) to ex-
ecute policies. Thus, quFiles could use previously-
proposed operating system extensibility mechanisms
such as Spin [3], Exokernel [10], or Vino [39], as well
as file system extensibility mechanisms such as Watch-
dogs [4] or FUSE [13]. Compared to Watchdogs and
FUSE, quFiles present a minimal interface that focuses
on contextual awareness; this results in policies that can
be expressed in only a few lines of code.

A quFile can be thought of as the file system equiva-
lent of a materialized view in a relational database [17].
Unlike materialized views, quFiles return different data
depending on the context in which they are accessed, and
they operate on file data, which has no fixed schema.
Similarly, OdeFS [14] presents a transparent file system
view of data stored in a relational database. However,
unlike quFiles, OdeFS objects are always statically re-
solved to the same view.

Multiple systems adapt the fidelity of data presented
to clients. Since a full discussion of this body of work
is outside the scope of this paper, we only list here

those systems that directly inspired our quFile case stud-
ies. These include systems that transcode data to meet
screen size constraints [12], network bandwidth limi-
tations [8, 27], battery energy constraints [11], format
decoding limitations [29], or storage restrictions [33].
These previous systems either require application or op-
erating system modification or the addition of an in-
termediary proxy that performs data adaptation. With
quFiles, we propose a unified mechanism within the file
system that can dynamically invoke any adaptation pol-
icy.

To simplify data management across multiple devices,
Cimbiosys [34], PRACTI [2], and Perspective [36] al-
low clients to specify which files to replicate with query-
based filters. quFiles could complement filters by adding
context-awareness to replication policies.

Some file systems allow limited dynamic resolution
of file content. Mac OS X Bundles [6] are file sys-
tem directories that resolve to a platform-specific binary
when accessed through the Mac OS X Finder. Simi-
larly, AFS [18] has an “@sys” directory that resolves
to the binary appropriate for a particular client’s archi-
tecture. quFiles are a more general abstraction that cap-
ture these specific instances that embed particular res-
olution policies into the file system. NTFS has Alter-
nate Data Streams [35] that support multiple represen-
tations of data within a file. However, unlike quFiles,
NTFS does not currently support safe execution of arbi-
trary application policies to determine which representa-
tion should be accessed.

We describe one metadata edit policy for low-fidelity
files. Other quFile policies could be implemented to sup-
port adaptation-aware editing [7]. One possible approach
is to layer updates separately from the data they modify
and reconcile the high-fidelity original with the edit layer
at a later time [32].

Past approaches such as Xerox’s Placeless Docu-
ments [9] and Gifford’s Semantic File Systems [15] sug-
gest semantic or property-based mechanisms to better or-
ganize and manage data in a file system. quFiles share
the same goals of improving organization and simpli-
fying management, but we have chosen a backward-
compatible design that works within existing file sys-
tems, rather than requiring a system re-write. The Se-
mantic File System provides virtualized directories of
files with similar attributes, whereas quFiles virtualize
name and content of data within a directory based on
context.

Schilit et al. advocate context-aware computing appli-
cations [38] and identify four major categories of appli-
cations. Of these, quFiles support context-triggered ac-
tions, as well as contextual information and command-
based applications. While Schilit et al. focus on us-
ability and the graphical user interface, quFiles focus on
supporting different views of the data in the file system.
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Building on these ideas, context-aware middleware [21]
allows applications to modify the presentation of data de-
pending on access context. However, these systems re-
quire application modification, e.g., to subscribe to con-
text events. quFiles provide similar functionality trans-
parently to unmodified applications by manipulating the
file system interface.

3 Design goals
We next describe the goals that we aimed to achieve

with our design of quFiles.

3.1 Be transparent to the quFile-unaware
We designed quFiles to be transparent by default.

quFiles hide their presence from users and applications
unaware of their existence. We say quFiles are transpar-
ent if the observable behavior of a file system containing
quFiles is indistinguishable from the behavior of a file
system without quFiles that contains the correct data for
the current context. Consider a quFile that contains mul-
tiple formats of a video and returns the one appropriate
for the media player that accesses the data. In this case,
the application need not be aware of the quFile. It per-
ceives that the file system contains a single instance of
the video that happens to be one it can play. In general,
a quFile may dynamically resolve to zero, one, or many
files located in the directory in which it resides; we refer
to this logical representation as the quFile’s default view.

The default view provides the backward compatibil-
ity required to use COTS applications. Without modi-
fication, such applications must be quFile-unaware, so
the context-specific presentation of data must be accom-
plished by presenting the illusion of a file system without
quFiles that contains the appropriate data. The default
view also reduces the cognitive load on the user by re-
moving the need to reason about which representation of
data should be accessed in the current context. Instead,
the policy executed by the quFile mechanism makes this
decision transparently.

Note that our definition of transparency applies to any
specific point in time. When context changes, the ap-
propriate representation to return may also change. This
implies that a quFile-unaware user or application may
observe that the contents of the file system change over
time. This behavior is the same as that seen when another
application or user modifies a file. For instance, a quFile
may redact files to remove sensitive content when data
is accessed at insecure locations. A user will necessarily
notice that the contents of the file change after moving
from home to a coffee shop. However, the quFile mech-
anism itself remains transparent, so the same application
can display the file in both contexts.

3.2 Don’t hide power from the quFile-aware
A quFile does not hide power from users and appli-

cations that wish to view and manipulate data directly.
Instead, a quFile allows them to select among different
views, each of which is a different presentation of its
data. In addition to the default view described in the
previous section, each quFile also presents a raw view
that shows the data within the quFile as files within a di-
rectory. The raw view might include, for example, an
original object, all materialized alternate representations
of that object, as well as the links to policies that govern
the quFile. quFile-aware utilities typically use the raw
view to manipulate quFile contents directly.

The raw and default views represent the two end-
points on the spectrum of transparency. In between, a
quFile’s policy may define any number of additional cus-
tom views. A custom view returns a different logical rep-
resentation of the data than that provided by the default
view. A quFile-aware user or application can specify the
name of a custom view when accessing a quFile to switch
to an alternate representation. In effect, the name of the
custom view becomes an additional source of context.

For example, consider a quFile that keeps old versions
of a file for archival purposes along with the file’s current
version. The quFile’s default view returns a representa-
tion equivalent to the file’s current version. In the com-
mon case, the file system is as easy to use as one that does
not support versioning because its outward appearance is
equivalent to that of one without versioning. However,
when a backup version is needed, the user should be able
to see all the previous versions of the file and select the
correct representation. The quFile policy therefore de-
fines a versions custom view that shows all past ver-
sions in addition to the current one. Another custom view
(a yesterday view) might show the state of all files as
they existed at midnight of the previous day, and so on.
Finally, a utility that removes older versions to save disk
space may need to see incremental change logs, not just
checkpoints, so that it can compact delta changes to re-
duce storage use. This utility uses the quFile’s raw view.

quFiles distinguish between application transparency
and user transparency. In the above example, a user may
view previous versions of a file using ls or a graph-
ical file browser. The user is quFile-aware, but the
file browser is quFile-unaware. This scenario is tricky
because the user must pass quFile-specific information
through the unmodified application to the quFile policy.
We solve this dilemma by using the file name, which is
generally treated as a black box by applications to encode
view selection. Specifically, for a directory papers, the
user may select the versions custom view by specifying
the name papers.quFile.versions or the raw view
by specifying papers.quFile, which is shorthand for
papers.quFile.raw.
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3.3 Support both static and dynamic content
quFiles support both static and dynamic content.

When data is read from a quFile, the file names and
content returned might either be that of files stored
within the quFile or new values generated on the fly.
Storing and returning static content within the quFile
amortizes the work of generating content across multi-
ple reads. Static content can also reduce the load on
resource-impoverished mobile devices; e.g., rather than
transcode a video on demand on a mobile computer, we
pre-transcode the video on a desktop and store the result
in a quFile. On the other hand, dynamic content genera-
tion is useful when all context-dependent versions cannot
be enumerated easily. For instance, our versioning quFile
dynamically creates checkpoints of files at specific points
in time from an undo log of delta changes.

3.4 Be flexible for policy writers
quFiles support not just the resolution policies that we

have implemented so far, but also resolution policies that
we have yet to imagine. We provide this flexibility by
allowing resolution policies to be specified as short code
modules in libraries that are dynamically loaded when
a quFile is accessed. Each quFile links to the specific
policies that govern it: a name policy that determines its
name(s) in a given context, a content policy that deter-
mines its contents in a given context, and an edit pol-
icy that describes how its contents may be modified. A
quFile may optionally link to two cache policies that di-
rect how its contents are cached. These policies are easy
to craft; the policies for our six case studies average only
84 lines of code.

Executing arbitrary code within the file system is dan-
gerous, so policies are executed in a user-level sandbox.
Our current implementation can use Sprocket [30] soft-
ware fault isolation to ensure that buggy policies do not
damage the file system or consume unbounded resources
(e.g., by executing an infinite loop); other safe execution
methods should work equally well.

4 Implementation

4.1 Overview
To illustrate how quFiles work, we briefly describe

one quFile we developed. This quFile returns videos for-
matted appropriately for the device on which the video
is viewed. When a new video is added to the file system,
a quFile-aware transcoder utility learns of the new file
through a file system change notification. The transcoder
creates alternate representations of the video sized and
formatted for display on the different clients of the file
system. It then creates a quFile and moves the origi-
nal and alternate representations into the quFile using the
quFile’s raw view.

The transcoder also sets specific policies that govern

the behavior and resolution of the quFile. A name policy
determines the name of a quFile in a given context. If the
quFile dynamically resolves to multiple files, the policy
returns all resolved names in a list. For example, one
author owns a DVR that displays only TiVo files, which
must have a file name ending in .TiVo. The name policy
thus returns foo.TiVo when a video is viewed using the
DVR and foo.mp4 otherwise.

A content policy determines the content of the
quFile in a given context. This policy is called once
for each name returned by a quFile’s name policy. In
the video example, the content policy returns the alter-
nate representation in the TiVo format when the quFile
is viewed on the DVR, an alternate representation for
a smaller screen size when the quFile is viewed on a
Nokia N800 Internet tablet, and the original representa-
tion when the quFile is viewed on a laptop. Note that the
example quFile resolves to the same name on the N800
and the laptop, yet it resolves to different content on each
device. Thus, COTS video players see only the video in
the format they can play. Users who are quFile-unaware
see the same video when they list the directory, but a
quFile-aware power user could use the raw view to see
all transcodings.

An edit policy specifies whether specific changes are
allowed to the contents of a quFile. For instance, the user
may modify the metadata of a lower-fidelity representa-
tion on the N800. In this case, the video transcoder is
notified of the edit, and it makes correspondingmodifica-
tions to the metadata of the other representations. How-
ever, changes to the actual video are disallowed since
there is no easy way to reflect changes made to a low-
fidelity version to higher-fidelity representations.

Two optional cache policies specify context-aware
prefetching and cache eviction policies for the quFile and
its contents. These policies help manage the cache of dis-
tributed file systems [18, 20, 26] that persistently store
data on the disk of a file system client. For the example
quFile, the cache policies ensure that only the format
needed for a specific device is cached on that device.

4.2 Background: BlueFS
The quFile design is sufficiently generic so that quFile

support can be added to most local and distributed file
systems. For our prototype implementation, we added
quFile support to the Blue File System [26] (BlueFS) be-
cause BlueFS targets mobile and consumer usage scenar-
ios for which quFiles are particularly useful and because
we were familiar with the code base. BlueFS is an open-
source, server-based distributed file system with support
for both traditional computers and mobile devices such
as cell phones. Additionally, BlueFS can cache data on
a device’s local storage and on removable storage media
to improve performance and support disconnected oper-
ation [20]. BlueFS has a small kernel module that man-
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name policy (IN list of quFile contents, IN view name (if specified),
OUT list of file names, OUT cache lifetime);

content policy (IN filename, IN list of quFile contents, IN view name (if specified),
OUT fileid, OUT cache lifetime);

edit policy (IN fileid, IN edit type, IN offset, IN size, OUT enum {ALLOW, DISALLOW, VERSION})
cache insert policy (IN list of quFile contents, OUT list of fileids to cache)
cache eviction policy (IN fileid, OUT enum {EVICT, RETAIN})

Figure 1. quFile API

ages file system data in the kernel’s caches. The ker-
nel module redirects most VFS operations to a user-level
daemon. To support quFiles, we made small modifica-
tions to both the kernel module and daemon, while the
file server remained unchanged. For simplicity, we also
use BlueFS’ persistent query [29] mechanism to deliver
file change notifications.

4.3 Physical representation of a quFile
Logically, a quFile is a new type of file system object.

A quFile is similar to a directory in that they both contain
other file system objects. The difference between quFiles
and directories is their resolution policies. Directory res-
olution policies are static: given the same content, a di-
rectory returns the same results. quFile resolution poli-
cies are dynamic: the same content may resolve differ-
ently in different contexts. Further, users and applica-
tions must be aware of directories since they add another
layer to the file system hierarchy, whereas quFiles can
hide their presence by simply adding resolved files to the
listing of their parent directories.

Using this observation, we reduce the amount of new
code required to add quFiles to a file system by hav-
ing the physical (on-disk and in-memory) representa-
tion of a quFile be the same as a directory, but we re-
define a quFile’s VFS operations to provide different
functionality than that provided by a directory. We seg-
ment the namespace to differentiate quFiles from reg-
ular directories. All quFiles have names of the form
<name>.quFile. While we considered other methods
of differentiating the two, such as using a different file
mode, a special filename extension allows quFile-aware
utilities to manipulate quFiles without changing the file
system interface. For example, the video transcoder
simply issues the commands mkdir foo.quFile and
mv /tmp/foo.mp4 foo.quFile to create a quFile and
populate it with the original video. The only disadvan-
tage of namespace differentiation is the unlikely possibil-
ity that a quFile-unaware application might try to create
a directory that ends with .quFile. Note that the quFile-
aware transcoder uses the quFile’s raw view to manipu-
late its contents; this allows it to use COTS file system
utilities such as mv. Video players will see the default
view since they will not use the special .quFile exten-
sion. When they list the directory containing the quFile,
they will see an entry for either foo.mp4 or foo.TiVo.

4.4 quFile policies
Figure 1 shows the programming interface for all

quFile policies. Policies are stored in shared libraries
in the file system. When a quFile is created, utilities
such as the video transcoder create links in the quFile
to the libraries for its specific policies. Links share poli-
cies across quFiles of the same type, simplifying man-
agement and reducing storage usage.
4.4.1 Name policies

A name policy lets a quFile have different logical
names in different contexts. To make the existence of
a quFile transparent to quFile-unaware applications and
users, a VFS readdir on the parent directory of a quFile
does not return the quFile’s name; instead, it returns the
names of zero to many logical representations of the data
encapsulated within the quFile. quFiles interpose on the
parent’s readdir because that is when the filenames of
the children of a directory are returned to an application.

If readdir encounters a directory entry with the re-
served .quFile extension, it makes a downcall to the
BlueFS daemon, which runs the name policy for that
quFile. The kernel reads the quFile’s static contents from
the page cache and passes the contents to the daemon.

The user may optionally specify the name of a view
for the name policy. For example, instead of typing ls

foo, a user could type ls foo.quFile.versions to
show a directory listing that contains all versions retained
by the quFiles in the directory. The view name is passed
to the name policy without interpretation by the file sys-
tem. This allows a quFile-aware user to use a COTS ap-
plication such as ls to list file versions when desired. As
mentioned previously, the syntax ls foo.quFile re-
turns the raw view of the quFile, which shows the quFile
and all its contents as a subdirectory within foo. This
syntax allows quFile-aware utilities and users to directly
manipulate quFile contents and policies.

The name policy returns a list of zero to many logical
names. The kernel module then calls filldir for each
name on the list to return them to the application reading
the directory. If no names are returned by the policy, the
kernel does not call filldir. This hides the existence
of the quFile from the application.

In addition to returning the name of existing repre-
sentations encapsulated in a quFile, a name policy may
also dynamically instantiate new representations by re-
turning filenames that do not currently exist within the
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quFile. To ensure that such names do not conflict with
other directory entries or names returned by other quFiles
within the directory, each quFile reserves a portion of the
directory namespace. For instance, the names returned
by foo.quFile must all start with the string foo; e.g.,
foo.mp3, foo.bar.txt, etc. Directory manipulation
functions such as create and rename ensure that the
claimed namespace does not conflict with current direc-
tory entries. For example, creating a quFile foo.quFile
is disallowed if there currently exists within the direc-
tory a file named foo.txt or another quFile named
foo.tex.quFile.

To improve performance, a name policy may specify
a cache lifetime for the names it returns — the kernel
will not re-invoke the name policy for this time period.
By default, the kernel module does not cache entries if
no lifetime is specified, so the policy is reinvoked on the
next readdir and may return different entries if context
has changed. Cache lifetimes are useful for policies that
depend on slowly-changing context such as battery life.
4.4.2 Content policies

A content policy lets a quFile have different content
in different contexts. After reading a directory, an appli-
cation that is unaware of quFiles will believe that there
are one or more files with the logical names returned by
the quFile’s name policy within that directory. Thus, it
issues a VFS lookup for each logical name. Since no
such file exists, we modify lookup to return an inode of
a file containing the logical content associated with the
name in the given context.

The modified BlueFS lookup operation checks
whether the name being looked up resides within the di-
rectory namespace reserved by a quFile. If this is the
case, it makes a downcall to the BlueFS daemon, pass-
ing the filename being looked up, a list of the quFile’s
contents, and a view name if one was specified. The dae-
mon calls the quFile’s content policy, which returns the
unique identifier of a file containing the appropriate con-
tent. The kernel module lookup operation instantiates a
Linux dentry with the inode specified by the fileid re-
turned by the policy.

This implementation allows quFiles to create content
dynamically. A content policy can first create a new
file and populate it with content, then return the newly
created file to the kernel. Like name policies, content
policies may also specify a cache lifetime for the con-
tent they return. If a lifetime is not specified, the kernel
does not cache the resulting dentry, which forces a new
lookup the next time the content is accessed.
4.4.3 Edit policies

An edit policy specifies which modifications to a
quFile’s contents are allowed. Currently, quFiles sup-
port three actions: the modification can be allowed, dis-
allowed, or force the creation of a new version. We mod-

ified VFS operations such as commit write and unlink
to make a downcall to the daemon when a quFile repre-
sentation is modified. The daemon runs the edit policy,
passing in the unique identifier of the file being modified
and the type of the modifying operation. For write oper-
ations, it also specifies the region of the file being mod-
ified. The policy returns an enum that specifies which
action to take.

If the edit is allowed, the modification proceeds as
normal. If it is disallowed, the kernel returns an error
code to the calling application specifying that the file is
read-only. If the edit should cause a new version, we
modify the representation in place but also save the pre-
vious version of the modified range in an undo log. We
chose to log changes rather than create a new copy of
the file for each version because many consumer files are
large (e.g., multimedia files) and are only partially modi-
fied (e.g., by updating an ID3 header). Modifications that
delete files such as unlink and rename cause the current
version of the file to be saved as a log checkpoint.
4.4.4 Cache policies

Our final two policies control the caching of quFile
data in the BlueFS on-disk cache. For a distributed file
system, the decision of what files to cache locally signif-
icantly impacts user experience when disconnected.

quFiles may optionally specify two cache policies. A
cache insert policy is called when a quFile is read
and may specify which of its contents to cache on disk.
Files specified by the cache insert policy are kept on a
per-cache list by the BlueFS daemon and are fetched and
stored when the daemon periodically prefetches data for
the cache. For instance, when a quFile containing the
recent episode of a favorite TV show is prefetched to a
portable video player, its cache insert policy might
specify that the video formatted for the video player, a
representation that resides in that quFile, should also be
prefetched. In contrast, when the same policy runs on a
laptop, it would specify that the full-quality video should
be fetched and cached instead. Thus, the policy ensures
that only the data needed to play the video on each device
is actually cached on the device’s disk.

A cache eviction policy is called when the file
system needs to reclaim disk space. The policy speci-
fies whether or not cached contents should be evicted.
Cache policies complement type-specific caching mech-
anisms in mobile storage systems [29, 34, 36] by adding
the ability to make cache decisions based on dynamic
context such as battery state or location.

4.5 Context library
Through the Sprocket interface, quFiles have read-

only access to all information available to the BlueFS
daemon. Thus, in principle, policies can extract arbi-
trary user-level context information in order to determine
which representations to return. However, for conve-
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Function Returns
getUserName char* username
getUserGroupId uid t uid, gid t gid
getProcessName char* procname
getHostname char* hostname
getOSname char* osname
getOSversion char* release, char* version
getMachine char* family
getCPUvendor char* vendor, char* model
getCPUspeed double cpuSpeed
getCPUutil double utilization
getMemUtil double utilization
getPowerState enum{A/C, Battery}
getLocation double latitude, double longitude
getServerBandwidth double bandwidth
getServerLatency double latency

Table 1. quFile context library

nience, we have implemented a library against which
policies may link. This library contains the functions
shown in Table 1 that query commonly-used context.

4.6 File system requirements for quFiles
Since our current implementation leverages BlueFS,

it is useful to consider what features of BlueFS would
need to be supported by a file system before we could
port quFiles to that file system. First, quFiles require
a method to notify applications when files are created
or modified. While OS-specific notification mechanisms
such as Linux’s inotify [23] would suffice for a local file
system, BlueFS persistent queries are useful in that they
allow notifications to be delivered to any client of the dis-
tributed file system. Second, quFiles require a method
to isolate the execution of extensions. This could be as
simple as a user-level daemon process, or we could lever-
age existing extensibility research [3, 10, 39]. Finally,
quFiles reuse existing file system directory support, as
defined by POSIX.

5 Case Studies
The best way to evaluate the effectiveness and gen-

erality of a new abstraction is to implement several sys-
tems that use that abstraction to perform different tasks.
Thus, in this section, we describe six case studies that use
quFiles to extend the functionality of the file system. We
have used these quFile case studies within our research
group. The primary author of the paper has used quFiles
for the last 12 months, while others have used quFiles for
the past 6 months.

5.1 Resource management
One of the primary responsibilities of an operating

system is to manage system resources such as CPU,
memory, network, storage and power. While several re-
search projects have shown that context can be used to
craft more effective policies, almost every new proposed
policy has resulted in a new system being built [1, 8, 27].

quFiles simplify resource management in two ways.

First, they execute policies in the file system — thus,
developers need not create new middleware or modify
applications or the operating system. Second, develop-
ers only need to write resource management policies;
quFiles take care of the mechanism.

Our case study allows a mobile computer to save bat-
tery energy by utilizing its spare storage capacity. Music
playback is one of the most popular applications on mo-
bile devices. Most mobile devices store music in a lossy,
compressed format, such as the mp3 format, to conserve
storage space and reduce network transfer times. How-
ever, decoding compressed music files requires signifi-
cantly more computational power than playing uncom-
pressed versions. For instance, the experimental results
in Section 6.6 show a battery lifetime cost of 4–11%
across several mobile devices. Further, we conducted a
small survey to determine the amount of unused storage
on cell phones and mp3 players. 13 of 45 mp3 players
were over half empty, 18 were 50–90% full, and 14 were
over 90% full. 15 of 29 cell phones were over half empty,
10 were 50–90% full and 4 were over 90% full.

Our quFile uses the spare storage on a mobile com-
puter to store uncompressed versions of music files and
then transparently provides those uncompressed version
to music players to save energy. We built a quFile-aware
transcoder that is notified when a new mp3 file is added
to the distributed file system. The transcoder generates
an uncompressed version of the music file with the same
audio quality as the original, creates a quFile, links it to
our policies, and moves both the compressed and uncom-
pressed versions of the music file into the quFile using
its raw view. Since persistent queries provide the abil-
ity to run the transcoder on any BlueFS client, we gen-
erate alternate transcodings on a wall-powered desktop
computer. This shows one benefit of statically storing
alternate representations in a quFile rather than generat-
ing them on-demand: we can avoid performing work on
a resource-constrained device. In contrast, dynamically
generating transcodings on a mobile device could sub-
stantially drain its battery.

The quFile cache policies ensure that only otherwise
unused storage space is used to store uncompressed ver-
sions of music files. Using the normal BlueFS mecha-
nisms, a music file is cached on a client either when it is
first played or when it is prefetched by a user-specified
policy (e.g., that all music files should be cached on a
cell phone [29]). Since the music file is contained within
a quFile, the file system’s lookup function must always
read the quFile before reading the music file. At this
time, the quFile’s cache insert policy is run. The pol-
icy queries the amount of storage space available on the
device and adds the uncompressed representation to the
prefetch list if space is available.

Later, when BlueFS does a regularly-scheduled
prefetch of files for the mobile client, it retrieves files on
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the prefetch list from the server if the mobile computer is
plugged in, has spare storage available, and has network
connectivity to the server. It adds these prefetched files to
its on-disk cache. When BlueFS needs to evict files from
the cache, it executes the quFile’s cache eviction pol-
icy, which specifies that the uncompressed version is al-
ways evicted before any other data in the cache.

The name and content policies return the name and
data for the uncompressed version of the music file if
the mobile device is operating on battery power and the
uncompressed version is cached on local storage, thereby
improving battery lifetime. If the uncompressed version
is not cached on the device, the original file is returned.

This case study demonstrates how quFiles achieve ap-
plication and user transparency. All actions described
above run automatically, without explicit user involve-
ment and without application modification.

5.2 Versioning: a copy-on-write file system
Copy-on-write file systems such as Elephant [37] and

ext3cow [31] create and retain previous versions of files
when they are modified. Users can examine previous ver-
sions and revert the current version to a past one when
desired. However, these systems are monolithic imple-
mentations, and the need to use new file systems has hin-
dered their adoption. Thus, we were curious to see if
quFiles could be used to add copy-on-write functionality
to an existing file system.

We created a copy-on-write quFile that adds the abil-
ity to retain past versions of files. A user may choose to
version any individual file, all files of a certain type, or
all files in a particular subtree of the file system. For
instance, a user might version all LaTeX source files.
A quFile-aware utility uses BlueFS persistent queries to
register for notifications when a file with the extension
.tex is created. When it receives a notification, e.g., that
foo.tex is being created, it creates a new quFile with
the name foo.tex.quFile. It then uses the quFile’s
raw view to move the LaTeX file into the quFile and link
the quFile to the copy-on-write policies.

In addition to the current version of the file, each
copy-on-write quFile may contain possibly many older
versions of the file. A past version may be represented
as either a checkpoint, which is a complete past version
of the file, or a reverse delta, which captures only the
changes needed to reconstruct that version from the next
most recent one. The reverse delta scheme is effectively
an undo log that reduces the storage space needed to
store past data; for instance, a change to the header of a
1GB video file can be represented by a delta file only one
block in size. While reverse deltas save storage, gener-
ating a complete copy of a past version incurs additional
latency when one or more deltas are applied to a check-
point or the current version.

The quFile’s name and content policies simply re-

turn the current version of the file for the default view.
The quFile’s edit policy specifies that a new version
should be created on any modification, i.e., whenever a
file is closed, deleted, or renamed. Thus, when the user
opens a file and issues one or more writes, the old data
needed to undo his changes are saved to a new delta file
within the quFile. The modifications are written to the
current version of the file stored within the quFile. Be-
cause the default view exposes only the current version,
these actions and the presence of past versions are com-
pletely transparent.

Versioning the data overwritten by file writes often
consumes less storage and takes less time than creating
a full checkpoint. To further reduce the cost of version-
ing, quFiles create new versions at the granularity of file
open and close operations, rather than at each individ-
ual write. Unlike write, operations such as rename

and unlink affect the entire file. For these operations,
the current version is moved to a checkpoint within the
quFile. Since there is no current version remaining, the
quFile’s name policy does not return a filename for the
default view, giving the appearance that the file has been
deleted. However, the old data can still be accessed via
the raw view or a custom view.

When the user wishes to view prior versions, she uses
the versions custom view (the .quFile.versions

extension). This allows the use of COTS applications
such as ls and graphical file system browsers to view
versions. Whereas the default view only shows a sin-
gle file, foo.tex, in a directory, the custom view may
additionally show several past versions, e.g., foo.tex,
foo.tex.ckpt.monday, foo.tex.ckpt.last week,
etc. When the name policy receives the versions key-
word, it returns the names of any past versions found in
the quFile’s undo log. A user may use the versions

keyword to specify all versions within a subtree;
for example, grep bar -Rn src.quFile.versions

searches for bar in all versions of all files in all subdi-
rectories of src.

To conserve storage space, we dynamically generate
checkpoints of past versions when they are viewed us-
ing the versions view. The quFile’s content policy
receives one of the names returned by the name policy.
It dynamically creates a new checkpoint file within the
quFile by applying the reverse deltas in succession to the
next most recent checkpoint or the current version of the
file. In addition to saving storage space, dynamic res-
olution also saves work in the common case where the
user never inspects a past version. The performance hit
of instantiating a previous checkpoint is taken only in the
uncommon case when a user recovers a past version.

We have also implemented a quFile-aware garbage
collection utility that runs as a cron job and removes
older versions to save disk space. One sample policy
maintains all prior versions less than one day old, one
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version from the previous day, one from the prior two
days, and one additional version from each exponentially
increasing number of days.

5.3 Availability: resource-aware directories
Distributed file systems typically make no visible dis-

tinction between data cached locally and data that must
be fetched from a remote server. Unfortunately, the ab-
sence of this distinction is often frustrating. For instance,
a directory listing might reveal interesting multimedia
content that the user tries to view. However, the user
subsequently finds out that the content cannot be viewed
satisfactorily because it is not cached locally and the net-
work bandwidth to the server is insufficient to sustain the
bit rate required to play the content.

To address this problem, we created a resource-aware
directory listing policy that uses quFiles to tailor the con-
tents of the directory to match the resources available to
the computer. Our policy currently tailors directory list-
ings to reflect cache state and network bandwidth. We
can imagine similar policies that tailor listings to match
the availability of CPU cycles or battery energy.

If a multimedia file is cached on a computer, the name
policy’s default view returns its name to the application.
Otherwise, the policy returns the name of the multimedia
file only if the network bandwidth to the server is greater
than the bit rate needed to play the file.

The effect of the name policy is that a multimedia file
is not displayed by directory listings or media players if
there is insufficient network bandwidth to play it. Thus,
a media player that is shuffling randomly among songs
will not experience a glitch when it tries to play an un-
available song. A user will not have to experiment to find
out which songs can be played and which cannot.

However, our experience using this policy revealed
that sometimes we want to see files that are currently
unavailable when we list a directory. For instance, a
video player may support buffering, and we are will-
ing to tolerate a delay before we watch a video. We
therefore altered the name policy to support a custom
view that simply changes the name of a file from foo

to foo is currently unavailable when the file is
unplayable. The custom view is selected using the
keyword all; e.g., ls MyMusic.quFile.all shows
foo is currently unplayable, while ls MyMusic

does not show an entry for that file.

5.4 Security: context-aware data redaction
Mobile computers may be used at any location, in-

cluding those that are insecure. For this reason, infor-
mation scrubbing [19] has been proposed to protect, iso-
late and constrain private data on mobile devices. For
instance, a user may not want to view her bank records
or credit card information in a coffee shop or other pub-
lic venue because others may observe personal or sensi-

tive information by glancing at the screen. To help such
users, we created a quFile that shows only redacted ver-
sions of files with sensitive data removed when data is
viewed at insecure locations. The original data is dis-
played at secure locations.

This case study redacts only the presentation of data,
not the bytes stored on disk. Thus, it guards against in-
advertent display of data on a mobile computer, but not
against the computer being lost or stolen.

We first created a quFile-aware utility that redacts
XML files containing sensitive data. This utility is noti-
fied when files that may contain sensitive data are added
to the file system. While our utility can redact any XML
file using type-specific rules, we currently use it only for
GnuCash, a personal finance program that stores data in
a binary XML format. GnuCash [16] runs on Linux and
is compatible with the Quicken Interchange Format.

Our utility parses each GnuCash file and generates a
redacted version. The general-purpose redactor uses the
Xerces [41] XML parser to apply type-specific transfor-
mation rules that obfuscate sensitive data. Our current
rules obfuscate details such as account numbers, trans-
action details and dates, but leave the balances visible.
Finally, the utility creates a quFile and moves both the
original and redacted files into the quFile using its raw
view. The redactor generates these two static representa-
tions each time the file is modified.

When an application reads this quFile, our context-
aware declassification policy determines the location of
the mobile computer using a modified version of Place
Lab [25, 40]. If the computer is at a trusted location,
as specified by a configuration file, the original version
is returned. Otherwise the redacted version is displayed.
Since the file type of the original and redacted versions
are the same, the name policy returns the same name in
all locations; however the data returned by the content

policy may change as the user moves.
We did not need to modify GnuCash since it uses the

transparent default view. GnuCash simply displays the
original or redacted values in its GUI, depending on the
location of the mobile computer. A quFile-aware user
may override the content policy and view a different
version using the quFile’s raw view; e.g., by specifying
/bluefs/credit card.quFile/credit card.xml

instead of /bluefs/credit card.xml.

5.5 Application-aware adaptation: Odyssey
Odyssey [27] introduced the notion of application-

aware adaptation, in which the operating system moni-
tors resource availability and notifies applications of any
relevant changes. When notified by Odyssey of a re-
source level change, applications adjust the fidelity of the
data they consume. A drawback of Odyssey is that both
the operating system and applications must be modified.
However, we observe that almost all application modifi-
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cation is due to implementing the adaptation policy and
mechanism inside the application. Thus, we decided to
re-implement the functionality of Odyssey using quFiles.
Unlike Odyssey, our quFile implementation requires no
application modification. The adaptation policy can be
removed from the application and cleanly specified us-
ing the quFile interface.

Our Odyssey implementation replicates Odyssey’s
Web (image viewing) application. A similar policy could
be used for other Odyssey data types such as speech,
maps [11], and 3-D graphics [24].

We created a utility that is notified when new JPEG
images such as photos are added to the file system. The
utility creates four additional lower-fidelity representa-
tions of the photo with varying JPEG quality levels.
It creates a quFile, links in our Odyssey policies, and
moves the lower-fidelity representations and the original
image into the quFile using its raw view.

When a photo viewer lists a directory containing an
image quFile, the Odyssey name policy returns the name
of the original image file. However, when the content
of the image is read, the quFile’s content policy re-
turns the best quality representation that can be displayed
within one second.

The content policy uses the context library to deter-
mine the client’s current bandwidth to the server. It reads
the size of each representation in the quFile starting with
the highest-fidelity, original representation and proceed-
ing to the lowest. If a representation is cached locally or
can be fetched from the server in less than a second, the
content policy returns the inode for that representation.
If no representation can meet the service time require-
ment, the lowest fidelity representation is returned.

The edit policy returns a context-specific value. It
allows all modifications to the original image since the
quFile-aware transcoder will be notified to regenerate al-
ternate representations from the modified original. How-
ever, the policy disallows modifications to multimedia
data in low-fidelity representations because it is unclear
how such modifications can be reflected back to the orig-
inal and other representations. This behavior is similar
to the one users see in other arenas (e.g., when they try
to save an Office document in a reduced-fidelity format
such as ASCII text).

After experimenting with this policy, we made two
further refinements. First, we realized that most edits to
multimedia files change only the metadata header, which
is identical across formats and quality levels. Thus, we
modified our policy to allow editing of metadata for low-
fidelity representations. The transcoder propagatesmeta-
data changes to other representations.

We also realized that some image editors rewrite the
entire image instead of just modifying its metadata. We
therefore modified our edit policy to allow writes out-
side the metadata region if the data written is identical to

the data in the file. With these changes, all edits we at-
tempted to make to low-fidelity versions succeeded. Of
course, this is just one policy, and different applications
may craft other policies such as allowing edits to low-
fidelity data or creating multiple versions.

5.6 Platform-specific video display
Section 4.1 gave a brief overview of our last case

study, which transcodes videos to meet the resource con-
straints of file system clients. The authors currently use
TiVo DVRs, N800 Internet tablets, and laptop comput-
ers to display videos. When a new.TiVo file is recorded
and stored in BlueFS, a quFile-aware utility generates a
full-resolution .mp4 for the laptop and a lower-fidelity
.mp4 representation for the Nokia N800. Since the N800
has a lower screen resolution, we can save storage space
on that device by producing a video formatted specifi-
cally for the N800’s smaller display. The utility creates a
quFile and populates it with the original and transcoded
videos for each computer type described above. If we
were to use additional types of clients, our transcoder
could produce versions for those devices.

The name and content policies query the machine
type on which they are running using the context library
described in Section 4.5. The name policy returns a
name ending with .TiVo when the video is read by the
DVR, as determined by seeing that the name of the re-
questing application is a TiVo-specific utility. Otherwise,
the name policy returns a name ending with .mp4. The
content policy determines the type of client using the
context library and returns the encoding appropriate for
that type. The cache insert policy ensures that each
device only caches the video encoding it will display. We
use BlueFS’ type-specific affinity to prefetch such encod-
ings to each device. quFiles hide this manipulation from
video display applications, which therefore do not need
to be modified. In practice, we found that this cached
store of videos on the N800 made many a bus-ride more
enjoyable! We also implemented a simple eviction pol-
icy: when the device is running out of storage space, all
prefetched recordings are deleted before content the user
has explicitly cached.

6 Evaluation
While the case studies in the previous section il-

lustrate the generality of quFiles, we also verified that
quFiles do not add too much overhead to file system op-
erations and that the amount of code required to imple-
ment quFile policies is reasonable.

Unless otherwise stated, we evaluated quFiles on a
Dell GX620 desktop with a 3.4GHz Pentium 4 proces-
sor and 3 GB of DRAM. The desktop runs Ubuntu Linux
8.04 (Linux kernel 2.6.24). The desktop runs both the
BlueFS server and client, and the BlueFS client does not
use a local disk cache.
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Figure 2. Time to list a directory with 100 images

We executed each experiment in three scenarios. In
the warm client scenario, the kernel’s page cache con-
tains all BlueFS data read during the experiment (the
working sets of all experiments fit in memory). In the
cold client scenario, no client data is in the kernel’s page
cache, but all server data is initially in the page cache.
Thus, the first time an application reads a file page or at-
tributes, an RPC is made to the server but no disk access
is required. In the cold server scenario, no data is ini-
tially in any cache. On the first read, an RPC and a disk
access are required to retrieve the data.

6.1 Directory listing
Our first experiment evaluates the performance over-

head of quFiles for common file system operations by
measuring the time to list the files in a directory and their
attributes with the command ls -al. This is a worst-
case scenario for using quFiles since the listing incurs
the overhead of retrieving a quFile and executing both
the name and content policies to determine which at-
tributes to return for each file. Yet, there is minimal ad-
ditional work to amortize this overhead because the di-
rectory listing requires that only the attributes of the file
being listed be retrieved.

In our experiment, a directory contains 100 JPEG im-
ages. Each image is placed in a quFile that contains 4
additional low-fidelity representations and returns the ap-
propriate one for the available server bandwidth using the
Odyssey policy in Section 5.5.

The first bar for each scenario in Figure 2 shows a
lower performance bound generated by assuming that
Odyssey-like functionality is completely unsupported.
Each value shows the time to list a directory without
quFiles that contains only the original 100 JPEG images.

The second bar in each scenario shows the time to
list the directory using quFiles. The Odyssey name and
content policies return the name and content of the
original image since server bandwidth is abundant. If the
client cache is warm (which we expect to be the common
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Figure 3. Time to read 100 images

case for most file system operations), quFiles add less
than 3% overhead for this experiment (roughly 1.6 µs per
file). If the client cache is cold, quFiles add 59% over-
head. For each file, quFiles execute two policies. There
is a measured overhead of 28 µs per policy, almost en-
tirely due to user-level sandboxing. An additional 70 µs
per file is required to fetch quFile attributes and contents
from the server. If both the client and server caches are
cold, the server performs two disk reads per file to read
the quFile attributes and data. In this case, quFiles im-
pose slightly less than a 3x overhead because disk reads
are the dominant cost and three reads per file are per-
formed with quFiles while only one read is performed
without quFiles. However, it should be noted that even
when both caches are cold, quFiles impose only 0.48 ms
of overhead per file in this worst-case scenario. Note that
the relative overhead of quFiles would decrease if file ac-
cesses were more random since, as directories, quFiles
can be placed on disk near the files they contain (mini-
mizing seeks).

While the first bar in each scenario in the figure pro-
vides a lower bound on performance, a fairer compar-
ison for Odyssey with quFiles is one in which all rep-
resentations are stored together in the same directory.
Odyssey uses this storage method for video, map, and
speech data [27, 11]. Thus, there are 500 files in the
directory. As the last bar in each scenario in Figure 2
shows, listing the directory takes over twice as long with-
out quFiles in the warm client and cold server scenarios,
and over 5 times as long in the cold client scenario. Be-
cause each quFile encapsulates many representations but
returns only one, quFiles fetch less data than a regular
file system when a naive storage layout policy is used.

Overall, we conclude that quFiles add minimal over-
head to common file system operations, especially when
the client cache is warm. Compared to naive file system
layouts, quFiles can sometimes improve performance
through their encapsulation properties.
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Figure 4. Time to make the Linux kernel

6.2 Reading data
Often, users and applications will read file data, not

just file attributes. We therefore ran a second mi-
crobenchmark that measures the time taken by the cat

utility to read all images in our test directory and pipe the
output to /dev/null. As Figure 3 shows, quFile overhead
is negligible in the warm client scenario, 3% in the cold
client scenario, and 5% in the cold server scenario. Al-
though the total overhead of quFile indirection remains
the same as in the previous experiment, that overhead is
now amortized across more file system activity. Thus,
relative overhead decreases substantially.

6.3 Andrew-style make benchmark
We next turned our attention to application-level

benchmarks. We started with a benchmark that measures
quFile overhead during a complete make of the Linux
2.6.24-2 kernel. Such benchmarks, while perhaps not
representative of modern workloads, have long been used
to stress file system performance [18].

We compare the time to build the Linux kernel on
BlueFS with and without quFiles. For the quFile test,
we created a kernel source tree in which all source files
(ending in .c, .h, or .S) are versioned using the copy-on-
write quFile described in Section 5.2. The kernel source
tree contains 23,062 files, of which 19,844 are versioned.
Each quFile contains the original file and a checkpoint of
approximately the same size as the original.

As Figure 4 shows, quFiles add negligible overhead
in the warm client scenario and 1% overhead in the cold
client and cold server scenarios. Even though kernel
source files are quite small (averaging 11,663 bytes per
file), many files such as headers are read multiple times,
meaning that the extra overhead of fetching quFile data
from the server can be amortized across multiple file
reads. Further, computation is a significant portion of
this benchmark, reducing the performance impact of I/O.

6.4 Kernel grep
We next ran a read-only benchmark that stresses file

I/O performance. We used grep to search through the
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Figure 5. Time to search through the Linux kernel

Linux source tree described in the previous section to
find all 9 occurrences of “remove wait queue locked”.

The first bar in each scenario of Figure 5 shows the
time to search through the Linux source without quFiles.
The second bar in each scenario shows the time to search
through the source with quFiles using the default view.
In this case, each quFile returns only the current version
of each source file. Thus, the results returned by the two
grep commands are identical.

In the warm client scenario, the performance of grep
with quFiles is within 1% of the performance without
quFiles. As we would expect, the overhead is larger
when there is no data in the client cache: 21% in the
cold cache scenario and 6% in the cold server scenario.

quFiles, however, allow greater functionality than
a regular file system. For instance, we can search
through not only the current versions of source files but
also all past versions by simply executing grep -Rn

linux.quFile.versions where linux is the root of
the kernel source tree. This command, which uses the
versions view of the copy-on-write quFile, searches
through twice as much data and returns 18 matches.

The last bar in each scenario shows the time to ex-
ecute grep using the versions view. Since approx-
imately twice as much data is read, the version-aware
search takes approximately twice as long as a search us-
ing the default view in the warm client scenario. How-
ever, in the cold server scenario, the search takes only
31% longer since quFile representations are located close
to each other on disk, reducing seek times.

This scenario shows that even when there is little data
or computation across which to amortize overhead, per-
formance is still reasonable, especially when data resides
in the kernel’s page cache. Further, quFiles enable func-
tionality that is unavailable using regular file systems.

6.5 Code size
We measure the effort required to develop new poli-

cies by counting the lines of code for the quFiles used in
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Component Name Content Edit Cache Total
Resource mgmt. 32 18 8 36 94
Versioning 29 18 8 n/a 55
Security 20 33 8 n/a 61
Availability 64 26 8 n/a 98
Odyssey 23 27 32 n/a 82
Platform spec. 31 30 8 43 112

Table 2. Lines of code for quFile policies

each of our six case studies. As Table 2 shows, almost
all policies required less than 100 lines of code. Com-
pared to the code size of their monolithic ancestors, these
numbers represent a dramatic reduction. For instance,
the base Odyssey source is comprised of 32,329 lines of
code while ext3cow requires a 18,494 line patch to the
Linux-2.6.20.3 source tree. Our quFile implementation
added 1,515 lines of code to BlueFS (BlueFS has 28,788
lines of code without quFiles). Further, all policies were
implemented by a single graduate student. All policies
took less than two weeks to implement. Later policies
required only a few days as we gained experience.

6.6 Energy saving results
To evaluate the effectiveness of our case study in Sec-

tion 5.1 that plays uncompressed music files to save en-
ergy, we measured the power used to play the uncom-
pressed version of music files returned by quFiles and
the power used to play the equivalent mp3 files. Table 3
shows results for three mobile devices: an HP4700 iPAQ
handheld and Nokia N95-1 and N95-3 smart phones.
The iPAQ runs Familiar v8.4, with OpiePlayer as its
media player while the the N95-1 and N95-3 ran their
factory-installed operating system and media players.

We directly measured the power consumed on the
iPAQ by removing its battery and connecting its power
supply cable through a digital multimeter. Unfortunately,
the Nokia smart phones cannot operate with their battery
unplugged, so we instead used the Nokia Energy Pro-
filer [28] to measure playback power. Our tests show
that quFiles can increase the battery lifetime of these de-
vices by 4–11% when they are playing music. Given
the importance of battery lifetime for these devices, this
is a nice gain, especially considering that only spare re-
sources are used to achieve it.

7 Conclusion
The quFile abstraction simplifies data management by

providing a common mechanism for selecting one of sev-
eral possible representations of the same logical data de-
pending on the context in which it is accessed. A quFile
also encapsulates the messy details of generating and
storing multiple representations and the policies for se-
lecting among them. We have shown the generality of
quFiles by implementing six case studies that use them.

Power to play Power with Battery life
Device mp3 files (mW) quFiles (mW) extension
HP4700 iPAQ 1549 1401 11%
Nokia N95-1 962 914 5%
Nokia N95-3 454 437 4%

This table compares the power used to play mp3 files on 3 mo-
bile devices with the power required to play the uncompressed
versions returned by quFiles.

Table 3. Power savings enabled by quFiles

Acknowledgments
We thank Mona Attariyan, Dan Peek, Doug Terry, Benji Wester,

our shepherd Karsten Schwan, and the anonymous reviewers for com-
ments that improved this paper. We used David A. Wheeler’s SLOC-
Count to estimate the lines of code for our implementation. Jason Flinn
is supported by NSF CAREER award CNS-0346686. The views and
conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either ex-
pressed or implied, of NSF, the University of Michigan, Microsoft, or
the U.S. government.

References
[1] ANAND, M., NIGHTINGALE, E. B., AND FLINN, J. Self-tuning

wireless network power management. In Proceedings of the 9th
Annual Conference on Mobile Computing and Networking (San
Diego, CA, September 2003), pp. 176–189.

[2] BELARAMANI, N., DAHLIN, M., GAO, L., NAYATE, A.,
VENKATARAMANI, A., YALAGANDULA, P., AND ZHENG, J.
PRACTI Replication. In Proceedings of the 3rd Symposium on
Networked System Design and Implementation (San Jose, CA,
May 2006), pp. 59–72.

[3] BERSHAD, B., SAVAGE, S., PARDYAK, P., SIRER, E., FI-
UCZYNSKI, M., BECKER, D., CHAMBERS, C., AND EGGERS,
S. Extensibility, safety and performance in the SPIN operating
system. In Proceedings of the 15th ACM Symposium on Op-
erating Systems Principles (Copper Mountain, CO, Dec. 1995),
pp. 267–284.

[4] BERSHAD, B. B., AND PINKERTON, C. B. Watchdogs - extend-
ing the UNIX file system. Computer Systems 1, 2 (Spring 1988).

[5] BILA, N., RONDA, T., MOHOMED, I., TRUONG, K. N., AND
DE LARA, E. PageTailor: Reusable end-user customization for
the mobile web. In Proceedings of the 5th International Con-
ference on Mobile Systems, Applications and Services (San Juan,
Puerto Rico, June 2007), pp. 16–29.

[6] Bundle programming guide. http://developer.apple.
com/documentation/CoreFoundation/Conceptual/
CFBundles/CFBundles.html.

[7] DE LARA, E., KUMAR, R., WALLACH, D. S., AND
ZWAENEPOEL, W. Collaboration and multimedia authoring on
mobile devices. In Proceedings of the 1st International Confer-
ence on Mobile Systems, Applications and Services (San Fran-
cisco, CA, May 2003), pp. 287–301.

[8] DE LARA, E., WALLACH, D. S., AND ZWAENEPOEL, W. Pup-
peteer: Component-based adaptation for mobile computing. In
Proceedings of the 3rd USENIX Symposium on Internet Technolo-
gies and Systems (San Francisco, CA, March 2001), pp. 159–170.

[9] DOURISH, P., EDWARDS, W. K., LAMARCA, A., LAMPING, J.,
PETERSEN, K., SALISBURY, M., TERRY, D. B., AND THORN-
TON, J. Extending document management systems with user-
specific active properties. ACM Transactions on Information Sys-
tems 18, 2 (2000), 140–170.

[10] ENGLER, D., KAASHOEK, M., AND J. O’TOOLE, J. Exokernel:
An operating system architecture for application-level resource
management. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles (Copper Mountain, CO, December
1995), pp. 251–266.



14 FAST ’10: 8th USENIX Conference on File and Storage Technologies USENIX Association

[11] FLINN, J., AND SATYANARAYANAN, M. Energy-aware adap-
tation for mobile applications. In Proceedings of the 17th ACM
Symposium on Operating Systems Principles (Kiawah Island, SC,
December 1999), pp. 48–63.

[12] FOX, A., GRIBBLE, S. D., BREWER, E. A., AND AMIR,
E. Adapting to network and client variability via on-demand
dynamic distillation. In Proceedings of the 7th International
ACM Conference on Architectural Support for Programming
Languages and Operating Systems (Cambridge, MA, October
1996), pp. 160–170.

[13] Filesystem in Userspace. http://fuse.sourceforge.net/.
[14] GEHANI, N. H., JAGADISH, H. V., AND ROOME, W. D. OdeFS:

A file system interface to an object-oriented database. In Pro-
ceedings of the 20th International Conference on Very Large
Databases (Santiago de Chile, Chile, September 1994), pp. 249–
260.

[15] GIFFORD, D. K., JOUVELOT, P., SHELDON, M. A., AND
O’TOOLE, J. W. Semantic file systems. In Proceedings of the
13th ACM Symposium on Operating Systems Principles (Pacific
Grove, CA, October 1991), pp. 16–25.

[16] GnuCash: Free Accounting Software. http://www.gnucash.
org.

[17] GUPTA, A., AND MUMICK, I. S. Maintenance of material-
ized views: Problems, techniques and applications. IEEE Quar-
terly Bulletin on Data Engineering; Special Issue on Materialized
Views and Data Warehousing 18, 2 (1995), 3–18.

[18] HOWARD, J. H., KAZAR, M. L., MENEES, S. G., NICHOLS,
D. A., SATYANARAYANAN, M., SIDEBOTHAM, R. N., AND
WEST, M. J. Scale and performance in a distributed file system.
ACM Transactions on Computer Systems 6, 1 (February 1988).

[19] IOANNIDIS, S., SIDIROGLOU, S., AND KEROMYTIS, A. D. Pri-
vacy as an operating system service. In Proceedings of the 1st
conference on USENIX Workshop on Hot Topics in Security (Van-
couver, B.C., Canada, 2006), pp. 45–50.

[20] KISTLER, J. J., AND SATYANARAYANAN, M. Disconnected op-
eration in the Coda file system. ACM Transactions on Computer
Systems 10, 1 (February 1992).

[21] KJÆR, K. A survey of context-aware middleware. In Proceedings
of the IASTED International Conference on Software Engineering
(Innsbruck, Austria, February 2007), pp. 148–155.

[22] LOPRESTI, D. P., AND LAWRENCE, S. A. Information leakage
through document redaction: attacks and countermeasures. In
Proceedings of Document Recognition and Retrieval XII - Inter-
national Symposium on Electronic Imaging (San Jose, CA, Jan-
uary 2005), pp. 183–190.

[23] LOVE, R. Kernel Korner: Intro to inotify. Linux Journal, 139
(2005), 8.

[24] NARAYANAN, D., FLINN, J., AND SATYANARAYANAN, M. Us-
ing history to improve mobile application adaptation. In Proceed-
ings of the 2nd IEEE Workshop on Mobile Computing Systems
and Applications (Monterey, CA, August 2000), pp. 30–41.

[25] NICHOLSON, A. J., AND NOBLE, B. D. BreadCrumbs: Fore-
casting mobile connectivity. In Proceedings of the 14th Inter-
national Conference on Mobile Computing and Networking (San
Francisco, CA, September 2008), pp. 46–57.

[26] NIGHTINGALE, E. B., AND FLINN, J. Energy-efficiency and
storage flexibility in the Blue File System. In Proceedings of the
6th Symposium on Operating Systems Design and Implementa-
tion (San Francisco, CA, December 2004), pp. 363–378.

[27] NOBLE, B. D., SATYANARAYANAN, M., NARAYANAN, D.,
TILTON, J. E., FLINN, J., AND WALKER, K. R. Agile
application-aware adaptation for mobility. In Proceedings of the
16th ACM Symposium on Operating Systems Principles (Saint-
Malo, France, October 1997), pp. 276–287.

[28] NOKIA. Nokia Energy Profiler. http://www.forum.
nokia.com/main/resources/development process/
power management/nokia energy profiler/.

[29] PEEK, D., AND FLINN, J. EnsemBlue: Integrating distributed
storage and consumer electronics. In Proceedings of the 7th Sym-
posium on Operating Systems Design and Implementation (Seat-
tle, WA, November 2006), pp. 219–232.

[30] PEEK, D., NIGHTINGALE, E. B., HIGGINS, B. D., KUMAR,
P., AND FLINN, J. Sprockets: Safe extensions for distributed
file systems. In Proceedings of the USENIX Annual Technical
Conference (Santa Clara, CA, June 2007), pp. 115–128.

[31] PETERSON, Z. N. J., AND BURNS, R. Ext3cow: A time-shifting
file system for regulatory compliance. ACM Transacations on
Storage 1, 2 (2005), 190–212.

[32] PHAN, T., ZORPAS, G., AND BAGRODIA, R. Middleware sup-
port for reconciling client updates and data transcoding. In Pro-
ceedings of the 2nd International Conference on Mobile Systems,
Applications and Services (Boston, MA, 2004), pp. 139–152.

[33] PILLAI, P., KE, Y., AND CAMPBELL, J. Multi-fidelity stor-
age. In Proceedings of the ACM 2nd International Workshop on
Video Surveillance and Sensor Networks (New York, NY, 2004),
pp. 72–79.

[34] RAMASUBRAMANIAN, V., RODEHEFFER, T. L., TERRY, D. B.,
WALRAED-SULLIVAN, M., WOBBER, T., MARSHALL, C. C.,
AND VAHDAT, A. Cimbiosys: A platform for content-based par-
tial replication. In Proceedings of the 6th Symposium on Net-
worked System Design and Implementation (Boston, MA, April
2009), pp. 261–276.

[35] RUSSINOVICH, M. E., AND SOLOMON, D. A. Advanced fea-
tures of NTFS. Microsoft Windows Internals (2005), 719–721.

[36] SALMON, B., SCHLOSSER, S. W., CRANOR, L. F., AND
GANGER, G. R. Perspective: Semantic data management for
the home. In Proceedings of the 7th USENIX Conference on File
and Storage Technologies (San Francisco, CA, February 2009),
pp. 167–182.

[37] SANTRY, D. S., FEELEY, M. J., HUTCHINSON, N. C., VEITCH,
A. C., CARTON, R. W., AND OFIR, J. Deciding when to forget
in the Elephant file system. SIGOPS Operating Systems Review
33, 5 (1999), 110–123.

[38] SCHILIT, B., ADAMS, N., AND WANT, R. Context-aware com-
puting applications. In IEEE Workshop on Mobile Computing
Systems and Applications (Santa Cruz, CA, 1994), pp. 85–90.

[39] SELTZER, M. I., ENDO, Y., SMALL, C., AND SMITH, K. A.
Dealing with disaster: Surviving misbehaved kernel extensions.
In Proceedings of the 2nd Symposium on Operating Systems De-
sign and Implementation (Seattle, Washington, October 1996),
pp. 213–227.

[40] SOHN, T., GRISWOLD, W. G., SCOTT, J., LAMARCA, A.,
CHAWATHE, Y., SMITH, I., AND CHEN, M. Experiences with
Place Lab: an open source toolkit for location-aware computing.
In Proceedings of the 28th International Conference on Software
Engineering (Shanghai, China, May 2006), pp. 462–471.

[41] Xerces-C++ XML Parser. http://xerces.apache.org/
xerces-c/.

[42] YUMEREFENDI, A. R., MICKLE, B., AND COX, L. P. TightLip:
Keeping applications from spilling the beans. In Proceedings of
the 4th Symposium on Networked Systems Design and Implemen-
tation (Cambridge, MA, April 2007), pp. 159–172.



USENIX Association  FAST ’10: 8th USENIX Conference on File and Storage Technologies 15

Tracking Back References in a Write-Anywhere File System

Peter Macko
Harvard University

pmacko@eecs.harvard.edu

Margo Seltzer
Harvard University

margo@eecs.harvard.edu

Keith A. Smith
NetApp, Inc.

keith.smith@netapp.com

Abstract
Many file systems reorganize data on disk, for example to
defragment storage, shrink volumes, or migrate data be-
tween different classes of storage. Advanced file system
features such as snapshots, writable clones, and dedupli-
cation make these tasks complicated, as moving a single
block may require finding and updating dozens, or even
hundreds, of pointers to it.

We present Backlog, an efficient implementation of
explicit back references, to address this problem. Back
references are file system meta-data that map physi-
cal block numbers to the data objects that use them.
We show that by using LSM-Trees and exploiting the
write-anywhere behavior of modern file systems such
as NetApp R WAFL R or btrfs, we can maintain back
reference meta-data with minimal overhead (one extra
disk I/O per 102 block operations) and provide excel-
lent query performance for the common case of queries
covering ranges of physically adjacent blocks.

1 Introduction

Today’s file systems such as WAFL [12], btrfs [5], and
ZFS [23] have moved beyond merely providing reliable
storage to providing useful services, such as snapshots
and deduplication. In the presence of these services, any
data block can be referenced by multiple snapshots, mul-
tiple files, or even multiple offsets within a file. This
complicates any operation that must efficiently deter-
mine the set of objects referencing a given block, for
example when updating the pointers to a block that has
moved during defragmentation or volume resizing. In
this paper we present new file system structures and al-
gorithms to facilitate such dynamic reorganization of file
system data in the presence of block sharing.

In many problem domains, a layer of indirection pro-
vides a simple way to relocate objects in memory or on
storage without updating any pointers held by users of

the objects. Such virtualization would help with some of
the use cases of interest, but it is insufficient for one of
the most important—defragmentation.

Defragmentation can be a particularly important is-
sue for file systems that implement block sharing to sup-
port snapshots, deduplication, and other features. While
block sharing offers great savings in space efficiency,
sub-file sharing of blocks necessarily introduces on-disk
fragmentation. If two files share a subset of their blocks,
it is impossible for both files to have a perfectly sequen-
tial on-disk layout.

Block sharing also makes it harder to optimize on-disk
layout. When two files share blocks, defragmenting one
file may hurt the layout of the other file. A better ap-
proach is to make reallocation decisions that are aware of
block sharing relationships between files and can make
more intelligent optimization decisions, such as priori-
tizing which files get defragmented, selectively breaking
block sharing, or co-locating related files on the disk.

These decisions require that when we defragment a
file, we determine its new layout in the context of other
files with which it shares blocks. In other words, given
the blocks in one file, we need to determine the other
files that share those blocks. This is the key obstacle
to using virtualization to enable block reallocation, as
it would hide this mapping from physical blocks to the
files that reference them. Thus we have sought a tech-
nique that will allow us to track, rather than hide, this
mapping, while imposing minimal performance impact
on common file operations. Our solution is to introduce
and maintain back references in the file system.

Back references are meta-data that map physical block
numbers to their containing objects. Such back refer-
ences are essentially inverted indexes on the traditional
file system meta-data that maps file offsets to physical
blocks. The challenge in using back references to sim-
plify maintenance operations, such as defragmentation,
is in maintaining them efficiently.

We have designed Log-Structured Back References,
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or Backlog for short, a write-optimized back reference
implementation with small, predictable overhead that re-
mains stable over time. Our approach requires no disk
reads to update the back reference database on block al-
location, reallocation, or deallocation. We buffer updates
in main memory and efficiently apply them en masse
to the on-disk database during file system consistency
points (checkpoints). Maintaining back references in the
presence of snapshot creation, cloning or deletion incurs
no additional I/O overhead. We use database compaction
to reclaim space occupied by records referencing deleted
snapshots. The only time that we read data from disk
is during data compaction, which is an infrequent activ-
ity, and in response to queries for which the data is not
currently in memory.

We present a brief overview of write-anywhere file
systems in Section 2. Section 3 outlines the use cases that
motivate our work and describes some of the challenges
of handling them in a write-anywhere file system. We
describe our design in Section 4 and our implementation
in Section 5. We evaluate the maintenance overheads and
query performance in Section 6. We present related work
in Section 7, discuss future work in Section 8, and con-
clude in Section 9.

2 Background

Our work focuses specifically on tracking back refer-
ences in write-anywhere (or no-overwrite) file systems,
such as btrfs [5] or WAFL [12]. The terminology across
such file systems has not yet been standardized; in this
work we use WAFL terminology unless stated otherwise.

Write-anywhere file systems can be conceptually
modeled as trees [18]. Figure 1 depicts a file system tree
rooted at the volume root or a superblock. Inodes are the
immediate children of the root, and they in turn are par-
ents of indirect blocks and/or data blocks. Many modern
file systems also represent inodes, free space bitmaps,
and other meta-data as hidden files (not shown in the fig-
ure), so every allocated block with the exception of the
root has a parent inode.

Write-anywhere file systems never update a block in
place. When overwriting a file, they write the new file
data to newly allocated disk blocks, recursively updating
the appropriate pointers in the parent blocks. Figure 2
illustrates this process. This recursive chain of updates
is expensive if it occurs at every write, so the file system
accumulates updates in memory and applies them all at
once during a consistency point (CP or checkpoint). The
file system writes the root node last, ensuring that it rep-
resents a consistent set of data structures. In the case
of failure, the operating system is guaranteed to find a
consistent file system state with contents as of the last
CP. File systems that support journaling to stable storage

. . .

. . .

Root

Inode Inode Inode

I-Block I-Block

Data Data Data

Figure 1: File System as a Tree. The conceptual view of a
file system as a tree rooted at the volume root (superblock) [18],
which is a parent of all inodes. An inode is a parent of data
blocks and/or indirect blocks.

Root

Inode 1 Inode 2

I-Block 1

Data 2Data 1

I-Block 2

Root’

Inode 2’

Data 2’

I-Block 2’

Figure 2: Write-Anywhere file system maintenance. In
write-anywhere file systems, block updates generate new block
copies. For example, upon updating the block “Data 2”, the file
system writes the new data to a new block and then recursively
updates the blocks that point to it – all the way to the volume
root.

(disk or NVRAM) can then recover data written since the
last checkpoint by replaying the log.

Write-anywhere file systems can capture snapshots,
point-in-time copies of previous file system states, by
preserving the file system images from past consistency
points. These snapshots are space efficient; the only dif-
ferences between a snapshot and the live file system are
the blocks that have changed since the snapshot copy was
created. In essence, a write-anywhere allocation policy
implements copy-on-write as a side effect of its normal
operation.

Many systems preserve a limited number of the most
recent consistency points, promoting some to hourly,
daily, weekly, etc. snapshots. An asynchronous process
typically reclaims space by deleting old CPs, reclaiming
blocks whose only references were from deleted CPs.
Several file systems, such as WAFL and ZFS, can cre-
ate writable clones of snapshots, which are useful es-
pecially in development (such as creation of a writable
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ver. 1 ver. 2 ver. 3 ver. 4ver. 0

Line 0

Line 1

Line 2

Figure 3: Snapshot Lines. The tuple (line, version), where
version is a global CP number, uniquely identifies a snapshot
or consistency point. Taking a consistency point creates a new
version of the latest snapshot within each line, while creating a
writable clone of an existing snapshot starts a new line.

duplicate for testing of a production database) and virtu-
alization [9].

It is helpful to conceptualize a set of snapshots and
consistency points in terms of lines as illustrated in Fig-
ure 3. A time-ordered set of snapshots of a file system
forms a single line, while creation of a writable clone
starts a new line. In this model, a (line ID, version) pair
uniquely identifies a snapshot or a consistency point. In
the rest of the paper, we use the global consistency point
number during which a snapshot or consistency point
was created as its version number.

The use of copy-on-write to implement snapshots and
clones means that a single physical block may belong
to multiple file system trees and have many meta-data
blocks pointing to it. In Figure 2, for example, two dif-
ferent indirect blocks, I-Block 2 and I-Block 2’, refer-
ence the block Data 1. Block-level deduplication [7, 17]
can further increase the number of pointers to a block by
allowing files containing identical data blocks to share
a single on-disk copy of the block. This block sharing
presents a challenge for file system management opera-
tions, such as defragmentation or data migration, that re-
organize blocks on disk. If the file system moves a block,
it will need to find and update all of the pointers to that
block.

3 Use Cases

The goal of Backlog is to maintain meta-data that facil-
itates the dynamic movement and reorganization of data
in write-anywhere file systems. We envision two ma-
jor cases for internal data reorganization in a file system.
The first is support for bulk data migration. This is useful
when we need to move all of the data off of a device (or
a portion of a device), such as when shrinking a volume
or replacing hardware. The challenge here for traditional
file system designs is translating from the physical block
addresses we are moving to the files referencing those
blocks so we can update their block pointers. Ext3, for

example, can do this only by traversing the entire file sys-
tem tree searching for block pointers that fall in the target
range [2]. In a large file system, the I/O required for this
brute-force approach is prohibitive.

Our second use case is the dynamic reorganization
of on-disk data. This is traditionally thought of as
defragmentation—reallocating files on-disk to achieve
contiguous layout. We consider this use case more
broadly to include tasks such as free space coalescing
(to create contiguous expanses of free blocks for the effi-
cient layout of new files) and the migration of individual
files between different classes of storage in a file system.

To support these data movement functions in write-
anywhere file systems, we must take into account the
block sharing that emerges from features such as snap-
shots and clones, as well as from the deduplication of
identical data blocks [7, 17]. This block sharing makes
defragmentation both more important and more chal-
lenging than in traditional file system designs. Fragmen-
tation is a natural consequence of block sharing; two files
that share a subset of their blocks cannot both have an
ideal sequential layout. And when we move a shared
block during defragmentation, we face the challenge of
finding and updating pointers in multiple files.

Consider a basic defragmentation scenario where we
are trying to reallocate the blocks of a single file. This
is simple to handle. We find the file’s blocks by reading
the indirect block tree for the file. Then we move the
blocks to a new, contiguous, on-disk location, updating
the pointer to each block as we move it.

But things are more complicated if we need to defrag-
ment two files that share one or more blocks, a case that
might arise when multiple virtual machine images are
cloned from a single master image. If we defragment
the files one at a time, as described above, the shared
blocks will ping-pong back and forth between the files
as we defragment one and then the other. A better ap-
proach is to make reallocation decisions that are aware
of the sharing relationship. There are multiple ways we
might do this. We could select the most important file,
and only optimize its layout. Or we could decide that
performance is more important than space savings and
make duplicate copies of the shared blocks to allow se-
quential layout for all of the files that use them. Or we
might apply multi-dimensional layout techniques [20] to
achieve near-optimal layouts for both files while still pre-
serving block sharing.

The common theme in all of these approaches to lay-
out optimization is that when we defragment a file, we
must determine its new layout in the context of the other
files with which it shares blocks. Thus we have sought
a technique that will allow us to easily map physical
blocks to the files that use them, while imposing minimal
performance impact on common file system operations.
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Our solution is to introduce and maintain back reference
meta-data to explicitly track all of the logical owners of
each physical data block.

4 Log-Structured Back References

Back references are updated significantly more fre-
quently than they are queried; they must be updated on
every block allocation, deallocation, or reallocation. It is
crucial that they impose only a small performance over-
head that does not increase with the age of the file sys-
tem. Fortunately, it is not a requirement that the meta-
data be space efficient, since disk is relatively inexpen-
sive.

In this section, we present Log-Structured Back Ref-
erences (Backlog). We present our design in two parts.
First, we present the conceptual design, which provides
a simple model of back references and their use in query-
ing. We then present a design that achieves the capabili-
ties of the conceptual design efficiently.

4.1 Conceptual Design
A naı̈ve approach to maintaining back references re-
quires that we write a back reference record for every
block at every consistency point. Such an approach
would be prohibitively expensive both in terms of disk
usage and performance overhead. Using the observation
that a given block and its back references may remain un-
changed for many consistency points, we improve upon
this naı̈ve representation by maintaining back references
over ranges of CPs. We represent every such back refer-
ence as a record with the following fields:

• block: The physical block number
• inode: The inode number that references the block
• offset: The offset within the inode
• line: The line of snapshots that contains the inode
• from: The global CP number (time epoch) from

which this record is valid (i.e., when the reference
was allocated to the inode)

• to: The global CP number until which the record
is valid (exclusive) or ∞ if the record is still alive

For example, the following table describes two blocks
owned by inode 2, created at time 4 and truncated to one
block at time 7:

block inode offset line from to
100 2 0 0 4 ∞
101 2 1 0 4 7

Although we present this representation as operating
at the level of blocks, it can be extended to include a
length field to operate on extents.

Let us now consider how a table of these records, in-
dexed by physical block number, lets us answer the sort
of query we encounter in file system maintenance. Imag-
ine that we have previously run a deduplication process
and found that many files contain a block of all 0’s. We
stored one copy of that block on disk and now have mul-
tiple inodes referencing that block. Now, let’s assume
that we wish to move the physical location of that block
of 0’s in order to shrink the size of the volume on which
it lives. First we need to identify all the files that ref-
erence this block, so that when we relocate the block,
we can update their meta-data to reference the new loca-
tion. Thus, we wish to query the back references to an-
swer the question, “Tell me all the objects containing this
block.” More generally, we may want to ask this query
for a range of physical blocks. Such queries translate
easily into indexed lookups on the structure described
above. We use the physical block number as an index to
locate all the records for the given physical block num-
ber. Those records identify all the objects that reference
the block and all versions in which those blocks are valid.

Unfortunately, this representation, while elegantly
simple, would perform abysmally. Consider what is re-
quired for common operations. Every block deallocation
requires replacing the ∞ in the to field with the current
CP number, translating into a read-modify-write on this
table. Block allocation requires creating a new record,
translating into an insert into the table. Block realloca-
tion requires both a deallocation and an allocation, and
thus a read-modify-write and an insert. We ran experi-
ments with this approach and found that the file system
slowed down to a crawl after only a few hundred con-
sistency points. Providing back references with accept-
able overhead during normal operation requires a feasi-
ble design that efficiently realizes the conceptual model
described in this section.

4.2 Feasible Design

Observe that records in the conceptual table described
in Section 4.1 are of two types. Complete records refer
to blocks that are no longer part of the live file system;
they exist only in snapshots. Such blocks are identified
by having to < ∞. Incomplete records are part of the
live file system and always have to = ∞. Our actual de-
sign maintains two separate tables, From and To. Both
tables contain the first four columns of the conceptual ta-
ble (block, inode, offset, and line). The From
table also contains the from column, and the To table
contains the to column. Incomplete records exist only
in the From table, while complete records appear in both
tables.

On a block allocation, regardless of whether the block
is newly allocated or reallocated, we insert the corre-
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sponding entry into the From table with the from field
set to the current global CP number, creating an incom-
plete record. When a reference is removed, we insert
the appropriate entry into the To table, completing the
record. We buffer new records in memory, committing
them to disk at the end of the current CP, which guar-
antees that all entries with the current global CP number
are present in memory. This facilitates pruning records
where from = to, which refer to block references that
were added and removed within the same CP.

For example, the Conceptual table from the previous
subsection (describing the two blocks of inode 2) is bro-
ken down as follows:

From:
block inode offset line from
100 2 0 0 4
101 2 1 0 4

To:
block inode offset line to
101 2 1 0 7

The record for block 101 is complete (has both From
and To entries), while the record for 100 is incomplete
(the block is currently allocated).

This design naturally handles block sharing arising
from deduplication. When the file system detects that a
newly written block is a duplicate of an existing on-disk
block, it adds a pointer to that block and creates an entry
in the From table corresponding to the new reference.

4.2.1 Joining the Tables

The conceptual table on which we want to query is the
outer join of the From and To tables. A tuple F ∈ From
joins with a tuple T ∈ To that has the same first four
fields and that has the smallest value of T.to such that
F.from < T.to. If there is a From entry without a
matching To entry (i.e., a live, incomplete record), we
outer-join it with an implicitly-present tuple T ∈ To with
T.to =∞.

For example, assume that a file with inode 4 was cre-
ated at time 10 with one block and then truncated at time
12. Then, the same block was assigned to the file at time
16, and the file was removed at time 20. Later on, the
same block was allocated to a different file at time 30.
These operations produce the following records:

From:

block inode offset line from
103 4 0 0 10
103 4 0 0 16
103 5 2 0 30

To:
block inode offset line to
103 4 0 0 12
103 4 0 0 20

Observe that the first From and the first To record

form a logical pair describing a single interval during
which the block was allocated to inode 4. To reconstruct
the history of this block allocation, a record from = 10
has to join with to = 12. Similarly, the second From
record should join with the second To record. The third
From entry does not have a corresponding To entry, so
it joins with an implicit entry with to =∞.

The result of this outer join is the Conceptual view.
Every tuple C ∈ Conceptual has both from and to
fields, which together represent a range of global CP
numbers within the given snapshot line, during which
the specified block is referenced by the given inode
from the given file offset. The range might include
deleted consistency points or snapshots, so we must ap-
ply a mask of the set of valid versions before returning
query results.

Coming back to our previous example, performing an
outer join on these tables produces:

block inode offset line from to
103 4 0 0 10 12
103 4 0 0 16 20
103 5 2 0 30 ∞

This design is feasible until we introduce writable
clones. In the rest of this section, we explain how we
have to modify the conceptual view to address them.
Then, in Section 5, we discuss how we realize this de-
sign efficiently.

4.2.2 Representing Writable Clones

Writable clones pose a challenge in realizing the concep-
tual design. Consider a snapshot (l, v), where l is the line
and v is the version or CP. Naı̈vely creating a writable
clone (l, v) requires that we duplicate all back refer-
ences that include (l, v) (that is, C.line = l ∧ C.from ≤
v < C.to, where C ∈ Conceptual), updating the line
field to l and the from and to fields to represent all
versions (range 0 −∞). Using this technique, the con-
ceptual table would continue to be the result of the out-
erjoin of the From and To tables, and we could express
queries directly on the conceptual table. Unfortunately,
this mass duplication is prohibitively expensive. Thus,
our actual design cannot simply rely on the conceptual
table. Instead we implicitly represent writable clones in
the database using structural inheritance [6], a technique
akin to copy-on-write. This avoids the massive duplica-
tion in the naı̈ve approach.

The implicit representation assumes that every block
of (l, v) is present in all subsequent versions of l, unless
explicitly overridden. When we modify a block, b, in a
new writable clone, we do two things: First, we declare
the end of b’s lifetime by writing an entry in the To table
recording the current CP. Second, we record the alloca-
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tion of the new block b (a copy-on-write of b) by adding
an entry into the From table.

For example, if the old block b = 103 was originally
allocated at time 30 in line l = 0 and was replaced by a
new block b = 107 at time 43 in line l = 1, the system
produces the following records:

From:
block inode offset line from
103 5 2 0 30
107 5 2 1 43

To:
block inode offset line to
103 5 2 1 43

The entry in the To table overrides the inheritance
from the previous snapshot; however, notice that this new
To entry now has no element in the From table with
which to join, since no entry in the From table exists
with the line l = 1. We join such entries with an im-
plicit entry in the From table with from = 0. With the
introduction of structural inheritance and implicit records
in the From table, our joined table no longer matches
our conceptual table. To distinguish the conceptual table
from the actual result of the join, we call the join result
the Combined table.

Summarizing, a back reference record C ∈ Combined
of (l, v) is implicitly present in all versions of l, un-
less there is an overriding record C ∈ Combined
with C.block = C.block ∧ C.inode =
C.inode ∧ C.offset = C.offset ∧ C.line =
l ∧ C.from = 0. If such a C record exists, then it
defines the versions of l for which the back reference is
valid (i.e., from C.from to C.to). The file system con-
tinues to maintain back references as usual by inserting
the appropriate From and To records in response to al-
location, deallocation and reallocation operations.

While the Combined table avoids the massive copy
when creating writable clones, query execution becomes
a bit more complicated. After extracting initial result
from the Combined table, we must iteratively expand
those results as follows. Let Initial be the initial re-
sult extracted from Combined containing all records that
correspond to blocks b0, . . . , bn. If any of the blocks bi
has one or more override records, they are all guaranteed
to be in this initial result. We then initialize the query
Result to contain all records in Initial and proceed
as follows. For every record R ∈ Result that refer-
ences a snapshot (l, v) that was cloned to produce (l, v),
we check for the existence of a corresponding override
record C ∈ Initial with C.line = l. If no such
record exists, we explicitly add records C.line ← l,
C.from ← 0 and C.to ← ∞ to Result. This pro-
cess repeats recursively until it fails to insert additional
records. Finally, when the result is fully expanded we
mask the ranges to remove references to deleted snap-

shots as described in Section 4.2.1.
This approach requires that we never delete the back

references for a cloned snapshot. Consequently, snapshot
deletion checks whether the snapshot has been cloned,
and if it has, it adds the snapshot ID to the list of zombies,
ensuring that its back references are not purged during
maintenance. The file system is then free to proceed with
snapshot deletion. Periodically we examine the list of
zombies and drop snapshot IDs that have no remaining
descendants (clones).

5 Implementation

With the feasible design in hand, we now turn towards
the problem of efficiently realizing the design. First
we discuss our implementation strategy and then discuss
our on-disk data storage (section 5.1). We then proceed
to discuss database compaction and maintenance (sec-
tion 5.2), partitioning the tables (section 5.3), and recov-
ering the tables after system failure (section 5.4). We im-
plemented and evaluated the system in fsim, our custom
file system simulator, and then replaced the native back
reference support in btrfs with Backlog.

The implementation in fsim allows us to study the
new feature in isolation from the rest of the file system.
Thus, we fully realize the implementation of the back
reference system, but embed it in a simulated file sys-
tem rather than a real file system, allowing us to consider
a broad range of file systems rather than a single spe-
cific implementation. Fsim simulates a write-anywhere
file system with writable snapshots and deduplication. It
exports an interface for creating, deleting, and writing
to files, and an interface for managing snapshots, which
are controlled either by a stochastic workload generator
or an NFS trace player. It stores all file system meta-
data in main memory, but it does not explicitly store any
data blocks. It stores only the back reference meta-data
on disk. Fsim also provides two parameters to con-
figure deduplication emulation. The first specifies the
percentage of newly created blocks that duplicate exist-
ing blocks. The second specifies the distribution of how
those duplicate blocks are shared.

We implement back references as a set of callback
functions on the following events: adding a block ref-
erence, removing a block reference, and taking a consis-
tency point. The first two callbacks accumulate updates
in main memory, while the consistency point callback
writes the updates to stable storage, as described in the
next section. We implement the equivalent of a user-level
process to support database maintenance and query. We
verify the correctness of our implementation by a util-
ity program that walks the entire file system tree, recon-
structs the back references, and then compares them with
the database produced by our algorithm.
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5.1 Data Storage and Maintenance

We store the From and To tables as well as the pre-
computed Combined table (if available) in a custom
row-oriented database optimized for efficient insert and
query. We use a variant of LSM-Trees [16] to hold the
tables. The fundamental property of this structure is that
it separates an in-memory write store (WS or C0 in the
LSM-Tree terminology) and an on-disk read store (RS
or C1).

We accumulate updates to each table in its respec-
tive WS, an in-memory balanced tree. Our fsim im-
plementation uses a Berkeley DB 4.7.25 in-memory B-
tree database [15], while our btrfs implementation uses
Linux red/black trees, but any efficient indexing structure
would work. During consistency point creation, we write
the contents of the WS into the RS, an on-disk, densely
packed B-tree, which uses our own LSM-Tree/Stepped-
Merge implementation, described in the next section.

In the original LSM-Tree design, the system selects
parts of the WS to write to disk and merges them with the
corresponding parts of the RS (indiscriminately merging
all nodes of the WS is too inefficient). We cannot use this
approach, because we require that a consistency point
has all accumulated updates persistent on disk. Our ap-
proach is thus more like the Stepped-Merge variant [13],
in which the entire WS is written to a new RS run file,
resulting in one RS file per consistency point. These RS
files are called the Level 0 runs, which are periodically
merged into Level 1 runs, and multiple Level 1 runs are
merged to produce Level 2 runs, etc., until we get to a
large Level N file, where N is fixed. The Stepped-Merge
Method uses these intermediate levels to ensure that the
sizes of the RS files are manageable. For the back refer-
ences use case, we found it more practical to retain the
Level 0 runs until we run data compaction (described in
Section 5.2), at which point, we merge all existing Level
0 runs into a single RS (analogous to the Stepped-Merge
Level N ) and then begin accumulating new Level 0 files
at subsequent CPs. We ensure that the individual files
are of a manageable size using horizontal partitioning as
described in Section 5.3.

Writing Level 0 RS files is efficient, since the records
are already sorted in memory, which allows us to con-
struct the compact B-tree bottom-up: The data records
are packed densely into pages in the order they appear
in the WS, creating a Leaf file. We then create an Inter-
nal 1 (I1) file, containing densely packed internal nodes
containing references to each block in the Leaf file. We
continue building I files until we have an I file with only
a single block (the root of the B-tree). As we write the
Leaf file, we incrementally build the I1 file and itera-
tively, as we write I file, In, to disk, we incrementally
build the I(n + 1) file in memory, so that writing the I

files requires no disk reads.
Queries specify a block or a range of blocks, and

those blocks may be present in only some of the Level 0
RS files that accumulate between data compaction runs.
To avoid many unnecessary accesses, the query system
maintains a Bloom filter [3] on the RS files that is used
to determine which, if any, RS files must be accessed. If
the blocks are in the RS, then we position an iterator in
the Leaf file on the first block in the query result and re-
trieve successive records until we have retrieved all the
blocks necessary to satisfy the query.

The Bloom filter uses four hash functions, and its de-
fault size for From and To RS files depends on the max-
imum number of operations in a CP. We use 32 KB for
32,000 operations (a typical setting for WAFL), which
results in an expected false positive rate of up to 2.4%. If
an RS contains a smaller number of records, we appropri-
ately shrink its Bloom filter to save memory. This opera-
tion is efficient, since a Bloom filter can be halved in size
in linear time [4]. The default filter size is expandable
up to 1 MB for a Combined read store. False positives
for the latter filter grow with the size of the file system,
but this is not a problem, because the Combined RS is
involved in almost all queries anyway.

Each time that we remove a block reference, we prune
in real time by checking whether the reference was both
created and removed during the same interval between
two consistency points. If it was, we avoiding creating
records in the Combined table where from = to. If such
a record exists in From, our buffering approach guaran-
tees that the record resides in the in-memory WS from
which it can be easily removed. Conversely, upon block
reference addition, we check the in-memory WS for the
existence of a corresponding To entry with the same CP
number and proactively prune those if they exist (thus a
reference that exists between CPs 3 and 4 and is then re-
allocated in CP 4 will be represented with a single entry
in Combined with a lifespan beginning at 3 and contin-
uing to the present). We implement the WS for all the
tables as balanced trees sorted first by block, inode,
offset, and line, and then by the from and/or to
fields, so that it is efficient to perform this proactive prun-
ing.

During normal operation, there is no need to delete
tuples from the RS. The masking procedure described in
Section 4.2.1 addresses blocks deleted due to snapshot
removal.

During maintenance operations that relocate blocks,
e.g., defragmentation or volume shrinking, it becomes
necessary to remove blocks from the RS. Rather than
modifying the RS directly, we borrow an idea from the
C-store, column-oriented data manager [22] and retain a
deletion vector, containing the set of entries that should
not appear in the RS. We store this vector as a B-tree in-
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Figure 4: Database Maintenance. This query plan merges
all on-disk RS’s, represented by the “From N”, precomputes
the Combined table, which is the join of the From and To

tables, and purges old records. Incomplete records reside in the
on-disk From table.

dex, which is usually small enough to be entirely cached
in memory. The query engine then filters records read
from the RS according to the deletion vector in a man-
ner that is completely opaque to query processing logic.
If the deletion vector becomes sufficiently large, the sys-
tem can optionally write a new copy of the RS with the
deleted tuples removed.

5.2 Database Maintenance

The system periodically compacts the back reference in-
dexes. This compaction merges the existing Level 0
RS’s, precomputes the Combined table by joining the
From and To tables, and purges records that refer to
deleted checkpoints. Merging RS files is efficient, be-
cause all the tuples are sorted identically.

After compaction, we are left with one RS containing
the complete records in the Combined table and one
RS containing the incomplete records in the From table.
Figure 4 depicts this compaction process.

5.3 Horizontal Partitioning

We partition the RS files by block number to ensure that
each of the files is of a manageable size. We main-
tain a single WS per table, but then during a check-
point, we write the contents of the WS to separate par-
titions, and compaction processes each partition sepa-
rately. Note that this arrangement provides the com-
paction process the option of selectively compacting dif-
ferent partitions. In our current implementation, each
partition corresponds to a fixed sequential range of block
numbers.

There are several interesting alternatives for partition-
ing that we plan to explore in future work. We could start
with a single partition and then use a threshold-based
scheme, creating a new partition when an existing par-
tition exceeds the threshold. A different approach that
might better exploit parallelism would be to use hashed
partitioning.

Partitioning can also allow us to exploit the paral-
lelism found in today’s storage servers: different par-
titions could reside on different disks or RAID groups
and/or could be processed by different CPU cores in par-
allel.

5.4 Recovery
This back reference design depends on the write-
anywhere nature of the file system for its consistency.
At each consistency point, we write the WS’s to disk and
do not consider the CP complete until all the resulting
RS’s are safely on disk. When the system restarts after a
failure, it is thus guaranteed that it finds a consistent file
system with consistent back references at a state as of the
last complete CP. If the file system has a journal, it can
rebuild the WS’s together with the other parts of the file
system state as the system replays the journal.

6 Evaluation

Our goal is that back reference maintenance not interfere
with normal file-system processing. Thus, maintaining
the back reference database should have minimal over-
head that remains stable over time. In addition, we want
to confirm that query time is sufficiently low so that util-
ities such as volume shrinking can use them freely. Fi-
nally, although space overhead is not of primary concern,
we want to ensure that we do not consume excessive disk
space.

We evaluated our algorithm first on a syntheti-
cally generated workload that submits write requests as
rapidly as possible. We then proceeded to evaluate our
system using NFS traces; we present results using part of
the EECS03 data set [10]. Next, we report performance
for an implementation of Backlog ported into btrfs. Fi-
nally, we present query performance results.

6.1 Experimental Setup
We ran the first part of our evaluation in fsim. We
configured the system to be representative of a common
write-anywhere file system, WAFL [12]. Our simula-
tion used 4 KB blocks and took a consistency point af-
ter every 32,000 block writes or 10 seconds, whichever
came first (a common configuration of WAFL). We con-
figured the deduplication parameters based on measure-
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Figure 5: Fsim Synthetic Workload Overhead during Normal Operation. I/O overhead due to maintaining back references
normalized per persistent block operations (adding or removing a reference with effects that survive at least one CP) and the time
overhead normalized per block operation.

ments from a few file servers at NetApp. We treat 10%
of incoming blocks as duplicates, resulting in a file sys-
tem where approximately 75 – 78% of the blocks have
reference counts of 1, 18% have reference counts of 2,
5% have reference counts of 3, etc. Our file system kept
four hourly and four nightly snapshots.

We ran our simulations on a server with two dual-core
Intel Xeon 3.0 GHz CPUs, 10 GB of RAM, running
Linux 2.6.28. We stored the back reference meta-data
from fsim on a 15K RPM Fujitsu MAX3073RC SAS
drive that provides 60 MB/s of write throughput. For the
micro-benchmarks, we used a 32 MB cache in addition to
the memory consumed by the write stores and the Bloom
filters.

We carried out the second part of our evaluation in a
modified version of btrfs, in which we replaced the orig-
inal implementation of back references by Backlog. As
btrfs uses extent-based allocation, we added a length
field to both the From and To described in Section 4.1.
All fields in back reference records are 64-bit. The re-
sulting From and To tuples are 40 bytes each, and a
Combined tuple is 48 bytes long. All btrfs workloads
were executed on an Intel Pentium 4 3.0 GHz, 512 MB
RAM, running Linux 2.6.31.

6.2 Overhead
We evaluated the overhead of our algorithm in fsim
using both synthetically generated workloads and NFS
traces. We used the former to understand how our algo-
rithm behaves under high system load and the latter to
study lower, more realistic loads.

6.2.1 Synthetic Workload

We experimented with a number of different configu-
rations and found that all of them produced similar re-
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sults, so we selected one representative workload and
used that throughout the rest of this section. We config-
ured our workload generator to perform at least 32,000
block writes between two consistency points, which cor-
responds to the periods of high load on real systems. We
set the rates of file create, delete, and update operations
to mirror the rates observed in the EECS03 trace [10].
90% of our files are small, reflecting what we observe on
file systems containing mostly home directories of de-
velopers – which is similar to the file system from which
the EECS03 trace was gathered. We also introduced cre-
ation and deletion of writable clones at a rate of approxi-
mately 7 clones per 100 CP’s, although the original NFS
trace did not have any analogous behavior. This is sub-
stantially more clone activity than we would expect in a
home-directory workload such as EECS03, so it gives us
a pessimal view of the overhead clones impose.

Figure 5 shows how the overhead of maintaining back
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references changes over time, ignoring the cost of peri-
odic database maintenance. The average cost of a block
operation is 0.010 block writes or 8-9 µs per block op-
eration, regardless of whether the operation is adding or
removing a reference. A single copy-on-write operation
(involving both adding and removing a block from an in-
ode) adds on average 0.020 disk writes and at most 18
µs. This amounts to at most 628 additional writes and
0.5–0.6 seconds per CP. More than 95% of this overhead
is CPU time, most of which is spent updating the write
store. Most importantly, the overhead is stable over time,
and the I/O cost is constant even as the total data on the
file system increases.

Figure 6 illustrates meta-data size evolution as a per-
centage of the total physical data size for two frequencies
of maintenance (every 100 or 200 CPs) and for no main-
tenance at all. The space overhead after maintenance
drops consistently to 2.5%–3.5% of the total data size,
and this low point does not increase over time.

The database maintenance tool processes the original
database at the rate 7.7 – 10.4 MB/s. In our experi-
ments, compaction reduced the database size by 30 –
50%. The exact percentage depends on the fraction of
records that could be purged, which can be quite high if
the file system deletes an entire snapshot line as we did
in this benchmark.

6.2.2 NFS Traces

We used the first 16 days of the EECS03 trace [10],
which captures research activity in home directories of a
university computer science department during February
and March of 2003. This is a write-rich workload, with
one write for every two read operations. Thus, it places
more load on Backlog than workloads with higher read-
/write ratios. We ran the workload with the default con-
figuration of 10 seconds between two consistency points.

Figure 7 shows how the overhead changes over time
during the normal file system operation, omitting the cost
of database maintenance. The time overhead is usually
between 8 and 9 µs, which is what we saw for the syn-
thetically generated workload, and as we saw there, the
overhead remains stable over time. Unlike the overhead
observed with the synthetic workload, this workload ex-
hibits occasional spikes and one period where the over-
head dips (between hours 200 and 250).

The spikes align with periods of low system load,
where the constant part of the CP overhead is amortized
across a smaller number of block operations, making the
per-block overhead greater. We do not consider this be-
havior to pose any problem, since the system is under
low load during these spikes and thus can better absorb
the temporarily increased overhead.

The period of lower time overhead aligns with periods
of high system load with a large proportion of setattr
commands, most of which are used for file truncation.
During this period, we found that only a small fraction
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Benchmark Base Original Backlog Overhead
Creation of a 4 KB file (2048 ops. per CP) 0.89 ms 0.91 ms 0.96 ms 7.9%
Creation of a 64 KB file (2048 ops. per CP) 2.10 ms 2.11 ms 2.11 ms 1.9%
Deletion of a 4 KB file (2048 ops. per CP) 0.57 ms 0.59 ms 0.63 ms 11.2%
Creation of a 4 KB file (8192 ops. per CP) 0.85 ms 0.87 ms 0.87 ms 2.0%
Creation of a 64 KB file (8192 ops. per CP) 1.91 ms 1.92 ms 1.92 ms 0.6%
Deletion of a 4 KB file (8192 ops. per CP) 0.45 ms 0.46 ms 0.48 ms 7.1%
DBench CIFS workload, 4 users 19.59 MB/s 19.20 MB/s 19.19 MB/s 2.1%
FileBench /var/mail, 16 threads 852.04 ops/s 835.80 ops/s 836.70 ops/s 1.8%
PostMark 2050 ops/s 2032 ops/s 2020 ops/s 1.5%

Table 1: Btrfs Benchmarks. The Base column refers to a customized version of btrfs, from which we removed its original
implementation of back references. The Original column corresponds to the original btrfs back references, and the Backlog column
refers to our implementation. The Overhead column is the overhead of Backlog relative to the Base.

of the block operations survive past a consistency point.
Thus, the operations in this interval tend to cancel each
other out, resulting in smaller time overheads, because
we never materialize these references in the read store.

This workload exhibits I/O overhead of approximately
0.010 to 0.015 page writes per block operation with oc-
casional spikes, most (but not all) of which align with the
periods of low file system load.

Figure 8 shows how the space overhead evolves over
time for the NFS workload. The general growth pat-
tern follows that of the synthetically generated workload
with the exception that database maintenance frees less
space. This is expected, since unlike the synthetic work-
load, the NFS trace does not delete entire snapshot lines.
The space overhead after maintenance is between 6.1%
and 6.3%, and it does not increase over time. The exact
magnitude of the space overhead depends on the actual
workload, and it is in fact different from the synthetic
workload presented in Section 6.2.1. Each maintenance
operation completed in less than 25 seconds, which we
consider acceptable, given the elapsed time between in-
vocations (8 or 48 hours).

6.3 Performance in btrfs
We validated our simulation results by porting our imple-
mentation of Backlog to btrfs. Since btrfs natively sup-
ports back references, we had to remove the native im-
plementation, replacing it with our own. We present re-
sults for three btrfs configurations—the Base configura-
tion with no back reference support, the Original config-
uration with native btrfs back reference support, and the
Backlog configuration with our implementation. Com-
paring Backlog to the Base configuration shows the ab-
solute overhead for our back reference implementation.
Comparing Backlog to the Original configuration shows
the overhead of using a general purpose back reference
implementation rather than a customized implementation
that is more tightly coupled to the rest of the file system.

Table 1 summarizes the benchmarks we executed on
btrfs and the overheads Backlog imposes, relative to
baseline btrfs. We ran microbenchmarks of create,
delete, and clone operations and three application bench-
marks. The create microbenchmark creates a set of 4 KB
or 64 KB files in the file system’s root directory. Af-
ter recording the performance of the create microbench-
mark, we sync the files to disk. Then, the delete mi-
crobenchmark deletes the files just created. We run these
microbenchmarks in two different configurations. In the
first, we take CPs every 2048 operations, and in the sec-
ond, we take CP after 8192 operations. The choice of
8192 operations per CP is still rather conservative, con-
sidering that WAFL batches up to 32,000 operations. We
also report the case with 2048 operations per CP, which
corresponds to periods of a light server load as a point for
comparison (and we can thus tolerate higher overheads).
We executed each benchmark five times and report the
average execution time (including the time to perform
sync) divided by the total number of operations.

The first three lines in the table present microbench-
mark results of creating and deleting small 4 KB files,
and creating 64 KB files, taking a CP (btrfs transaction)
every 256 operations. The second three lines present re-
sults for the same microbenchmarks with an inter-CP in-
terval of 1024 operations. We show results for the three
btrfs configurations—Base, Original, and Backlog. In
general, the Backlog performance for writes is compara-
ble to that of the native btrfs implementation. For 8192
operations per CP, it is marginally slower on creates than
the file system with no back references (Base), but com-
parable to the original btrfs. Backlog is unfortunately
slower on deletes – 7% as compared to Base, but only
4.3% slower than the original btrfs. Most of this over-
head comes from updating the write-store.

The choice of 4 KB (one file system page) as our file
size targets the worst case scenario, in which only a small
number of pages are written in any given operation. The
overhead decreases to as little as 0.6% for the creation of
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Figure 9: Query Performance. The query performance as a factor of run length and the number of CP’s since the last maintenance
on a 1000 CP-long workload. The plots show data collected from the execution of 8,192 queries with different run lengths.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100  200  300  400  500  600  700  800  900  1000

Th
ro

ug
hp

ut
 (q

ue
rie

s 
pe

r s
ec

on
d)

Global CP number when the queries were evaluated

Runs of 1024
Runs of 2048
Runs of 4096
Runs of 8192

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 100  200  300  400  500  600  700  800  900  1000

Th
ro

ug
hp

ut
 (q

ue
rie

s 
pe

r s
ec

on
d)

Global CP number when the queries were evaluated

Runs of 1024
Runs of 2048
Runs of 4096
Runs of 8192
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a 64 KB file, because btrfs writes all of its data in one
extent. This generates only a single back reference, and
its cost is amortized over a larger number of block I/O
operations.

The final three lines in Table 1 present application
benchmark results: dbench [8], a CIFS file server work-
load; FileBench’s /var/mail [11] multi-threaded mail
server; and PostMark [14], a small file workload. We
executed each benchmark on a clean, freshly format-
ted volume. The application overheads are generally
lower (1.5% – 2.1%) than the worst-case microbench-
mark overheads (operating on 4 KB files) and in two
cases out of three comparable to the original btrfs.

Our btrfs implementation confirms the low overheads
predicted via simulation and also demonstrates that
Backlog achieves nearly the same performance as the
btrfs native implementation. This is a powerful result
as the btrfs implementation is tightly integrated with
the btrfs data structures, while Backlog is a general-
purpose solution that can be incorporated into any write-
anywhere file system.

6.4 Query Performance

We ran an assortment of queries against the back ref-
erence database, varying two key parameters, the se-
quentiality of the requests (expressed as the length of a
run) and the number of block operations applied to the
database since the last maintenance run. We implement
runs with length n by starting at a randomly selected al-
located block, b, and returning back references for b and
the next n − 1 allocated blocks. This holds the amount
of work in each test case constant; we always return n
back references, regardless of whether the area of the file
system we select is densely or sparsely allocated. It also
gives us conservative results, since it always returns data
for n back references. By returning the maximum pos-
sibly number of back references, we perform the maxi-
mum number of I/Os that could occur and thus report the
lowest query throughput that would be observed.

We cleared both our internal caches and all file sys-
tem caches before each set of queries, so the numbers we
present illustrate worst-case performance. We found the
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query performance in both the synthetic and NFS work-
loads to be similar, so we will present only the former for
brevity. Figure 9 summarizes the results.

We saw the best performance, 36,000 queries per sec-
ond, when performing highly sequential queries imme-
diately after database maintenance. As the time since
database maintenance increases, and as the queries be-
come more random, performance quickly drops. We
can process 290 single-back-reference queries per sec-
ond immediately after maintenance, but this drops to 43
– 197 as the interval since maintenance increases. We ex-
pect queries for large sorted runs to be the norm for main-
tenance operations such as defragmentation, indicating
that such utilities will experience the better throughput.
Likewise, it is reasonable practice to run database main-
tenance prior to starting a query intensive task. For ex-
ample, a tool that defragments a 100 MB region of a disk
would issue a sorted run of at most 100 MB / 4 KB =
25,600 queries, which would execute in less than a sec-
ond on a database immediately after maintenance. The
query runs for smaller-scale applications, such as file
defragmentation, would vary considerably – anywhere
from a few blocks per run on fragmented files to thou-
sands for the ones with a low degree of fragmentation.

Issuing queries in large sorted runs provides two ben-
efits. It increases the probability that two consecutive
queries can be satisfied from the same database page,
and it reduces the total seek distance between operations.
Queries on recently maintained database are more effi-
cient for for two reasons: First, a compacted database
occupies fewer RS files, so a query accesses fewer files.
Second, the maintenance process shrinks the database
size, producing better cache hit ratios.

Figure 10 shows the result of an experiment in which
we evaluated 8192 queries every 100 CP’s just before and
after the database maintenance operation, also scheduled
every 100 CP’s. The figure shows the improvement in the
query performance due to maintenance, but more impor-
tantly, it also shows that once the database size reaches
a certain point, query throughput levels off, even as the
database grows larger.

7 Related Work

Btrfs [2, 5] is the only file system of which we are aware
that currently supports back references. Its implementa-
tion is efficient, because it is integrated with the entire
file system’s meta-data management. Btrfs maintains a
single B-tree containing all meta-data objects.

A file extent back reference consists of the four fields:
the subvolume, the inode, the offset, and the number of
times the extent is referenced by the inode. Btrfs encap-
sulates all meta-data operations in transactions analogous
to WAFL consistency points. Therefore a btrfs transac-

tion ID is analogous to a WAFL CP number. Btrfs sup-
ports efficient cloning by omitting transaction ID’s from
back reference records, while Backlog uses ranges of
snapshot versions (the from and to fields) and struc-
tural inheritance. A naı̈ve copy-on-write of an inode in
btrfs would create an exact copy of the inode (with the
same inode ID), marked with a more recent transaction
ID. If the back reference records contain transaction IDs
(as in early btrfs designs), the file system would also have
to duplicate the back references of all of the extents ref-
erenced by the inode. By omitting the transaction ID,
a single back reference points to both the old and new
versions of the inode simultaneously. Therefore, btrfs
performs inode copy-on-write for free, in exchange for
query performance degradation, since the file system has
to perform additional I/O to determine transaction ID’s.
In contrast, Backlog enables free copy-on-write by op-
erating on ranges of global CP numbers and by using
structural inheritance, which do not sacrifice query per-
formance.

Btrfs accumulates updates to back references in an in-
memory balanced tree analogous to our write store. The
system inserts all the entries from the in-memory tree to
the on-disk tree during a transaction commit (a part of
a checkpoint processing). Btrfs stores most back refer-
ences directly inside the B-tree records that describe the
allocated extents, but on some occasions, it stores them
as separate items close to these extent allocation records.
This is different from our approach in which we store all
back references together, separately from block alloca-
tion bitmaps or records.

Perhaps the most significant difference between btrfs
back references and Backlog is that the btrfs approach is
deeply enmeshed in the file system design. The btrfs ap-
proach would not be possible without the existence of a
global meta-store. In contrast, the only assumption nec-
essary for our approach is the use of a write-anywhere
or no-overwrite file system. Thus, our approach is easily
portable to a broader class of file systems.

8 Future Work

The results presented in Section 6 provide compelling
evidence that our LSM-Tree based implementation of
back references is an efficient and viable approach. Our
next step is to explore different options for further reduc-
ing the time overheads, the implications and effects of
horizontal partitioning as described in Section 5.3, and
experiment with compression. Our tables of back ref-
erence records appear to be highly compressible, espe-
cially if we to compress them by columns [1]. Com-
pression will cost additional CPU cycles, which must be
carefully balanced against the expected improvements in
the space overhead.
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We plan to explore the use of back references, im-
plementing defragmentation and other functionality that
uses back reference meta-data to efficiently maintain and
improve the on-disk organization of data. Finally, we
are currently experimenting with using Backlog in an
update-in-place journaling file system.

9 Conclusion

As file systems are called upon to provide more sophis-
ticated maintenance, back references represent an im-
portant enabling technology. They facilitate hard-to-
implement features that involve block relocation, such as
shrinking a partition or fast defragmentation, and enable
us to do file system optimizations that involve reasoning
about block ownership, such as defragmentation of files
that share one or more blocks (Section 3).

We exploit several key aspects of this problem domain
to provide an efficient database-style implementation of
back references. By separately tracking when blocks
come into use (via the From table) and when they are
freed (via the To table) and exploiting the relationship
between writable clones and their parents (via structural
inheritance), we avoid the cost of updating per block
meta-data on each snapshot or clone creation or deletion.
LSM-trees provide an efficient mechanism for sequen-
tially writing back-reference data to storage. Finally, pe-
riodic background maintenance operations amortize the
cost of combining this data and removing stale entries.

In our prototype implementation we showed that we
can track back-references with a low constant overhead
of roughly 8-9 µs and 0.010 I/O writes per block opera-
tion and achieve query performance up to 36,000 queries
per second.
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Abstract

We present a study of the effects of disk and memory cor-

ruption on file system data integrity. Our analysis fo-

cuses on Sun’s ZFS, a modern commercial offering with

numerous reliability mechanisms. Through careful and

thorough fault injection, we show that ZFS is robust to

a wide range of disk faults. We further demonstrate that

ZFS is less resilient to memory corruption, which can

lead to corrupt data being returned to applications or

system crashes. Our analysis reveals the importance of

considering both memory and disk in the construction of

truly robust file and storage systems.

1 Introduction

One of the primary challenges faced by modern file sys-

tems is the preservation of data integrity despite the pres-

ence of imperfect components in the storage stack. Disk

media, firmware, controllers, and the buses and networks

that connect them all can corrupt data [4, 52, 54, 58];

higher-level storage software is thus responsible for both

detecting and recovering from the broad range of corrup-

tions that can (and do [7]) occur.

File and storage systems have evolved various tech-

niques to handle corruption. Different types of check-

sums can be used to detect when corruption occurs [9,

14, 49, 52], and redundancy, likely in mirrored or parity-

based form [43], can be applied to recover from it. While

such techniques are not foolproof [32], they clearly have

made file systems more robust to disk corruptions.

Unfortunately, the effects of memory corruption on

data integrity have been largely ignored in file system

design. Hardware-based memory corruption occurs as

both transient soft errors and repeatable hard errors due

to a variety of radiation mechanisms [11, 35, 62], and

recent studies have confirmed their presence in modern

systems [34, 41, 46]. Software can also cause memory

corruption; bugs can lead to “wild writes” into random

memory contents [18], thus polluting memory; studies

confirm the presence of software-induced memory cor-

ruptions in operating systems [1, 2, 3, 60].

The problem of memory corruption is critical for file

systems that cache a great deal of data in memory for

performance. Almost all modern file systems use a page

cache or buffer cache to store copies of on-disk data

and metadata in memory. Moreover, frequently-accessed

data and important metadata may be cached in memory

for long periods of time, making them more susceptible

to memory corruptions.

In this paper, we ask: how robust are modern file

systems to disk and memory corruptions? To answer

this query, we analyze a state-of-the-art file system, Sun

Microsystem’s ZFS, by performing fault injection tests

representative of realistic disk and memory corruptions.

We choose ZFS for our analysis because it is a modern

and important commercial file system with numerous ro-

bustness features, including end-to-end checksums, data

replication, and transactional updates; the result, accord-

ing to the designers, is “provable data integrity” [14].

In our analysis, we find that ZFS is indeed robust to a

wide range of disk corruptions, thus partially confirming

that many of its design goals have been met. However,

we also find that ZFS often fails to maintain data integrity

in the face of memory corruption. In many cases, ZFS is

either unable to detect the corruption, returns bad data to

the user, or simply crashes. We further find that many of

these cases could be avoided with simple techniques.

The contributions of this paper are:

• To our knowledge, the first study to empirically an-

alyze the reliability of ZFS.

• To our knowledge, the first study to analyze local

file system reliability techniques in the face of mem-

ory corruption.

• A novel holistic approach to analyzing both disk

and memory corruptions using carefully-controlled

fault-injection techniques.

• A simple framework to measure the likelihood of

different memory corruption failure scenarios.

• Results that demonstrate the importance of both

memory and disk in end-to-end data protection.

The rest of this paper is organized as follows. In Sec-

tion 2, we motivate our work by discussing the problem

of disk and memory corruption. In Section 3, we provide

some background on the reliability features of ZFS. Sec-

tion 4 and Section 5 present our analysis of data integrity

in ZFS with disk and memory corruptions. Section 6

gives an preliminary analysis of the probabilities of dif-

ferent failure scenarios in ZFS due to memory errors. In

Section 7, we present initial results of the data integrity

analysis in ext2 with memory corruptions. Section 8 dis-

cusses related work and Section 9 concludes our work.
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2 Motivation

This section provides the motivation for our study by de-

scribing how potent the problem of disk and memory cor-

ruptions is to file system data integrity. Here, we discuss

why such corruptions happen, how frequently they oc-

cur, and how systems try to deal with them. We discuss

disk and memory corruptions separately.

2.1 Disk corruptions

We define disk corruption as a state when any data ac-

cessed from disk does not have the expected contents due

to some problem in the storage stack. This is different

from latent sector errors, not-ready-condition errors and

recovered errors (discussed in [6]) in disk drives, where

there is an explicit notification from the drive about the

error condition.

2.1.1 Why they happen

Disk corruptions happen due to many reasons originat-

ing at different layers of the storage stack. Errors in the

magnetic media lead to the problem of “bit-rot” where

the magnetic properties of a single bit or few bits are

damaged. Spikes in power, erratic arm movements, and

scratches in media can also cause corruptions in disk

blocks [4, 47, 54]. On-disk ECC catches many (but not

all) of these corruptions.

Errors are also induced due to bugs in complex drive

firmware (modern drives contain hundreds of thousands

of lines of firmware code [44]). Some reported firmware

problems include a misdirected write where the firmware

accidentally writes to the wrong location [58] or a lost

write (or phantom write) where the disk reports a write

as completed when in fact it never reaches the disk [52].

Bus controllers have also been found to incorrectly report

disk requests as complete or to corrupt data [24, 57].

Finally, software bugs in operating systems are also

potential sources of corruption. Buggy device drivers can

issue disk requests with bad parameters or data [20, 22,

53]. Software bugs in the file system itself can cause

incorrect data to be written to disk.

2.1.2 How frequently they happen

Disk corruptions are prevalent across a broad range

of modern drives. In a recent study of 1.53 million

disk drives over 41 months [7], Bairavasundaram et al.

show that more than 400,000 blocks had checksum mis-

matches, 8% of which were discovered during RAID re-

construction, creating the possibility of real data loss.

They also found that nearline disks develop checksum

mismatches an order of magnitude more often than enter-

prise class disk drives. In addition, there is much anecdo-

tal evidence of corruption in storage stacks [9, 52, 58].

2.1.3 How to handle them

Systems use a number of techniques to handle disk cor-

ruptions. We discuss some of the most widely used tech-

niques along with their limitations.

Checksums: Checksums are block hashes computed

with a collision-resistant hash function and are used to

verify data integrity. For on-disk data integrity, check-

sums are stored or updated on disk during write opera-

tions and read back to verify the block or sector contents

during reads.

Many storage systems have used checksums for on-

disk data integrity, such as Tandem NonStop [9] and Net-

App Data ONTAP [52]. Similar checksumming tech-

niques have also been used in file systems [14, 42].

However, Krioukov et al. show that checksumming, if

not carefully integrated into the storage system, can fail

to protect against complex failures such as lost writes and

misdirected writes [32]. Further, checksumming does

not protect against corruptions that happen due to bugs

in software, typically in large code bases [20, 61].

Redundancy: Redundancy in on-disk structures also

helps to detect and, in some cases, recover from disk cor-

ruptions. For example, some B-Tree file systems such as

ReiserFS [15] store page-level information in each inter-

nal page in the B-Tree. Thus, a corrupt pointer that does

not connect pages in adjacent levels is caught by check-

ing this page-level information. Similarly, ext2 [16] and

ext3 [56] use redundant copies of superblock and group

descriptors to recover from corruptions.

However, it has been shown that many of these file

systems still sometimes fail to detect corruptions, leading

to greater problems [44]. Further, Gunawi et al. show

instances where ext2/ext3 file system checkers fail to use

available redundant information for recovery [26].

RAID storage: Another popular technique is to use a

RAID storage system [43] underneath the file system.

However, RAID is designed to tolerate the loss of a cer-

tain number of disks or blocks (e.g., RAID-5 tolerates

one, and RAID-6 two) and it may not be possible with

RAID alone to accurately identify the block (in a stripe)

that is corrupted. Secondly, some RAID systems have

been shown to have flaws where a single block loss leads

to data loss or silent corruption [32]. Finally, not all sys-

tems incorporate multiple disks, which limits the appli-

cability of RAID.

2.2 Memory corruptions

We define memory corruption as the state when the con-

tents accessed from the main memory have one or more

bits changed from the expected value (from a previous

store to the location). From the software perspective, it

may not be possible to distinguish memory corruption

from disk corruption on a read of a disk block.
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2.2.1 Why they happen

Errors in the memory chip are one source of memory cor-

ruptions. Memory errors can be classified as soft errors

which randomly flip bits in RAM without leaving any

permanent damage, and hard errors which corrupt bits

in a repeatable manner due to physical damage.

Researchers have discovered radiation mechanisms

that cause errors in semiconductor devices at terrestrial

altitudes. Nearly three decades ago, May and Woods

found that if an alpha particle penetrates the die surface,

it can cause a random, single-bit error [35]. Zeigler and

Lanford found that cosmic rays can also disrupt elec-

tronic circuits [62]. More recent studies and measure-

ments confirm the effect of atmospheric neutrons causing

single event upsets (SEU) in memories [40, 41].

Memory corruption can also happen due to software

bugs. The use of unsafe languages like C and C++ makes

software vulnerable to bugs such as dangling pointers,

buffer overflows and heap corruption [12], which can re-

sult in seemingly random memory corruptions.

2.2.2 How frequently they happen

Early studies and measurements on memory errors pro-

vided evidence of soft errors. Data collected from a vast

storehouse of data at IBM over a 15-year period [41] con-

firmed the presence of errors in RAM and that the up-

set rates increase with elevation, indicating atmospheric

neutrons as the likely cause.

In a recent measurement-based study of memory er-

rors in a large fleet of commodity servers over a period

of 2.5 years [46], Schroeder et al. observe DRAM error

rates that are orders of magnitude higher than previously

reported, with 25,000 to 70,000 FIT per Mbit (1 FIT

equals 1 failure in 109 device hours). They also find that

more than 8% of the DIMMs they examined (from mul-

tiple vendors, with varying capacities and technologies)

were affected by bit errors each year. Finally, they also

provide strong evidence that memory errors are domi-

nated by hard errors, rather than soft errors.

Another study [34] of production systems including

300 machines for a multi-month period found 2 cases of

suspected soft errors and 9 cases of hard errors suggest-

ing the commonness of hard memory faults.

Besides hardware errors, software bugs that lead to

memory corruption are widely extant. Reports from the

Linux Kernel Bugzilla Database [2], USCERT Vulner-

abilities Notes Database [3], CERT/CC advisories [1],

as well as other anecdotal evidence [18] show cases of

memory corruption happening due to software bugs.

2.2.3 How to handle them

Systems use both hardware and software techniques to

handle memory corruptions. Below, we discuss the most

relevant hardware and software techniques.

ECC: Traditionally, memory systems have employed

Error Correction Codes [19] to correct memory errors.

Unfortunately, ECC is unable to address all soft-error

problems. Studies found that the most commonly-used

ECC algorithms called SEC/DED (Single Error Cor-

rect/Double Error Detect) can recover from only 94% of

the errors in DRAMs [23]. Further, many commodity

systems simply do not use ECC protection in order to

reduce cost [28].

More sophisticated techniques like Chipkill[30] have

been proposed to withstand multi-bit failure in DRAMs.

However, such techniques are expensive and have been

restricted to proprietary server systems, leaving the prob-

lem of memory corruptions open in commodity systems.

Programming models and tools: Another approach to

deal with memory errors is to use recoverable program-

ming models [38] at different levels (firmware, operating

system, and applications). However, such techniques re-

quire support from hardware to detect memory corrup-

tions. Further, a holistic change in software is required

to provide recovery solution at various levels.

Much effort has also gone into detecting software

bugs which cause memory corruptions. Tools such as

metal [27] and CSSV [21] apply static analysis to de-

tect memory corruptions. Others such as Purify [29] and

SafeMem [45] use dynamic monitoring to detect mem-

ory corruptions at runtime. However, as discussed in

Section 2.2.2, software-induced memory corruptions still

remain a problem.

2.3 Summary

In modern systems corruption occurs both within the

storage system and in memory. Many commercial sys-

tems apply sophisticated techniques to detect and recover

from disk-level corruptions; beyond ECC, little is done to

protect against memory-level problems. Therefore, the

protection of critical user data against memory corrup-

tions is largely left to software.

3 ZFS reliability features

ZFS is a state-of-the-art file system from Sun which

takes a unified approach to data management. It provides

data integrity, transactional consistency, scalability, and

a multitude of useful features such as snapshots, copy-

on-write clones, and simple administration [14].

In terms of reliability, ZFS claims to provide provable

data integrity by using techniques like checksums, repli-

cation, and transactional updates. Further, the use of a

pooled storage in ZFS lends it additional RAID-like reli-

ability features. In the words of the designers, ZFS is the

“The Last Word in File Systems.” We now describe the

reliability mechanisms in ZFS.

Checksums for data integrity checking: ZFS main-

tains data integrity by using checksums for on-disk
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blocks. The checksums are kept separate from the cor-

responding blocks by storing them in the parent blocks.

ZFS provides for these parental checksums of blocks by

using a generic block pointer structure to address all on-

disk blocks.

The block pointer structure contains the checksum of

the block it references. Before using a block, ZFS calcu-

lates its checksum and verifies it against the stored check-

sum in the block pointer. The checksum hierarchy forms

a self-validating Merkle tree [37]. With this mechanism,

ZFS is able to detect silent data corruption, such as bit

rot, phantom writes, and misdirected reads and writes.

Replication for data recovery: Besides using RAID

techniques (described below), ZFS provides for recov-

ery from disk corruption by keeping replicas of certain

“important” on-disk blocks. Each block pointer contains

pointers to up to three copies (ditto blocks) of the block

being referenced. By default ZFS stores multiple copies

for metadata and one copy for data. Upon detecting a

corruption due to checksum mismatch, ZFS uses a re-

dundant copy with a correctly-matching checksum.

COW transactions for atomic updates: ZFS maintains

data consistency in the event of system crashes by using a

copy-on-write transactional update model. ZFS manages

all metadata and data as objects. Updates to all objects

are grouped together as a transaction group. To commit

a transaction group to disk, new copies are created for all

the modified blocks (in a Merkle tree). The root of this

tree (the uberblock) is updated atomically, thus main-

taining an always-consistent disk image. In effect, the

copy-on-write transactions along with block checksums

(in a Merkle tree) preclude the need for journaling [59],

though ZFS occasionally uses a write-ahead log for per-

formance reasons.

Storage pools for additional reliability: ZFS provides

additional reliability by enabling RAID-like configura-

tion for devices using a common storage pool for all file

system instances. ZFS presents physical storage to file

systems in the form of a storage pool (called zpool). A

storage pool is made up of virtual devices (vdev). A vir-

tual device could be a physical device (e.g., disks) or a

logical device (e.g., a mirror that is constructed by two

disks). This storage pool can be used to provide addi-

tional reliability by using devices as RAID arrays. Fur-

ther, ZFS also introduces a new data replication model,

RAID-Z, a novel solution similar to RAID-5 but using

a variable stripe width to eliminate the write-hole issue

in RAID-5 [13]. Finally, ZFS provides automatic repairs

in mirrored configurations and provides a disk scrubbing

facility to detect latent sector errors.

4 On-disk data integrity in ZFS

In this section, we analyze the robustness of ZFS against

disk corruptions. Our aim is to find whether ZFS can

Figure 1: Block pointer. The figure shows how the block

pointer structure points to (up to) three copies of a block (ditto

blocks), and keeps a single checksum.

maintain data integrity under a variety of disk corruption

scenarios. Specifically, we wish to find if ZFS can detect

and recover from all disk corruptions in data and meta-

data and how ZFS reacts to multiple block corruptions at

the same time.

We find that ZFS is able to detect all and recover from

most disk corruptions. We present our analysis, includ-

ing methodology and results in later sections. First, we

present a brief background about the on-disk organiza-

tion in ZFS, focusing on how data integrity is maintained.

4.1 ZFS on-disk organization

All on-disk data and metadata in ZFS are treated as ob-

jects, where an object is a collection of blocks. Objects

are further grouped into object sets. Other structures

such as uberblocks are also used to organize data on disk.

We now discuss these basic on-disk structures and their

usage in ZFS.

4.1.1 Basic structures

Block pointers: A block pointer is the basic structure in

ZFS for addressing a block on disk. It provides a generic

mechanism to keep parental checksums and replicas of

on-disk blocks. Figure 1 shows the block pointer used

by ZFS. As shown, the block pointer contains up to three

block addresses, called DVAs (data virtual addresses),

each pointing to a different block having the same con-

tents. These are referred to as ditto blocks. The num-

ber of DVAs varies depending on the importance of the

block. The current policy in ZFS is that there is one DVA

for user data, two DVAs for file system metadata, and

three DVAs for global metadata across all file system in-

stances in the pool [39]. As discussed earlier, the block

pointer also contains a single copy of the checksum of

the block being pointed to.

Objects: All blocks on disk are organized in objects.

Physically, an object is represented on disk by a structure

called dnode phys t (hereafter referred to as dnode).

A dnode contains an array of up to three block point-

ers, each of which points to either a leaf block (e.g., a

data block) or an indirect block (full of block pointers).

These blocks pointed to by the dnode form a block tree.

A dnode also contains a bonus buffer at the end, which

stores an object-specific data structure for different types
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Level Object Name Simplified Explanation

zpool

MOS dnode A dnode object that contains dnode blocks, which store dnodes representing pool-level objects.

Object directory A ZAP object whose blocks contain name-value pairs referencing further objects in the MOS object set.

Dataset It represents an object set (e.g., a file system) and tracks its relationships with its snapshots and clones.

Dataset directory It maintains an active dataset object along with its child datasets. It has a reference to a dataset child map

object. It also maintains properties such as quotas for all datasets in this directory.

Dataset child map A ZAP object whose blocks hold name-value pairs referencing child dataset directories.

zfs

FS dnode A dnode object that contains dnode blocks, which store dnodes representing filesystem-level objects.

Master node A ZAP object whose blocks contain name-value pairs referencing further objects in this file system.

File An object whose blocks contain file data.

Directory A ZAP object whose blocks contain name-value pairs referencing files and directories inside this directory.

Table 1: Summary of ZFS objects visited. The table presents a summary of all ZFS objects visited in the walkthrough, along

with a simplified explanation. Note that ZAP stands for ZFS Attribute Processor. A ZAP object is used to store name-value pairs.

of objects. For example, a dnode of a file object contains

a structure called znode phys t (znode) in the bonus

buffer, which stores file attributes such as access time,

file mode and size of the file.

Object sets: Object sets are used in ZFS to group related

objects. An example of a object set is a file system, which

contains file objects and directory objects belonging to

this file system.

An object set is represented by a structure called

objset phys t, which consists of a meta dnode and a

ZIL (ZFS Intent Log) header. The meta dnode points to

a group of dnode blocks; dnodes representing the objects

in this object set are stored in these dnode blocks. The

object described by the meta dnode is called “dnode ob-

ject”. The ZIL header points to a list of blocks, which

holds transaction records for ZFS’s logging mechanism.

Other structures: ZFS uses other structures to organize

on-disk data. Each physical vdev is labeled with a vdev

label that describes this device and other related virtual

devices. Four copies of the label are stored in each phys-

ical vdev to provide redundancy and a two-stage update

mechanism is used to guarantee that there is always a

valid vdev label in the device [51]. An uberblock (simi-

lar to a superblock) inside the vdev label is used to pro-

vide access to the pool data and verify its integrity. The

uberblock is self-checksummed and updated atomically.

4.1.2 On-disk layout

In this section, we present some details about ZFS on-

disk layout. This overview will help the reader to un-

derstand the range of our fault injection experiments pre-

sented in later sections. A complete description of ZFS

on-disk structures can be found elsewhere [51].

For the purpose of illustration, we demonstrate the

steps that ZFS takes to locate a file system and to locate

file data in it in a simple storage pool. Figure 2 shows the

on-disk layout of the simplified pool with a sample file

system called “myfs”, along with the sequence of objects

and blocks accessed by ZFS. A simple explanation of all

visited objects is described in Table 1. Note that we skip

the details of how in-memory structures are set up and

assume that data and metadata are not cached in memory

to begin with.

Find pool metadata (steps 1-2): As the starting point,

ZFS locates the active uberblock in the vdev label of the

device. ZFS then uses the uberblock to locate and verify

the integrity of pool-wide metadata contained in an ob-

ject set called Meta Object Set (MOS). There are three

copies of the object set block representing the MOS.

Find a file system (steps 3-10): To locate a file system,

ZFS accesses a series of objects in MOS, all of which

have three ditto blocks. Once the dataset representing

“myfs” is found, it is used to access file system wide

metadata contained in an object set. The integrity of file

system metadata is checked using the block pointer in

the dataset, which points to the object set block. All file

system metadata blocks have two ditto copies.

Find a file and a data block (steps 11-18): To locate

a file, ZFS then uses the directory objects in the “myfs”

object set. Finally, by following the block pointers in

the dnode of the file object, ZFS finds the required data

block. The integrity of every traversed block is con-

firmed by verifying the checksum in its block pointers.

The legend in Figure 2 shows a summary of all the on-

disk block types visited during the traversal. Our fault

injection tests for analyzing robustness of ZFS against

disk corruptions (discussed in the next subsection) inject

bit errors in the on-disk blocks shown in Figure 2.

4.2 Methodology of analysis

In this section, we discuss the methodology of our relia-

bility analysis of ZFS against disk corruptions. We dis-

cuss our fault injection framework first and then present

our test procedures and workloads.

4.2.1 Fault injection framework

Our experiments are performed on a 64-bit Solaris Ex-

press Community Edition (build 108) virtual machine

with 2GB non-ECC memory. We use ZFS pool version

14 and ZFS filesystem version 3. We run ZFS on top of

a single disk for our experiments.

To emulate disk corruptions, we developed a fault in-

jection framework consisting of a pseudo-driver to per-

form fault injection on disk blocks and an application for
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Figure 2: ZFS on-disk structures. The figure shows the on-disk structures of ZFS including the pool-wide metadata and file

system metadata. In the example above, the zpool contains a sample file system named “myfs”. All ZFS on-disk data structures are

shown by rounded boxes, and on-disk blocks are shown by rectangular boxes. Solid arrows point to allocated blocks and dotted

arrows represent references to objects inside blocks. The legend at the top shows the types of on-disk blocks and their contents.

controlling the experiments. The pseudo-driver is a stan-

dard Solaris layered driver that interposes between the

ZFS virtual device and the disk driver beneath. We an-

alyze the behavior of ZFS by looking at return values,

checking system logs, and tracing system calls.

4.2.2 Test procedure and workloads

In our tests, we wanted to understand the behavior of

ZFS to disk corruptions on different types of blocks.

We injected faults by flipping bits at random offsets in

disk blocks. Since we used the default setting in ZFS

for compression (metadata compressed and data uncom-

pressed), our fault injection tests corrupted compressed

metadata and uncompressed data blocks on disk. We

injected faults on nine different classes of ZFS on-disk

blocks and for each class, we corrupted a single copy as

well as all copies of blocks.

In our fault injection experiments on pool-wide and

file system level metadata, we used “mount” and “re-

mount” operations as our workload. The “mount” work-

load indicates that the target block is corrupted with the

pool exported and “myfs” not mounted, and we subse-

quently mount it. This workload forces ZFS to use on-

disk copies of metadata. The “remount” workload in-

dicates that the target block is corrupted with “myfs”

mounted and we subsequently umount and mount it. ZFS

uses in-memory copies of metadata in this workload.

For injecting faults in file and directory blocks in a

file system, we used two simple operations as workloads:

“create file” creates a new file in a directory, and “read

file” reads a file’s contents.

4.3 Results and observations

The results of our fault injection experiments are shown

in Table 2. The table reports the results of experiments on

pool-wide metadata and file system metadata and data.

It also shows the results of corrupting a single copy as

well as all copies of blocks. We now explain the results

in detail in terms of the observations we made from our

fault injection experiments.

Observation 1: ZFS detects all corruptions due to

the use of checksums. In our fault injection experiments

on all metadata and data, we found that bad data was

never returned to the user because ZFS was able to de-

tect all corruptions due to the use of checksums in block

pointers. The parental checksums are used in ZFS to ver-
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zpool

vdev label1 R R E R

uberblock R R E R

MOS object set block R R E R

MOS dnode block R R E R

zfs

myfs object set block R R E R

myfs indirect block R R E R

myfs dnode block R R E R

dir ZAP block R R E E

file data block E E
1 excluding the uberblocks contained in it.

Table 2: On-disk corruption analysis. The table shows

the results of on-disk experiments. Each cell indicates whether

ZFS was able to recover from the corruption (R), whether ZFS

reported an error (E), whether ZFS returned bad data to the

user (B), or whether the system crashed (C). Blank cells mean

that the workload was not exercised for the block.

ify the integrity of all the on-disk blocks accessed. The

only exception are uberblocks, which do not have parent

block pointers. Corruptions to the uberblock are detected

by the use of checksums inside the uberblock itself.

Observation 2: ZFS gracefully recovers from single

metadata block corruptions. For pool-wide metadata and

file system wide metadata, ZFS recovered from disk cor-

ruptions by using the ditto blocks. ZFS keeps three ditto

blocks for pool-wide metadata and two for file system

metadata. Hence, on single-block corruption to meta-

data, ZFS was successfully able to detect the corruption

and use other available correct copies to recover from it;

this is shown by the cells (R) in the “Single ditto” column

for all metadata blocks.

Observation 3: ZFS does not recover from data block

corruptions. For data blocks belonging to files, ZFS

was not able to recover from corruptions. ZFS detected

the corruption and reported an error on reading the data

block. Since ZFS does not keep multiple copies of data

blocks by default, this behavior is expected; this is shown

by the cells (E) for the file data block.

Observation 4: In-memory copies of metadata help

ZFS to recover from serious multiple block corruptions.

In an active storage pool, ZFS caches metadata in mem-

ory for performance. ZFS performs operations on these

cached copies of metadata and writes them to disk on

transaction group commits. These in-memory copies of

metadata, along with periodic transaction commits, help

ZFS recover from multiple disk corruptions.

In the “remount” workload that corrupted all copies of

uberblock, ZFS recovered from the corruptions because

the in-memory copy of the active uberblock remains as

long as the pool exists. The in-memory copy is subse-

quently written to a new disk block in a transaction group

commit, making the old corrupted copy void. Similar

results were obtained when corrupting other pool-wide

metadata and file system metadata, and ZFS was able to

recover from these multiple block corruptions (R).

Observation 5: ZFS cannot recover from multiple

block corruptions affecting all ditto blocks when no in-

memory copy exists. For file system metadata, like di-

rectory ZAP blocks, ZFS does not always keep an in-

memory copy unless the directory has been accessed.

Thus, on corruptions to both ditto blocks, ZFS reported

an error. This behavior is shown by the results (E) for di-

rectories indicating for the “create file” and “read file”

operations. Note that we performed these corruptions

without first accessing the directory, so that there were no

in-memory copies. Similarly, in the “mount” workload,

when the pool was inactive (exported) and thus no in-

memory copies existed, ZFS was unable to recover from

multiple disk corruptions and responded with errors (E).

Observation 4 and 5 also lead to an interesting conclu-

sion that an active storage pool is likely to tolerate more

serious disk corruptions than an inactive one.

In summary, ZFS successfully detects all corruptions

and recovers from them as long as one correct copy ex-

ists. The in-memory caching and periodic flushing of

metadata on transaction commits help ZFS recover from

serious disk corruptions affecting all copies of metadata.

For user data, ZFS does not keep redundant copies and

is unable to recover from corruptions. ZFS, however, de-

tects the corruptions and reports an error to the user.

5 In-memory data integrity in ZFS

In the last section we showed the robustness of ZFS to

disk corruptions. Although ZFS was not specifically de-

signed to tolerate memory corruptions, we still would

like to know how ZFS reacts to memory corruptions, i.e.,

whether ZFS can detect and recover from a single bit flip

in data and metadata blocks. Our fault injection exper-

iments indicate that ZFS has no precautions for mem-

ory corruptions: bad data blocks are returned to the user

or written to disk, file system operations fail, and many

times the whole system crashes.

This section is organized as follows. First, we briefly

describe ZFS in-memory structures. Then, we discuss

the test methodology and workloads we used to conduct

the analysis. Finally, we present the experimental results

and our observations.

5.1 ZFS in-memory structures
In order to better understand the in-memory experiments,

we present some background information on ZFS in-

memory structures.

5.1.1 In-memory structures

ZFS in-memory structures can be classified into two cat-

egories: those that exist in the page cache and those that
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Figure 3: Lifecycle of a block. This figure illustrates one example of the lifecycle of a block. The left half represents the

read timeline and the right half represents the write timeline. The black dotted line is a protection boundary, below which a block

is protected by the checksum, otherwise unprotected.

are in memory outside of the page cache; for convenience

we call the latter in-heap structures. Whenever a disk

block is accessed, it is loaded into memory. Disk blocks

containing data and metadata are cached in the ARC

page cache [36], and stay there until evicted. Data blocks

are stored only in the page cache, while most metadata

structures are stored in both the page cache (as copies of

on-disk structures) and the heap. Note that block point-

ers inside indirect blocks are also metadata, but they only

reside in the page cache. Uberblocks and vdev labels, on

the other hand, only stay in the heap.

5.1.2 Lifecycle of a block

To help the reader understand the vulnerability of ZFS to

memory corruptions discussed in later sections, Figure 3

illustrates one example of the lifecycle of a block (i.e.,

how a block is read from and written asynchronously to

disk). To simplify the explanation, we consider a pair of

blocks in which the target block to be read or written is

pointed to by a block pointer contained in the parental

block. The target block could be a data block or a meta-

data block. The parental block could be an indirect block

(full of block pointers), a dnode block (array of dnodes,

each of which contains block pointers) or an object set

block (a dnode is embedded in it). The user of the block

could be a user-level application or ZFS itself. Note that

only the target block is shown in the figure.

At first, the target block is read from disk to memory.

For read, there are two scenarios, as shown in the left

half of Figure 3. On first read of a target block not in

the page cache, it is read from the disk and immediately

verified against the checksum stored in the block pointer

in the parental block. Then the target block is returned to

the user. On a subsequent read of a block already in the

page cache, the read request gets the cached block from

the page cache directly, without verifying the checksum.

In both cases, after the read, the target block stays in

the page cache until evicted. The block remains in the

page cache for an unbounded interval of time depend-

ing on many factors such as the workload and the cache

replacement policy.

After some time, the block is updated. The write time-

line is illustrated in the right half of Figure 3. All up-

dates are first done in the page cache and then flushed

to disk. Thus before the updates occur, the target block

is either in the page cache already or just loaded to the

page cache from disk. After the write, the updated block

stays in the page cache for at most 30 seconds and then

it is flushed to disk. During the flush, a new physical

block is allocated and a new checksum is generated for

the dirty target block. The new disk address and check-

sum are then written to the block pointer contained in

the parental block, thus making it dirty. After the target

block is written to the disk, the flush procedure contin-

ues to allocate a new block and calculate a new check-

sum for the parental block, which in turn dirties its sub-

sequent parental block. Following the updates of block

pointers along the tree (solid arrows in Figure 2), it fi-

nally reaches the uberblock which is self-checksummed.

After the flush, the target block is kept in the page cache

until it is evicted.

5.2 Methodology of analysis
In this section, we discuss the fault injection framework,

and the test procedure and workloads. The injection

framework is similar to the one used for on-disk experi-

ments. The only difference is the pseudo-driver, which in

this case, interacts with the ZFS stack by calling internal

functions to locate the in-memory structures.

5.2.1 Test procedure and workloads

We wished to find out the behavior of ZFS in response

to corruptions in different in-memory objects. Since all

data and metadata in memory are uncompressed, we per-

formed a controlled fault injection in various objects. For

metadata, we randomly flipped a bit in each individual

field of the structure separately; for data, we randomly

corrupted a bit in a data block of a file in memory. We re-

peated each fault injection test five times. We performed
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Object Data Structures Workload

MOS dnode dnode t, dnode phys t

zfs create,

zfs destroy,

zfs rename,

zfs list,

zfs mount,

zfs umount

Object

directory

dnode t, dnode phys t,

mzap phys t, mzap ent phys t

Dataset dnode t, dnode phys t,

dsl dataset phys t

Dataset

directory

dnode t, dnode phys t,

dsl dir phys t

Dataset

child map

dnode t, dnode phys t,

mzap phys t, mzap ent phys t

FS dnode dnode t, dnode phys t zfs umount,

path traversalMaster node dnode t, dnode phys t,

mzap phys t, mzap ent phys t

File dnode t, dnode phys t,

znode phys t

open, close, lseek,

read, write, access,

link, unlink,

rename, truncate

(chdir, mkdir, rmdir)

Dir dnode t, dnode phys t,

znode phys t,

mzap phys t, mzap ent phys t

Table 3: Summary of objects and data structures cor-
rupted. The table presents a summary of all the ZFS objects and

structures corrupted in our in-memory analysis, along with their

data structures and the workloads exercised on them.

Data Structure Fields

dnode t dn nlevels, dn bonustype, dn indblkshift,

dn nblkptr, dn datablkszsec, dn maxblkid,

dn compress, dn bonuslen, dn checksum,

dn type

dnode phys t dn nlevels, dn bonustype, dn indblkshift,

dn nblkptr, dn datablkszsec, dn maxblkid,

dn compress, dn bonuslen, dn checksum,

dn type, dn used, dn flags,

mzap phys t mz block type, mz salt

mzap ent phys t mze value, mze name

znode phys t zp mode, zp size, zp links,

zp flags, zp parent

dsl dir phys t dd head dataset obj, dd child dir zapobj,

dd parent obj

dsl dataset phys t ds dir obj

Table 4: Summary of data structures and fields cor-
rupted. The table lists all fields we corrupted in the in-

memory experiments. mzap phys t and mzap ent phys t

are metadata stored in ZAP blocks. The last three structures

are object-specific structures stored in the dnode bonus buffer.

fault injection tests on nine different types of objects at

two levels (zfs and zpool) and exercised different set of

workloads as listed in Table 3. Table 4 shows all data

structures inside the objects and all the fields we cor-

rupted during the experiments.

For data blocks, we injected bit flips at an appropriate

time as described below. For reads, we flipped a random

bit in the data block after it was loaded to the page cache;

then we issued a subsequent read() on that block to see if

ZFS returned the corrupted block. In this case, the read()

call fetched the block from the page cache. For writes,

we corrupted the block after the write() call finished but

before the target block was written to the disk.

For metadata, in our fault injection experiments, we

covered a broad range of metadata structures. However,

to reduce the sample space for experiments to more in-

teresting cases, we made two choices. First, we always

injected faults to the in-memory structure after it was ac-

cessed by the file system, so that both the in-heap version

and page cache version already exist in the memory. Sec-

ond, among the in-heap structures, we only corrupted the

dnode t structure (in-heap version of dnode phys t).

The dnode structure is the most widely used metadata

structure in ZFS and every object in ZFS is represented

by a dnode. Hence, we anticipate that corrupting the in-

heap dnode structure will cover many interesting cases.

5.3 Results and observations

We present the results of our in-memory experiments in

Table 5. As shown, ZFS fails to catch data block corrup-

tions due to memory errors in both read and write exper-

iments. Single bit flips in metadata blocks not only lead

to returning bad data blocks, but also cause more serious

problems like failure of operations and system crashes.

Note that Table 5 is a subset of the results showing only

cases with apparent problems. In other cases that are ei-

ther indicated by a dot (.) in the result cells or not shown

at all in Table 5, the corresponding operation either did

not access the corrupted field or completed successfully

with the corrupted field. However, in all cases, ZFS did

not correct the corrupted field.

Next we present our observations on ZFS behavior and

user-visible results. The first five observations are about

ZFS behavior and the last five observations are about

user-visible results of memory corruptions.

Observation 1: ZFS does not use the checksums in

the page cache along with the blocks to detect memory

corruptions. Checksums are the first guard for detect-

ing data corruption in ZFS. However, when a block is

already in the page cache, ZFS implicitly assumes that it

is protected against corruptions. In the case of reads, the

checksum is verified only when the block is being read

from the disk. Following that, as long as the block stays

in the page cache, it is never checked against the check-

sum, despite the checksum also being in the page cache

(in the block pointer contained in its parental block). The

result is that ZFS returns bad data to the user on reads.

For writes, the checksum is generated only when the

block is being written to disk. Before that, the dirty block

stays in the page cache with an outdated checksum in the

block pointer pointing to it. If the block is corrupted in

the page cache before it is flushed to disk, ZFS calcu-

lates a checksum for the bad block and stores the new

checksum in the block pointer. Both the block and its

parental block containing the block pointer are written

to disk. On subsequent reads of the block, it passes the

checksum verification and is returned to the user.

Moreover, since the detection mechanisms already

fail to detect memory corruptions, recovery mechanisms
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File Dir MOS dnode Dataset directory
Dataset

childmap
Dataset

Structure Field O R W A U N T O A L U N TMC D c d r l m u c d r l m u c d r c d r l m

dnode t

dn type . . . . . . . . . . . . . . . . C C C C C C . . . . . . . . . . . . . .

dn indblkshift . BC . . C . . . . E E E . E . E . . . . . . . . . . . . . . . . . . . .

dn nlevels . . C . . . C . . C C C . C . C C C C C C C . . . . . . C C C C C C . .

dn checksum . . C . . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dn compress . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dn maxblkid . . . . . . C . . . . . . . . C . . . . . . . . . . . . . . . . . . . .

dnode phys t

dn indblkshift . . . . C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dn nlevels . BC C . C . . . . . . . . . . C . . . . . . . . . . . . . C . . . . . .

dn nblkptr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C . . .

dn bonuslen . . C . . . . . . . . . . . . . . . . . . . . C . . . . . . . . C . . .

dn maxblkid . B . . C . C . . . . . . . . C . . . . . . . C . . . . . C . . C . . .

znode phys t
zp size . . . . . . . . . . . . . . E

zp flags E . . E . E E E E E E E E E E E

dsl dir phys t
dd head dataset obj E E E E . .

dd child dir zapobj EC EC EC EC EC C

dsl dataset phys t ds dir obj . E E . .

data block B B

Table 5: In-memory corruption results. The table shows a subset of memory corruption results. The operations exercised

are O(open), R(read), W(write), A(access), L(link), U(unlink), N(rename), T(truncate), M(mkdir), C(chdir), D(rmdir), c(zfs create),

d(zfs destroy), r(zfs rename), l(zfs list), m(zfs mount) and u(zfs umount). Each result cell indicates whether the system crashed (C),

whether the operation failed with wrong results or with a misleading message (E), whether a bad data block was returned (B) or

whether the operation completed (.). Large blanks mean that the operations are not applicable.

such as ditto blocks and the mirrored zpool are not trig-

gered to recover from the damage.

The results in Table 5 indicate that when a data block

was corrupted, the application that issued a read() or

write() request was returned bad data (B), as shown in

the last row. When metadata blocks were corrupted, ZFS

accessed the corrupted data structures and thus behaved

wrongly, as shown by other cases in the result table.

Observation 2: The window of vulnerability of blocks

in the page cache is unbounded. As Figure 3 shows, af-

ter a block is loaded into the page cache by first read, it

stays there until evicted. During this interval, if a cor-

ruption happens to the block, any subsequent read will

get the corrupted block because the checksum is not ver-

ified. Therefore, as long as the block is in the page cache

(unbounded), it is susceptible to memory corruptions.

Observation 3: Since checksums are created when

blocks are written to disk, any corruption to blocks that

are dirty (or will be dirtied) is written to disk perma-

nently on a flush. As described in Section 5.1.2, dirty

blocks in the page cache are written to disk during a

flush. During the flush, any dirty block will further cause

updates of all its parental blocks; a new checksum is then

calculated for each updated block and all of them are

flushed to disk. If a memory corruption happens to any of

those blocks before a flush (above the black dotted line

before G in Figure 3), the corrupted block is written to

disk with a new checksum. The checksum is thus valid

for the corrupted block, which makes the corruption per-

manent. Since the window of vulnerability is long (30

seconds), and there are many blocks that will be flushed

to disk in each flush, we conjecture that the likelihood

of memory corruption leading to permanent on-disk cor-

ruptions is high.

We did a block-based fault injection to verify this ob-

servation. We injected a single bit flip to a dirty (or to-be-

dirtied) block before a flush; as long as the flipped bit in

the block was not overwritten by subsequent operations,

the corrupted block was written to disk permanently.

Observation 4: Dirtying blocks due to updating file

access time increases the possibility of making corrup-

tions permanent. By default, access time updates are en-

abled in ZFS; therefore, a read-only workload will up-

date the access time of any file accessed. Consequently,

when the structure containing the access time (znode)

goes inactive (or when there is another workload that up-

dates the znode), ZFS writes the block holding the zn-

ode to disk and updates and writes all its parental blocks.

Therefore, any corruption to these blocks will become

permanent after the flush caused by the access time up-

date. Further, as mentioned earlier, the time interval

when the corruption could happen is unbounded.

Observation 5: For most metadata blocks in the page

cache, checksums are not valid and thus useless in de-

tecting memory corruptions. By default, most metadata

blocks such as indirect blocks and dnode blocks are com-

pressed on disk. Since the checksums for these blocks

are used to prevent disk corruptions, they are only valid

for compressed blocks, which are calculated after they

are compressed during writes and verified before they are

decompressed during reads. When metadata blocks are

in the page cache, they are uncompressed. Therefore, the
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checksums contained in the corresponding block point-

ers are useless.

We now discuss our observations about user-visible re-

sults of memory corruptions.

Observation 6: When metadata is corrupted, oper-

ations fail with wrong results, or give misleading error

messages (E). As shown in Table 5, when zp flags in

dnode phys t for a file object was corrupted, in one

case open() returned an error code EACCES (permis-

sion denied). This case occurred when the 41st bit of

zp flags was flipped from 0 to 1, which signifies that

the file is quarantined by an anti-virus software. There-

fore, open() was incorrectly denied, giving an error code

EACCES. The calls access(), rename() and truncate()

also failed for the same reason.

Another example of a misleading error mes-

sage happened when dd head dataset obj in

dsl dir phys t for a dataset directory object was

corrupted; there is one case where “zfs create” failed to

create a new file system under the parent file system rep-

resented by the corrupted object. ZFS gave a misleading

error message saying that the parent file system did not

exist. ZFS gave similar error messages in other cases (E)

under “Dataset directory” and “Dataset”.

A case where wrong results are returned occurred

when dd child dir zapobj was corrupted. This field

refers to a dataset child map object containing references

to child file systems. On corrupting this field, “zfs list”,

which should list all file systems in the pool, did not list

the child file systems of the corrupted dataset directory.

Observation 7: Many corruptions lead to a system

crash (C). For example, when dn nlevels (the height of

the block tree pointed to by the dnode) in dnode phys t

for a file object was corrupted and the file was read, the

system crashed due to a NULL pointer dereference. In

this case, ZFS used the wrong value of dn nlevels to

traverse the block tree of the file object and obtained an

invalid block pointer. Therefore, the block size obtained

from the block pointer was an arbitrary value, which was

then used to index into an array whose size was much

less than the value. As a result, the system crashed when

a NULL pointer was dereferenced.

Observation 8: The read() system call may return

bad data. As shown in Table 5, for metadata corruptions,

there were three cases where read() gave bad data block

to the user. In these cases, ZFS simply trusted the value

of the corrupted field and used it to traverse the block

tree pointed to by the dnode, thus returning bad blocks.

For example, when dn nlevels in dnode phys t for a

file object was changed from 3 to 1, ZFS gave an incor-

rect block to the user on a read request for the first block

of the file. The bad block was returned because ZFS as-

sumed that the tree only had one level, and incorrectly

returned an indirect block to the user. Such cases where

wrong blocks are returned to the user also have the po-

tential for security vulnerabilities.

Observation 9: There is no recovery for corrupted

metadata. In the cases where no apparent error happened

(as indicated by a dot or not shown) and the operation

was not meant to update the corrupted field, the corrup-

tion remained in the metadata block in the page cache.

In summary, ZFS fails to detect and recover from

many corruptions. Checksums in the page cache are not

used to protect the integrity of blocks. Therefore, bad

data blocks are returned to the user or written to disk.

Moreover, corrupted metadata blocks are accessed by

ZFS and lead to operation failure and system crashes.

6 Probability of bit-flip induced failures

In this section, we present a preliminary analysis of the

likelihood of different failure scenarios due to memory

errors in a system using ZFS. Specifically, given that one

random bit in memory is flipped, we compute the proba-

bilities of four scenarios: reading corrupt data (R), writ-

ing corrupt data (W), crashing/hanging (C) and running

successfully to complete (S). These probabilities help us

to understand how severely filesystem data integrity is

affected by memory corruptions and how much effort

filesystem developers should make to add extra protec-

tion to maintain data integrity.

6.1 Methodology

We apply fault-injection techniques to perform the analy-

sis. Considering one run of a specific workload as a trial,

we inject a fixed number number of random bit flips to

the memory and record how the system reacts. There-

fore, by doing multiple trials, we measure the number

of trials where each scenario occurs, thus estimating the

probability of each scenario given that certain number of

bits are flipped. Then, we calculate the probability of

each scenario given the occurrence of one single bit flip.

We have extended our fault injection framework to

conduct the experiments. We replaced the pseudo-driver

with a user-level “injector” which injects random bit flips

to the physical memory. We used filebench [50] to gener-

ate complex workloads. We modified filebench such that

it always writes predefined data blocks (e.g., full of 1s)

to disk. Therefore, we can check every read operation

to verify that the returned data matches the predefined

pattern. We can also verify the data written to disk by

checking the contents of on-disk files.

We used the framework as follows. For a specific

workload, we ran 100 trials. For each trial, we used the

injector to generate 16 random bit flips at the same time

when the workload has been running for 3 minutes. We

then kept the workload running for 5 minutes. Any oc-

currence of reading corrupt data (R) was reported. When

the workload was done, we checked all on-disk files to
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see if there was any corrupt data written to the disk (W).

Since we only verify write operations after each run of

a workload, some intermediate corrupt data might have

been overwritten and thus the actual number of occur-

rence of writing corrupt data could be higher than mea-

sured here. We also logged whether the system hung or

crashed (C) during each trial, but we did not determine if

it was due to corruption of ZFS metadata or other kernel

data structures.

It is important to notice that we injected 16 bit flips

in each trial because it let us observe a sufficient number

of failure trials in 100 trials. However, we apply the fol-

lowing calculation to derive the probabilities of different

failure scenarios given that 1 bit is flipped.

6.2 Calculation

We use Pk(X) to represent the probability of scenario X

given that k random bits are flipped, in which X could

be R, W, C or S. Therefore, Pk(X̄) = 1 − Pk(X) is

the probability of scenario X not happening given that

k bits are flipped. In order to calculate P1(X), we first

measure Pk(X) using the method described above and

then derive P1(X) from Pk(X), as explained below.

• Measure Pk(X) Given that k random bit flips are

injected in each trial, we denote the total number of

trials as N and the number of trials in which sce-

nario X occurs at least once as NX . Therefore,

Pk(X) =
NX

N

• Derive P1(X) Assume k bit flips are independent,

then we have

Pk(X̄) = (P1(X̄))k, when X = R, W or C

Pk(X) = (P1(X))k, when X = S

Substituting Pk(X̄) = 1−Pk(X) into the equations

above, we can get,

P1(X) = 1−(1−Pk(X))
1

k , when X = R, W or C

P1(X) = (Pk(X))
1

k , when X = S

6.3 Results

The analysis is performed on the same virtual machine as

mentioned in Section 4.2.1. The machine is configured

with 2GB non-ECC memory and a single disk running

ZFS. We first ran some controlled micro-benchmarks

(e.g., sequential read) to verify that the methodology and

the calculation is correct (the result is not shown due to

limited space). Then, we chose four workloads from

filebench: varmail, oltp, webserver and fileserver, all

of which were exercised with their default parameters.

A detailed description of these workloads can be found

elsewhere [50].

Workload P16(R) P16(W ) P16(C) P16(S)
varmail 9% [4, 17] 0% [0, 3] 5% [1, 12] 86% [77, 93]

oltp 26% [17, 36] 2% [0, 8] 16% [9, 25] 60% [49, 70]

webserver 11% [5, 19] 20% [12, 30] 19% [11, 29] 61% [50, 71]

fileserver 69% [58, 78] 44% [34, 55] 23% [15, 33] 28% [19, 38]

Workload P1(R) P1(W ) P1(C) P1(S)
varmail 0.6% [0.2, 1.2] 0% [0, 0.2] 0.3% [0.1, 0.8] 99.1% [98.4, 99.5]

oltp 1.9% [1.2, 2.8] 0.1% [0, 0.5] 1.1% [0.6, 1.8] 96.9% [95.7, 97.8]

webserver 0.7% [0.3, 1.3] 1.4% [0.8, 2.2] 1.3% [0.7, 2.1] 97.0% [95.8, 97.9]

fileserver 7.1% [5.4, 9.0] 3.6% [2.5, 4.8] 1.6% [1.0, 2.5] 92.4% [90.2, 94.2]

Table 6: P16(X) and P1(X). The upper table presents

percentage values of the probabilities and 95% confidence in-

tervals (in square brackets) of reading corrupt data (R), writ-

ing corrupt data (W), crash/hang and everything being fine (S),

given that 16 bits are flipped, on a machine of 2GB memory.

The lower table gives the derived percentage values given that

1 bit is corrupted. The working set size of each workload is

less than 2GB; the average amount of page cache consumed by

each workload after the bit flips are injected is 31MB (varmail),

129MB (oltp), 441MB (webserver) and 915MB (fileserver).

Table 6 provides the probabilities and confidence in-

tervals given that 16 bits are flipped and the derived val-

ues given that 1 bit is flipped. Note that for each work-

load, the sum of Pk(R), Pk(W ), Pk(C) and Pk(S) is

not necessary equal to 1, because there are cases where

multiple failure scenarios occur in one trial.

From the lower table in Table 6, we see that a single

bit flip in memory causes a small but non-negligible per-

centage of runs to experience an failure. For all work-

loads, the probability of reading corrupt data is greater

than 0.6% and the probability of crashing or hanging is

higher than 0.3%. The probability of writing corrupt data

varies widely from 0 to 3.6%. Our results also show that

in most cases, when the working set size is less than the

memory size, the more page cache the workload con-

sumes, the more likely that a failure would occur if one

bit is flipped.

In summary, when a single bit flip occurs, the chances

of failure scenarios happening can not be ignored. There-

fore, efforts should be made to preserve data integrity in

memory and prevent these failures from happening.

7 Beyond ZFS

In addition to ZFS, we have applied the same fault injec-

tion framework used in Section 5 to a simpler filesystem,

ext2. Our initial results indicate that ext2 is also vulner-

able to memory corruptions. For example, corrupt data

can be returned to the user or written to disk. When cer-

tain fields of a VFS inode are corrupted, operations on

that inode fail or the whole system crashes. If the inode

is dirty, the corrupted fields of the VFS inode are propa-

gated to the inode in the page cache and are then written

to disk, making the corruptions permanent. Moreover, if

the superblock in the page cache is corrupted and flushed
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to disk, it might result in an unmountable filesystem.

In summary, so far we have studied two extremes:

ZFS, a complex filesystem with many techniques to

maintain on-disk data integrity, and ext2, a simpler

filesystem with few mechanisms to provide extra relia-

bility. Both are vulnerable to memory corruptions. It

seems that regardless of the complexity of the file sys-

tem and the amount of machinery used to protect against

disk corruptions, memory corruptions are still a problem.

8 Related work

Software-implemented fault injection techniques have

been widely used to analyze the robustness of sys-

tems [10, 17, 25, 31, 48, 55]. For example, FINE used

fault injection to emulate hardware and software faults

in the operating system [31]; Weining et al. [25] injected

faults to instruction streams of Linux kernel function to

characterize Linux kernel behavior.

More recent works [5, 8, 44] have applied type-aware

fault injection to analyze failure behaviors of different

file systems to disk corruptions. Our analysis of on-disk

data integrity in ZFS is similar to these studies.

Further, fault injection has also been used to analyze

effects of memory corruptions on systems. FIAT [10]

used fault injection to study the effects of memory cor-

ruptions in a distributed environment. Krishnan et al.

applied a memory corruption framework to analyze the

effects of metadata corruption on NFS [33]. Our study

on in-memory data integrity is related to these studies in

their goal of finding effects of memory corruptions.

However, our work on ZFS is the first comprehensive

reliability analysis of local file system that covers care-

fully controlled experiments to analyze both on-disk and

in-memory data integrity. Specifically, for our study of

memory corruptions, we separately analyze ZFS behav-

ior for faults in page cache metadata and data and for

metadata structures in the heap. To the best of our knowl-

edge, this is the first such comprehensive study of end-

to-end file system data integrity.

9 Summary and discussion

In this paper, we analyzed a state-of-the-art file system,

ZFS, to study the implications of disk and memory cor-

ruptions to data integrity. We used carefully controlled

fault injection experiments to simulate realistic disk and

memory errors and presented our observations about ZFS

behavior and its robustness.

While the reliability mechanisms in ZFS are able to

provide reasonable robustness against disk corruptions,

memory corruptions still remain a serious problem to

data integrity. Our results for memory corruptions in-

dicate cases where bad data is returned to the user, oper-

ations silently fail, and the whole system crashes. Our

probability analysis shows that one single bit flip has

small but non-negligible chances to cause failures such

as reading/writing corrupt data and system crashing.

We argue that file systems should be designed with

end-to-end data integrity as a goal. File systems should

not only provide protection against disk corruptions, but

also aim to protect data from memory corruptions. Al-

though dealing with memory corruptions is hard, we con-

clude by discussing some techniques that file systems can

use to increase protection against memory corruptions.

Block-level checksums in the page cache: File systems

could protect the vulnerable data and metadata blocks

in the page cache by using checksums. For example,

ZFS could use the checksums inside block pointers in

the page cache, update them on block updates, and ver-

ify the checksums on reads. However, this does incur an

overhead in computation as well as some complexity in

implementation; these are always the tradeoffs one has

to make for reliability.

Metadata checksums in the heap: Even with block-

level checksums in the page cache, there are still copies

of metadata structures in the heap that are vulnerable

to memory corruptions. To provide end-to-end data in-

tegrity, data-structure checksums may be useful in pro-

tecting in-heap metadata structures.

Programming for error detection: Many serious ef-

fects of memory corruptions can be mitigated by using

simple programming practices. One technique is to use

existing redundancy in data structures for simple consis-

tency checks. For instance, the case described in Obser-

vation 8 (Section 5.3) could be detected by comparing

the expected level calculated from the dn levels field

of dnode phys t with the actual level stored inside the

first block pointer. Another simple technique is to in-

clude magic numbers in metadata structures for sanity

checking. For example, some “crash” cases happened

due to bad block pointers obtained during the block tree

traversal (Observation 7 in Section 5.3). Using a magic

number in block pointers could help detect such cases

and prevent unexpected behavior.
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Abstract

We focus on automatically diagnosing different perfor-
mance problems in parallel file systems by identify-
ing, gathering and analyzing OS-level, black-box perfor-
mance metrics on every node in the cluster. Our peer-
comparison diagnosis approach compares the statistical
attributes of these metrics across I/O servers, to identify
the faulty node. We develop a root-cause analysis proce-
dure that further analyzes the affected metrics to pinpoint
the faulty resource (storage or network), and demonstrate
that this approach works commonly across stripe-based
parallel file systems. We demonstrate our approach for
realistic storage and network problems injected into three
different file-system benchmarks (dd, IOzone, and Post-
Mark), in both PVFS and Lustre clusters.

1 Introduction
File systems can experience performance problems that
can be hard to diagnose and isolate. Performance prob-
lems can arise from different system layers, such as
bugs in the application, resource exhaustion, misconfig-
urations of protocols, or network congestion. For in-
stance, Google reported the variety of performance prob-
lems that occurred in the first year of a cluster’s opera-
tion [10]: 40–80 machines saw 50% packet-loss, thou-
sands of hard drives failed, connectivity was randomly
lost for 30 minutes, 1000 individual machines failed,
etc. Often, the most interesting and trickiest problems
to diagnose are not the outright crash (fail-stop) failures,
but rather those that result in a “limping-but-alive” sys-
tem (i.e., the system continues to operate, but with de-
graded performance). Our work targets the diagnosis of
such performance problems in parallel file systems used
for high-performance cluster computing (HPC).

Large scientific applications consist of compute-
intense behavior intermixed with periods of intense par-
allel I/O, and therefore depend on file systems that can
support high-bandwidth concurrent writes. Parallel Vir-
tual File System (PVFS) [6] and Lustre [23] are open-
source, parallel file systems that provide such applica-
tions with high-speed data access to files. PVFS and Lus-
tre are designed as client-server architectures, with many

clients communicating with multiple I/O servers and one
or more metadata servers, as shown in Figure 1.

Problem diagnosis is even more important in HPC
where the effects of performance problems are magnified
due to long-running, large-scale computations. Current
diagnosis of PVFS problems involve the manual analysis
of client/server logs that record PVFS operations through
code-level print statements. Such (white-box) problem
diagnosis incurs significant runtime overheads, and re-
quires code-level instrumentation and expert knowledge.

Alternatively, we could consider applying existing
problem-diagnosis techniques. Some techniques specify
a service-level objective (SLO) first and then flag run-
time SLO violations—however, specifying SLOs might
be hard for arbitrary, long-running HPC applications.
Other diagnosis techniques first learn the normal (i.e.,
fault-free) behavior of the system and then employ
statistical/machine-learning algorithms to detect runtime
deviations from this learned normal profile—however, it
might be difficult to collect fault-free training data for all
of the possible workloads in an HPC system.

We opt for an approach that does not require the spec-
ification of an SLO or the need to collect training data
for all workloads. We automatically diagnose perfor-
mance problems in parallel file systems by analyzing the
relevant black-box performance metrics on every node.
Central to our approach is our hypothesis (borne out by
observations of PVFS’s and Lustre’s behavior) that fault-
free I/O servers exhibit symmetric (similar) trends in
their storage and network metrics, while a faulty server
appears asymmetric (different) in comparison. A similar
hypothesis follows for the metadata servers. From these
hypotheses, we develop a statistical peer-comparison ap-
proach that automatically diagnoses the faulty server and
identifies the root cause, in a parallel file-system cluster.

The advantages of our approach are that it (i) exhibits
low overhead as collection of OS-level performance met-
rics imposes low CPU, memory, and network demands;
(ii) minimizes training data for typical HPC workloads
by distinguishing between workload changes and perfor-
mance problems with peer-comparison; and (iii) avoids
SLOs by being agnostic to absolute metric values in iden-
tifying whether/where a performance problem exists.
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We validate our approach by studying realistic stor-
age and network problems injected into three file-system
benchmarks (dd, IOzone, and PostMark) in two parallel
file systems, PVFS and Lustre. Interestingly, but perhaps
unsurprisingly, our peer-comparison approach identifies
the faulty node even under workload changes (usually
a source of false positives for most black-box problem-
diagnosis techniques). We also discuss our experiences,
particularly the utility of specific metrics for diagnosis.

2 Problem Statement
Our research is motivated by the following questions: (i)
can we diagnose the faulty server in the face of a per-
formance problem in a parallel file system, and (ii) if so,
can we determine which resource (storage or network) is
causing the problem?

Goals. Our approach should exhibit:

• Application-transparency so that PVFS/Lustre appli-
cations do not require any modification. The approach
should be independent of PVFS/Lustre operation.

• Minimal false alarms of anomalies in the face of legit-
imate behavioral changes (e.g., workload changes due
to increased request rate).

• Minimal instrumentation overhead so that instru-
mentation and analysis does not adversely impact
PVFS/Lustre’s operation.

• Specific problem coverage that is motivated by anec-
dotes of performance problems in a production paral-
lel file-system deployment (see § 4).

Non-Goals. Our approach does not support:

• Code-level debugging. Our approach aims for coarse-
grained problem diagnosis by identifying the culprit
server, and where possible, the resource at fault. We
currently do not aim for fine-grained diagnosis that
would trace the problem to lines of PVFS/Lustre code.

• Pathological workloads. Our approach relies on I/O
servers exhibiting similar request patterns. In paral-
lel file systems, the request pattern for most work-
loads is similar across all servers—requests are either
large enough to be striped across all servers or random
enough to result in roughly uniform access. However,
some workloads (e.g., overwriting the same portion
of a file repeatedly, or only writing stripe-unit-sized
records to every stripe-count offset) make requests dis-
tributed to only a subset, possibly one, of the servers.

• Diagnosis of non-peers. Our approach fundamentally
cannot diagnose performance problems on non-peer
nodes (e.g., Lustre’s single metadata server).

Hypotheses. We hypothesize that, under a perfor-
mance fault in a PVFS or Lustre cluster, OS-level perfor-
mance metrics should exhibit observable anomalous be-
havior on the culprit servers. Additionally, with knowl-

network

clients

I/O�servers

ios0 ios1 ios2 iosN mds0 mdsM

metadata

servers

Figure 1: Architecture of parallel file systems, showing
the I/O servers and the metadata servers.

edge of PVFS/Lustre’s overall operation, we hypothe-
size that the statistical trends of these performance data:
(i) should be similar (albeit with inevitable minor differ-
ences) across fault-free I/O servers, even under workload
changes, and (ii) will differ on the culprit I/O server, as
compared to the fault-free I/O servers.

Assumptions. We assume that a majority of the I/O
servers exhibit fault-free behavior, that all peer server
nodes have identical software configurations, and that
the physical clocks on the various nodes are synchro-
nized (e.g., via NTP) so that performance data can be
temporally correlated across the system. We also assume
that clients and servers are comprised of homogeneous
hardware and execute homogeneous workloads. These
assumptions are reasonable in HPC environments where
homogeneity is both deliberate and critical to large scale
operation. Homogeneity of hardware and client work-
loads is not strictly required for our diagnosis approach
(§ 12 describes our experience with heterogeneous hard-
ware). However we have not yet tested our approach with
deliberately heterogeneous hardware or workloads.

3 Background: PVFS & Lustre
PVFS clusters consist of one or more metadata servers
and multiple I/O servers that are accessed by one or more
PVFS clients, as shown in Figure 1. The PVFS server
consists of a single monolithic user-space daemon that
may act in either or both metadata and I/O server roles.

PVFS clients consist of stand-alone applications that
use the PVFS library (libpvfs2) or MPI applications that
use the ROMIO MPI-IO library (that supports PVFS in-
ternally) to invoke file operations on one or more servers.
PVFS can also plug in to the Linux Kernel’s VFS in-
terface via a kernel module that forwards the client’s
syscalls (requests) to a user-space PVFS client daemon
that then invokes operations on the servers. This ker-
nel client allows PVFS file systems to be mounted under
Linux similar to other remote file systems like NFS.

With PVFS, file-objects are distributed across all I/O
servers in a cluster. In particular, file data is striped
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across each I/O server with a default stripe size of 64 kB.
For each file-object, the first stripe segment is located
on the I/O server to which the object handle is assigned.
Subsequent segments are accessed in a round-robin man-
ner on each of the remaining I/O servers. This character-
istic has significant implications on PVFS’s throughput
in the event of a performance problem.

Lustre clusters consist of one active metadata server
which serves one metadata target (storage space), one
management server which may be colocated with the
metadata server, and multiple object storage servers
which serve one or more object storage targets each.
The metadata and object storage servers are analogous to
PVFS’s metadata and I/O servers with the main distinc-
tion of only allowing for a single active metadata server
per cluster. Unlike PVFS, the Lustre server is imple-
mented entirely in kernel space as a loadable kernel mod-
ule. The Lustre client is also implemented as a kernel
space file-system module, and like PVFS, provides file
system access via the Linux VFS interface. A userspace
client library (liblustre) is also available.

Lustre allows for the configurable striping of file data
across one or more object storage targets. By default, file
data is stored on a single target. The stripe_count
parameter may be set on a per-file, directory, or file-
system basis to specify the number of object storage tar-
gets that file data is striped over. The stripe_size
parameter specifies the stripe unit size and may be con-
figured to multiples of 64 kB, with a default of 1 MB (the
maximum payload size of a Lustre RPC).

4 Motivation: Real Problem Anecdotes
The faults we study here are motivated by the
PVFS developers’ anecdotal experience [5] of problems
faced/reported in various production PVFS deployments,
one of which is Argonne National Laboratory’s 557
TFlop Blue Gene/P (BG/P) PVFS cluster. Accounts
of experience with BG/P indicate that storage/network
problems account for approximately 50%/50% of perfor-
mance issues [5]. A single poorly performing server has
been observed to impact the behavior of the overall sys-
tem, instead of its behavior being averaged out by that
of non-faulty nodes [5]. This makes it difficult to trou-
bleshoot system-wide performance issues, and thus, fault
localization (i.e., diagnosing the faulty server) is a criti-
cal first step in root-cause analysis.

Anomalous storage behavior can result from a number
of causes. Aside from failing disks, RAID controllers
may scan disks during idle times to proactively search
for media defects [13], inadvertently creating disk con-
tention that degrades the throughput of a disk array [25].
Our disk-busy injected problem (§ 5) seeks to emulate
this manifestation. Another possible cause of a disk-busy
problem is disk contention due to the accidental launch

of a rogue processes. For example, if two remote file
servers (e.g., PVFS and GPFS) are collocated, the startup
of a second server (GPFS) might negatively impact the
performance of the server already running (PVFS) [5].

Network problems primarily manifest in packet-loss
errors, which is reported to be the “most frustrating” [sic]
to diagnose [5]. Packet loss is often the result of faulty
switch ports that enter a degraded state when packets can
still be sent but occasionally fail CRC checks. The re-
sulting poor performance spreads through the rest of the
network, making problem diagnosis difficult [5]. Packet
loss might also be the result of an overloaded switch that
“just can’t keep up” [sic]. In this case, network diagnos-
tic tests of individual links might exhibit no errors, and
problems manifest only while PVFS is running [5].

Errors do not necessarily manifest identically under all
workloads. For example, SANs with large write caches
can initially mask performance problems under write-
intensive workloads and thus, the problems might take a
while to manifest [5]. In contrast, performance problems
in read-intensive workloads manifest rather quickly.

A consistent, but unfortunate, aspect of performance
faults is that they result in a “limping-but-alive” mode,
where system throughput is drastically reduced, but the
system continues to run without errors being reported.
Under such conditions, it is likely not possible to iden-
tify the faulty node by examining PVFS/application logs
(neither of which will indicate any errors) [5].

Fail-stop performance problems usually result in an
outright server crash, making it relatively easy to iden-
tify the faulty server. Our work targets the diagno-
sis of non-fail-stop performance problems that can de-
grade server performance without escalating into a server
crash. There are basically three resources—CPU, stor-
age, network—being contended for that are likely to
cause throughput degradation. CPU is an unlikely bot-
tleneck as parallel file systems are mostly I/O-intensive,
and fair CPU scheduling policies should guarantee that
enough time-slices are available. Thus, we focus on the
remaining two resources, storage and network, that are
likely to pose performance bottlenecks.

5 Problems Studied for Diagnosis
We separate problems involving storage and network re-
sources into two classes. The first class is hog faults,
where a rogue process on the monitored file servers in-
duces an unusually high workload for the specific re-
source. The second class is busy or loss faults, where
an unmonitored (i.e., outside the scope of the server
OSes) third party creates a condition that causes a per-
formance degradation for the specific resource. To ex-
plore all combinations of problem resource and class, we
study the diagnosis of four problems—disk-hog, disk-
busy, network-hog, packet-loss (network-busy).
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Metric [s/n]∗ Significance
tps [s] Number of I/O (read and write) requests made

to the disk per second.
rd_sec [s] Number of sectors read from disk per second.
wr_sec [s] Number of sectors written to disk per second.
avgrq-sz [s] Average size (in sectors) of disk I/O requests.
avgqu-sz [s] Average number of queued disk I/O requests;

generally a low integer (0–2) when the disk is
under-utilized; increases to ≈100 as disk uti-
lization saturates.

await [s] Average time (in milliseconds) that a request
waits to complete; includes queuing delay and
service time.

svctm [s] Average service time (in milliseconds) of I/O
requests; is the pure disk-servicing time; does
not include any queuing delay.

%util [s] Percentage of CPU time in which I/O requests
are made to the disk.

rxpck [n] Packets received per second.
txpck [n] Packets transmitted per second.
rxbyt [n] Bytes received per second.
txbyt [n] Bytes transmitted per second.
cwnd [n] Number of segments (per socket) allowed to be

sent outstanding without acknowledgment.

∗Denotes storage (s) or network (n) related metric.

Table 1: Black-box, OS-level performance metrics col-
lected for analysis.

Disk-hogs can result from a runaway, but other-
wise benign, process. They may occur due to unex-
pected cron jobs, e.g., an updatedb process gen-
erating a file/directory index for GNU locate, or a
monthly software-RAID array verification check. Disk-
busy faults can also occur in shared-storage systems due
to a third-party/unmonitored node that runs a disk-hog
process on the shared-storage device; we view this dif-
ferently from a regular disk-hog because the increased
load on the shared-storage device is not observable as a
throughput increase at the monitored servers.

Network-hogs can result from a local traffic-emitter
(e.g., a backup process), or the receipt of data during a
denial-of-service attack. Network-hogs are observable as
increased throughput (but not necessarily “goodput”) at
the monitored file servers. Packet-loss faults might be the
result of network congestion, e.g., due to a network-hog
on a nearby unmonitored node or due to packet corrup-
tion and losses from a failing NIC.

6 Instrumentation
For our problem diagnosis, we gather and analyze OS-
level performance metrics, without requiring any modi-
fications to the file system, the applications or the OS.

In Linux, OS-level performance metrics are made
available as text files in the /proc pseudo file sys-
tem. Table 1 describes the specific metrics that we col-
lect. Most /proc data is collected via sysstat 7.0.0’s
sadc program [12]. sadc is used to periodically gather

storage- and network-related metrics (as we are primar-
ily concerned with performance problems due to stor-
age and network resources, although other kinds of met-
rics are available) at a sampling interval of one second.
For storage resources sysstat provides us with throughput
(tps, rd_sec, wr_sec) and latency (await, svctm)
metrics, and for network resources it provides us with
throughput (rxpck, txpck, rxbyt, txbyt) metrics.

Unfortunately sysstat provides us only with through-
put data for network resources. To obtain congestion data
as well, we sample the contents of /proc/net/tcp,
on both clients and servers, once every second. This
gives us TCP congestion-control data [22] in the form
of the sending congestion-window (cwnd) metric.

6.1 Parallel File-System Behavior
We highlight our (empirical) observations of PVFS’s/
Lustre’s behavior that we believe is characteristic of
stripe-based parallel file systems. Our preliminary stud-
ies of two other parallel file systems, GlusterFS [2] and
Ceph [26], also reveal similar insights, indicating that our
approach might apply to parallel file systems in general.

[Observation 1] In a homogeneous (i.e., identical
hardware) cluster, I/O servers track each other closely
in throughput and latency, under fault-free conditions.
For N I/O servers, I/O requests of size greater than (N −
1)× stripe_size results in I/O on each server for a single
request. Multiple I/O requests on the same file, even for
smaller request sizes, will quickly generate workloads1

on all servers. Even I/O requests to files smaller than
stripe_size will generate workloads on all I/O servers,
as long as enough small files are read/written. We ob-
served this for all three target benchmarks, dd, IOzone,
and PostMark. For metadata-intensive workloads, we ex-
pect that metadata servers also track each other in propor-
tional magnitudes of throughput and latency.

[Observation 2] When a fault occurs on at least one of
the I/O servers, the other (fault-free) I/O servers experi-
ence an identical drop in throughput.
When a client syscall involves requests to multiple I/O
servers, the client must wait for all of these servers to re-
spond before proceeding to the next syscall.2 Thus, the
client-perceived cluster performance is constrained by
the slowest server. We call this the bottlenecking condi-
tion. When a server experiences a performance fault, that
server’s per-request service-time increases. Because the

1Pathological workloads might not result in equitable workload dis-
tribution across I/O servers; one server would be disproportionately
deluged with requests, while the other servers are idle, e.g., a workload
that constantly rewrites the same stripe_size chunk of a file.

2Since Lustre performs client side caching and readahead, client I/O
syscalls may return immediately even if the corresponding file server
is faulty. Even so, a maximum of 32 MB may be cached (or 40 MB
pre-read) before Lustre must wait for responses.
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Figure 2: Peer-asymmetry of rd_sec for iozoner
workload with disk-hog fault.

client blocks on the syscall until it receives all server re-
sponses, the client’s syscall-service time also increases.
This leads to slower application progress and fewer re-
quests per second from the client, resulting in a propor-
tional decrease in throughput on all I/O servers.

[Observation 3] When a performance fault occurs on
at least one of the I/O servers, the other (fault-free) I/O
servers are unaffected in their per-request service times.

Because there is no server-server communication (i.e.,
no server inter-dependencies), a performance problem at
one server will not adversely impact latency (per-request
service-time) at the other servers. If these servers were
previously highly loaded, latency might even improve
(due to potentially decreased resource contention).

[Observation 4] For disk/network-hog faults,
storage/network-throughput increases at the faulty
server and decreases at the non-faulty servers.

A disk/network-hog fault at a server is due to a third-
party that creates additional I/O traffic that is observed
as increased storage/network-throughput. The additional
I/O traffic creates resource contention that ultimately
manifests as a decrease in file-server throughput on
all servers (causing the bottlenecking condition of ob-
servation 2). Thus, disk- and network-hog faults can
be localized to the faulty server by looking for peer-
divergence (i.e. asymmetry across peers) in the storage-
and network-throughput metrics, respectively, as seen in
Figure 2.

[Observation 5] For disk-busy (packet-loss) faults,
storage- (network-) throughput decreases on all servers.

For disk-busy (packet-loss) faults, there is no asymme-
try in storage (network) throughputs across I/O servers
(because there is no other process to create observable
throughput, and the server daemon has the same through-
put at all the nodes). Instead, there is a symmetric
decrease in the storage-(network-) throughput metrics
across all servers. Because asymmetry does not arise,
such faults cannot be diagnosed, as seen in Figure 3.
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Figure 3: No asymmetry of rd_sec for iozoner
workload with disk-busy fault.
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Figure 4: Peer-asymmetry of await for ddr workload
with disk-hog fault.

[Observation 6] For disk-busy and disk-hog faults,
storage-latency increases on the faulty server and de-
creases at the non-faulty servers.

For disk-busy and disk-hog faults, await, avgqu-sz
and %util increase at the faulty server as the disk’s
responsiveness decreases and requests start to backlog.
The increased await on the faulty server causes an
increased server response-time, making the client wait
longer before it can issue its next request. The additional
delay that the client experiences reduces its I/O through-
put, resulting in the fault-free servers having increased
idle time. Thus, the await and %utilmetrics decrease
asymmetrically on the fault-free I/O servers, enabling a
peer-comparison diagnosis of the disk-hog and disk-busy
faults, as seen in Figure 4.

[Observation 7] For network-hog and packet-loss
faults, the TCP congestion-control window decreases
significantly and asymmetrically on the faulty server.

The goal of TCP congestion control is to allow cwnd to
be as large as possible, without experiencing packet-loss
due to overfilling packet queues. When packet-loss oc-
curs and is recovered within the retransmission timeout
interval, the congestion window is halved. If recovery
takes longer than retransmission timeout, cwnd is re-
duced to one segment. When nodes are transmitting data,
their cwnd metrics either stabilize at high (≈100) val-
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Figure 5: Peer-asymmetry of cwnd for ddw workload
with receive-pktloss fault.

ues or oscillate (between ≈10–100) as congestion is ob-
served on the network. However, during (some) network-
hog and (all) packet-loss experiments, cwnds of connec-
tions to the faulty server dropped by several orders of
magnitude to single-digit values and held steady until the
fault was removed, at which time the congestion window
was allowed to open again. These asymmetric sustained
drops in cwnd enable peer-comparison diagnosis for net-
work faults, as seen in Figure 5.

7 Discussion on Metrics
Although faults present in multiple metrics, not all met-
rics are appropriate for diagnosis as they exhibit incon-
sistent behaviors. Here we describe problematic metrics.

Storage-throughput metrics. There is a notable rela-
tionship between the storage-throughput metrics: tps×
avgrq-sz = rd_sec+ wr_sec. While rd_sec
and wr_sec accurately capture real storage activity
and strongly correlate across I/O servers, tps and
avgrq-sz do not correlate as strongly because a lower
transfer rate may be compensated by issuing larger-sized
requests. Thus, tps is not a reliable metric for diagnosis.

svctm. The impact of disk faults on svctm is incon-
sistent. The influences on storage service times are: time
to locate the starting sector (seek time and rotational de-
lay), media-transfer time, reread/rewrite time in the event
of a read/write error, and delay time to due servicing of
unobservable requests. During a disk fault, servicing of
interleaved requests increases seek time. Thus, for an
unchanged avgrq-sz, svctm will increase asymmet-
rically on the faulty server. Furthermore, during a disk-
busy fault, servicing of unobservable requests further in-
creases svctm due to request delays. However, during a
disk-hog fault, the hog process might be issuing requests
of smaller sizes than PVFS/Lustre. If so, then the associ-
ated decrease in media-transfer time might offset the in-
crease in seek time resulting in a decreased or unchanged
svctm. Thus, svctm is not guaranteed to exhibit asym-
metries for disk-hogs, and therefore is unreliable.

Other metrics. While problems manifest on other
metrics (e.g., CPU usage, context-switch rate), these sec-
ondary manifestations are due to the overall reduction in
I/O throughput during the faulty period, and reveal noth-
ing new. Thus, we do not analyze these metrics.

8 Experimental Set-Up
We perform our experiments on AMD Opteron 1220 ma-
chines, each with 4 GB RAM, two Seagate Barracuda
7200.10 320 GB disks (one dedicated for PVFS/Lustre
storage), and a Broadcom NetXtreme BCM5721 Gigabit
Ethernet controller. Each node runs Debian GNU/Linux
4.0 (etch) with Linux kernel 2.6.18. The machines run
in stock configuration with background tasks turned off.
We conduct experiments with x/y configurations, i.e., the
PVFS x/y cluster comprises y combined I/O and meta-
data servers and x clients, while the equivalent Lustre
x/y cluster comprises y object storage (I/O) servers with
a single object storage target each, a single (dedicated)
metadata server, and x clients. We conduct our experi-
ments for 10/10 and 6/12 PVFS and Lustre clusters;3 in
the interests of space, we explain the 10/10 cluster exper-
iments in detail, but our observations carry to both.

For these experiments PVFS 2.8.0 is used in the de-
fault server (pvfs2-genconfig generated) configu-
ration with two modifications. First, we use the Di-
rect I/O method (TroveMethod directio) to by-
pass the Linux buffer cache for PVFS I/O server storage.
This is required for diagnosis as we otherwise observe
disparate I/O server behavior during IOzone’s rewrite
phase. Although bypassing the buffer cache has no ef-
fect on diagnosis for non-rewrite (e.g., ddw) workloads,
it does improve large write throughput by 10%.

Second, we increase to 4 MB (from 256 kB) the Flow
buffer size (FlowBufferSizeBytes) to allow larger
bulk data transfers and enable more efficient disk usage.
This modification is standard practice in PVFS perfor-
mance tuning, and is required to make our testbed perfor-
mance representative of real deployments. It does not ap-
pear to affect diagnosis capability. In addition, we patch
the PVFS kernel client to eliminate the 128 MB total size
restriction on the /dev/pvfs2-req device request
buffers and to vmalloc memory (instead of kmalloc)
for the buffer page map (bufmap_page_array) to
ensure that larger request buffers are actually allocatable.
We then invoke the PVFS kernel client with 64 MB re-
quest buffers (desc-size parameter) in order to make
the 4 MB data transfers to each of the I/O servers.

For Lustre experiments we use the etch backport
of the Lustre 1.6.6 Debian packages in the default

3Due to a limited number of nodes we were unable to experiment
with higher active client/server ratios. However, with the workloads
and faults tested, an increased number of clients appears to degrade
per-client throughput with no significant change in other behavior.
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server configuration with a single modification to set
the lov.stripecount parameter to −1 to stripe files
across each object storage target (I/O server).

The nodes are rebooted immediately prior to the start
of each experiment. Time synchronization is performed
at boot-time using ntpdate. Once the servers are ini-
tialized and the client is mounted, monitoring agents start
capturing metrics to a local (non-storage dedicated) disk.
sync is then performed, followed by a 15-second sleep,
and the experiment benchmark is run. The benchmark
runs fault-free for 120 seconds prior to fault injection.
The fault is then injected for 300 seconds and then de-
activated. The experiment continues to the completion
of the benchmark, which ideally runs for a total of 600
seconds in the fault-free case. This run time allows the
benchmark to run for at least 180 seconds after a fault’s
deactivation to determine if there are any delayed effects.
We run ten experiments for each workload & fault com-
bination, using a different faulty server for each iteration.

8.1 Workloads
We use five experiment workloads derived from three ex-
periment benchmarks: dd, IOzone, and PostMark. The
same workload is invoked concurrently on all clients.
The first two workloads, ddw and ddr, either write zeros
(from /dev/zero) to a client-specific temporary file or
read the contents of a previously written client-specific
temporary file and write the output to /dev/null.
dd [24] performs a constant-rate, constant-workload

large-file read/write from/to disk. It is the simplest large-
file benchmark to run, and helps us to analyze and under-
stand the system’s behavior prior to running more com-
plicated workloads. ddmodels the behavior of scientific-
computing workloads with constant data-write rates.

Our next two workloads, iozonew and iozoner,
consist of the same file-system benchmark, IOzone
v3.283 [4]. We run iozonew in write/rewrite mode
and iozoner in read/reread mode. IOzone’s behav-
ior is similar to dd in that it has two constant read/write
phases. Thus, IOzone is a large-file I/O-heavy bench-
mark with few metadata operations. However, there is
an fsync and a workload change half-way through.

Our fifth benchmark is PostMark v1.51 [15]. Post-
Mark was chosen as a metadata-server heavy workload
with small file writes (all writes < 64 kB thus, writes oc-
cur only on a single I/O server per file).

Configurations of Workloads. For the ddwworkload,
we use a 17 GB file with a record-size of 40 MB for
PVFS, and a 30 GB file is used with a record-size 10 MB
for Lustre. File sizes are chosen to result in a fault-free
experiment runtime of approximately 600 seconds. The
PVFS record-size was chosen to result in 4 MB bulk data
transfers to each I/O server, which we empirically deter-
mined to be the knee of the performance vs. record-size

curve. The Lustre record-size was chosen to result in
1 MB bulk data transfers to each I/O server—the max-
imum payload size of a Lustre RPC. Since Lustre both
aggregates client writes and performs readahead, varying
the record-size does not significantly alter Lustre read or
write performance. For ddr we use a 27 GB file with a
record-size of 40 MB for PVFS, and a 30 GB file with a
record-size of 10 MB for Lustre (same as ddw).

For both the iozonew and iozoner workloads, we
use an 8 GB file with a record-size of 16 MB (the largest
that IOzone supports) for PVFS. For Lustre we use a
9 GB file with a record-size of 10 MB for iozonew, and
a 16 GB file with the same record-size for iozoner. For
postmark we use its default configuration with 16,000
transactions for PVFS and 53,000 transactions for Lustre
to give a sufficiently long-running benchmark.

9 Fault Injection
In our fault-induced experiments, we inject a single fault
at a time into one of the I/O servers to induce degraded
performance for either network or storage resources. We
inject the following faults:

• disk-hog: a dd process that reads 256 MB blocks (us-
ing direct I/O) from an unused storage disk partition.

• disk-busy: an sgm_dd process [11] that issues low-
level SCSI I/O commands via the Linux SCSI Generic
(sg) driver to read 1 MB blocks from the same unused
storage disk partition.

• network-hog: a third-party node opens a TCP connec-
tion to a listening port on one of the PVFS I/O servers
and sends zeros to it (write-network-hog), or an I/O
server opens a connection and sends zeros to a third
party node (read-network-hog).

• pktloss: a netfilter firewall rule that (probabilistically)
drops packets received at one of the I/O servers with
probability 5% (receive-pktloss), or a firewall rule on
all clients that drops packets incoming from a single
server with probability 5% (send-pktloss).

10 Diagnosis Algorithm
The first phase of the peer-comparison diagnostic algo-
rithm identifies the faulty I/O server for the faults stud-
ied. The second phase performs root-cause analysis to
identify the resource at fault.

10.1 Phase I: Finding the Faulty Server
We considered several statistical properties (e.g., the
mean, the variance, etc. of a metric) as candidates for
peer-comparison across servers, but ultimately chose the
probability distribution function (PDF) of each metric
because it captures many of the metric’s statistical prop-
erties. Figure 6 shows the asymmetry in a metric’s his-
tograms/PDFs between the faulty and fault-free servers.
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Figure 6: Histograms of rd_sec (ddr with disk-hog fault) for one faulty and two non-faulty servers.

Histogram-Based Approach. We determine the
PDFs, using histograms as an approximation, of a
specific black-box metric values over a window of time
(of size WinSize seconds) at each I/O server. To compare
the resulting PDFs across the different I/O servers, we
use a standard measure, the Kullback-Leibler (KL)
divergence [9], as the distance between two distribu-
tion functions, P and Q.4 The KL divergence of a
distribution function, Q, from the distribution function,
P, is given by D(P||Q) = ∑i P(i) log P(i)

Qi . We use a
symmetric version of the KL divergence, given by
D(P||Q) = 1

2 [D(P||Q)+D(Q||P)] in our analysis.
We perform the following procedure for each of metric

of interest. Using i to represent one of these metrics, we
first perform a moving average on i. We then take PDFs
of the smoothed i for two distinct I/O servers at a time
and compute their pairwise KL divergences. A pairwise
KL-divergence value for i is flagged as anomalous if it is
greater than a certain predefined threshold. An I/O server
is flagged as anomalous if its pairwise KL-divergence for
i is anomalous with more than half of the other servers
for at least k of the past 2k− 1 windows. The window
is shifted in time by WinShi f t (there is an overlap of
WinSize −WinShi f t samples between two consecutive
windows), and the analysis is repeated. A server is in-
dicted as faulty if it is anomalous in one or more metrics.

We use a 5-point moving average to ensure that met-
rics reflect average behavior of request processing. We
also use a WinSize of 64, a WinShi f t of 32, and a k of
3 in our analysis to incorporate a reasonable quantity of
data samples per comparison while maintaining a reason-
able diagnosis latency (approximately 90 seconds). We
investigate the useful ranges of these values in § 11.2.

Time Series-Based Approach. We use the histogram-
based approach for all metrics except cwnd. Unlike
other metrics, cwnd tends to be noisy under normal con-
ditions. This is expected as TCP congestion control pre-
vents synchronized connections from fully utilizing link
capacity. Thus cwnd analysis is different from other
metrics as there is no closely-coupled peer behavior.

4Alternatively, earth mover’s distance [20] or another distance mea-
sure may be used instead of KL.

Fortunately, there is a simple heuristic for detect-
ing packet-loss using cwnd. TCP congestion control
responds to packet-loss by halving cwnd, which re-
sults cwnd exponential decay after multiple loss events.
When viewed on a logarithmic scale, sustained packet-
loss results in a linear decrease for each packet lost.

To support analysis of cwnd, we first generate a time-
series by performing a moving average on cwnd with
a window size of 31 seconds. Based on empirical ob-
servation, this attenuates the effect of sporadic transmis-
sion timeout events while enabling reasonable diagnosis
latencies (i.e., under one minute). Then, every second,
a representative value (median) is computed of the log-
cwnd values. A server is indicted if its log-cwnd is less
than a predetermined fraction (threshold) of the median.

Threshold Selection. Both the histogram and time-
series analysis algorithms require thresholds to differ-
entiate between faulty and fault-free servers. We deter-
mine the thresholds through a fault-free training phase
that captures a profile of relative server performance.

We do not need to train against all potential workloads,
instead we train on workloads that are expected to stress
the system to its limits of performance. Since server per-
formance deviates the most when resources are saturated
(and thus, are unable to “keep up” with other nodes),
these thresholds represent the maximum expected perfor-
mance deviations under normal operation. Less intense
workloads, since they do not saturate server resources,
are expected to exhibit better coupled peer behavior.

As the training phase requires training on the spe-
cific file system and hardware intended for problem di-
agnosis, we recommend training with HPC workloads
normally used to stress-test systems for evaluation and
purchase. Ideally these tests exhibit worst-case request
rates, payload sizes, and access patterns expected dur-
ing normal operation so as to saturate resources, and ex-
hibit maximally-expected request queuing. In our exper-
iments, we train with 10 iterations of the ddr, ddw, and
postmark fault-free workloads. The same metrics are
captured during training as when performing diagnosis.

To train the histogram algorithm, for each metric, we
start with a minimum threshold value (currently 0.1) and
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increase in increments (of 0.1) until the minimum thresh-
old is determined that eliminates all anomalies on a par-
ticular server. This server-specific threshold is doubled
to provide a cushion that masks minor manifestations
occurring during the fault period. This is based on the
premise that a fault’s primary manifestation will cause a
metric to be sufficiently asymmetric, roughly an order of
magnitude, yielding a “safe window” of thresholds that
can be used without altering the diagnosis.

Training the time-series algorithm is similar, except
that the final threshold is not doubled as the cwnd met-
ric is very sensitive, yielding a much smaller correspond-
ing “safe window”. Also, only two thresholds are deter-
mined for cwnd, one for all servers sending to clients,
and one for clients sending to servers. As cwnd is gen-
erally not influenced by the performance of specific hard-
ware, its behavior is consistent across nodes.

10.2 Phase II: Root-Cause Analysis
In addition to identifying the faulty server, we also infer
the resource that is the root cause of the problem through
an expert derived checklist. This checklist, based on our
observations (§ 6.1) of PVFS’s/Lustre’s behavior, maps
sets of peer-divergent metrics to the root cause. Where
multiple metrics may be used, the specific metrics se-
lected are chosen for consistency of behavior (see § 7).
If we observe peer-divergence at any step of the check-
list, we halt at that step and arrive at the root cause and
faulty server. If peer-divergence is not observed at that
step, we continue to the next step of decision-making.

Do we observe peer-divergence in . . .

1. Storage throughput? Yes: disk-hog fault
(rd_sec or wr_sec) No: next question

2. Storage latency? Yes: disk-busy fault
(await) No: . . .

3. Network throughput?∗ Yes: network-hog fault
(rxbyt or txbyt) No: . . .

4. Network congestion? Yes: packet-loss fault
(cwnd) No: no fault discovered

∗Must diverge in both rxbyt & txbyt, or in absence of peer-
divergence in cwnd (see § 12).

11 Results
PVFS Results. Tables 2 and 3 shows the accuracy
(true- and false-positive rates) of our diagnosis algorithm
in indicting faulty nodes (ITP/IFP) and diagnosing root
causes (DTP/DFP)5 for the PVFS 10/10 & 6/12 clusters.

5ITP is the percentage of experiments where all faulty servers are
correctly indicted as faulty, IFP is the percentage where at least one
non-faulty server is misindicted as faulty. DTP is the percentage of
experiments where all faults are successfully diagnosed to their root
causes, DFP is the percentage where at least one fault is misdiagnosed

Fault ITP IFP DTP DFP
None (control) 0.0% 0.0% 0.0% 0.0%
disk-hog 100.0% 0.0% 100.0% 0.0%
disk-busy 90.0% 2.0% 90.0% 2.0%
write-network-hog 92.0% 0.0% 84.0% 8.0%
read-network-hog 100.0% 0.0% 100.0% 0.0%
receive-pktloss 42.0% 0.0% 42.0% 0.0%
send-pktloss 40.0% 0.0% 40.0% 0.0%
Aggregate 77.3% 0.3% 76.0% 1.4%

Table 2: Results of PVFS diagnosis for the 10/10 cluster.

Fault ITP IFP DTP DFP
None (control) 0.0% 2.0% 0.0% 2.0%
disk-hog 100.0% 0.0% 100.0% 0.0%
disk-busy 100.0% 0.0% 100.0% 0.0%
write-network-hog 42.0% 2.0% 0.0% 44.0%
read-network-hog 0.0% 2.0% 0.0% 2.0%
receive-pktloss 54.0% 6.0% 54.0% 6.0%
send-pktloss 40.0% 2.0% 40.0% 2.0%
Aggregate 56.0% 2.0% 49.0% 8.0%

Table 3: Results of PVFS diagnosis for the 6/12 cluster.

It is notable that not all faults manifest equally on
all workloads. disk-hog, disk-busy, and read-network-
hog all exhibit a significant (> 10%) runtime increase for
all workloads. In contrast, the receive-pktloss and send-
pktloss only have significant impact on runtime for write-
heavy and read-heavy workloads respectively. Corre-
spondingly, faults with greater runtime impact are of-
ten the most reliably diagnosed. Since packet-loss faults
have negligible impact on ddr & ddw ACK flows and
postmark (where lost packets are recovered quickly),
it is reasonable to expect to not be able to diagnose them.

When removing the workloads for which packet-loss
cannot be observed (and thus, not diagnosed), the aggre-
gate diagnosis rates improve to 96.3% ITP and 94.6%
DTP in the 10/10 cluster, and to 67.2% ITP and 58.8%
DTP in the 6/12 cluster.

Lustre Results. Tables 4 and 5 shows the accuracy of
our diagnosis algorithm for the Lustre 10/10 & 6/12 clus-
ters. When removing workloads for which packet-loss
cannot be observed, the aggregate diagnosis rates im-
prove to 92.5% ITP and 86.3% DTP in the 10/10 cluster,
and to 90.0% ITP and 82.1% DTP in the 6/12 case.

Both 10/10 clusters exhibit comparable accuracy rates.
In contrast, the PVFS 6/12 cluster exhibits masked
network-hogs faults (fewer true-positives) due to low
network throughput thresholds from training with unbal-
anced metadata request workloads (see § 12). The Lus-
tre 6/12 cluster exhibits more misdiagnoses (higher false-
positives) due to minor, secondary manifestations in stor-
age throughput. This suggests that our analysis algorithm
may be refined with a ranking mechanism that allows di-
agnosis to tolerate secondary manifestations (see § 14).

to a wrong root cause (including misindictments).
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Fault ITP IFP DTP DFP
None (control) 0.0% 0.0% 0.0% 0.0%
disk-hog 82.0% 0.0% 82.0% 0.0%
disk-busy 88.0% 2.0% 68.0% 22.0%
write-network-hog 98.0% 2.0% 96.0% 4.0%
read-network-hog 98.0% 2.0% 94.0% 6.0%
receive-pktloss 38.0% 4.0% 36.0% 6.0%
send-pktloss 40.0% 0.0% 38.0% 2.0%
Aggregate 74.0% 1.4% 69.0% 5.7%

Table 4: Results of Lustre diagnosis for the 10/10 cluster.

Fault ITP IFP DTP DFP
None (control) 0.0% 6.0% 0.0% 6.0%
disk-hog 100.0% 0.0% 100.0% 0.0%
disk-busy 76.0% 8.0% 38.0% 46.0%
write-network-hog 86.0% 14.0% 86.0% 14.0%
read-network-hog 92.0% 8.0% 92.0% 8.0%
receive-pktloss 40.0% 2.0% 40.0% 2.0%
send-pktloss 38.0% 8.0% 38.0% 8.0%
aggregate 72.0% 6.6% 65.7% 12.0%

Table 5: Results of Lustre diagnosis for the 6/12 cluster.

11.1 Diagnosis Overheads & Scalability
Instrumentation Overhead. Table 6 reports runtime
overheads for instrumentation of both PVFS and Lus-
tre for our five workloads. Overheads are calculated as
the increase in mean workload runtime (for 10 iterations)
with respect to their uninstrumented counterparts. Nega-
tive overheads are result of sampling error, which is high
due runtime variance across experiments. The PVFS
workload with the least runtime variance (iozoner) ex-
hibits, with 99% confidence, a runtime overhead < 1%.
As the server load of this workload is comparable to the
others, we conclude that OS-level instrumentation has
negligible impact on throughput and performance.

Data Volume. The performance metrics collected by
sadc have an uncompressed data volume of 3.8 kB/s on
each server node, independent of workload or number
of clients. The congestion-control metrics sampled from
/proc/net/tcp have a data volume of 150 B/s per
socket on each client & server node. While the volume of
congestion-control data linearly increases with number
of clients, it is not necessary to collect per-socket data for
all clients. At minimum, congestion-control data needs
to be collected for only a single active client per time
window. Collecting congestion-control data from addi-
tional clients merely ensures that server packet-loss ef-
fects are observed by a representative number of clients.

Algorithm Scalability. Our analysis code requires, ev-
ery second, 3.44 ms per server and 182 µs per server pair
of CPU time on a 2.4 GHz dedicated core to diagnose a
fault if any exists. Therefore, realtime diagnosis of up to
88 servers may be supported on a single 2.4 GHz core.

Although the pairwise analysis algorithm is O(n2), we
recognize that it is not necessary to compare a given

Overhead for File System
Workload PVFS Lustre

ddr 0.90% ± 0.62% 1.81% ± 1.71%
ddw 0.00% ± 1.03% −0.22% ± 1.18%
iozoner −0.07% ± 0.37% 0.70% ± 0.98%
iozonew −0.77% ± 1.62% 0.53% ± 2.71%
postmark −0.58% ± 1.49% 0.20% ± 1.28%

Table 6: Instrumentation overhead: Increase in runtime
w.r.t. non-instrumented workload ± standard error.

server against all others in every analysis window. To
support very large clusters (thousands of servers), we
recommend partitioning n servers into n− k analysis do-
mains of k (e.g., 10) servers each, and only performing
pairwise comparisons within these partitions. To avoid
undetected anomalies that might develop in static parti-
tions, we recommend rotating partition membership in
each analysis window. Although we have not yet tested
this technique, it does allow for O(n) scalability.

11.2 Sensitivity
Histogram moving-average span. Due to large record
sizes, some workload & fault combinations (e.g., ddr
& disk-busy) yield request processing times up to 4 s.
As client requests often synchronize (see § 12), metrics
may reflect distinct request processing stages instead of
aggregate behavior. For example, during a disk fault,
the faulty server performs long, low-throughput storage
operations while fault-free servers perform short, high-
throughput operations. At 1 s resolution, these behaviors
reflect asymmetrically in many metrics. While this fea-
ture results in high (79%) ITP rates, its presence in nearly
all metrics results in high (10%) DFP rates as well. Fur-
thermore, since the influence of this feature is dependent
on workload and number of clients, it is not reliable, and
therefore, it is important to perform metric smoothing.

However, “too much” smoothing eliminates medium-
term variances, decreasing TP and increasing FP rates.
With 9-point smoothing, DFP (11%) exceeds un-
smoothed while DTP reduces by 11% to 58.3%. There-
fore we chose 5-point smoothing to minimize IFP (2.4%)
and DFP (6.7%) with a modest decrease in DTP (64.9%).

Anomalous window filtering. In histogram-based
analysis, servers are flagged anomalous only if they
demonstrate anomalies in k of the past 2k− 1 windows.
This filtering reduces false-positives in the event of spo-
radic anomalous windows when no underlying fault is
present. k in the range 3–7 exhibits a consistent 6% in-
crease in ITP/DTP and a 1% decrease in IFP/DFP over
the non-filtered case. For k ≥ 8, the TP/FP rates de-
crease/increase again. We expect k’s useful-range upper-
bound to be a function of the time that faults manifest.

cwnd moving-average span. For cwnd analysis a
moving average is performed on the time series to atten-
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uate the effect of sporadic transmission timeouts. This
enforces the condition that timeout events sustain for a
reasonable time period, similar to anomalous window
filtering. Spans in the range 5–31, with 31 the largest
tested, exhibit a consistent 8% increase in ITP/DTP and
a 1% decrease in IFP/DFP over the non-smoothed case.

WinSize & WinShift. Seven WinSizes of 32–128 with
16 sample steps, and seven WinShi f ts of 16–64 with 8
sample steps were tested to determine diagnosis influ-
ence. All WinSizes ≥ 48 and WinShi f ts ≥ 32 were com-
parable in performance (62–66% DTP, 6–9% DFP). Thus
for sufficiently large values, diagnosis is not sensitive.

Histogram threshold scale factor. Histogram thresh-
olds are scaled by a factor (currently 2x) to provide a
cushion against secondary, minor fault manifestations
(see § 10.1). At 1x, FP rates increase to 19%/23%
IFP/DFP. 1.5x reduces this to 3%/8% IFP/DFP. On
the range 2–4x ITP/DTP decreases from 70%/65% to
54%/48% as various metrics are masked, while IFP/DFP
hold at 2%/7% as no additional misdiagnoses occur.

12 Experiences & Lessons
We describe some of our experiences, highlighting coun-
terintuitive or unobvious issues that arose.

Heterogeneous Hardware. Clusters with heteroge-
neous hardware will exhibit performance characteristics
that might violate our assumptions. Unfortunately, even
supposedly homogeneous hardware (same make, model,
etc.) can exhibit slightly different performance behaviors
that impede diagnosis. These differences mostly mani-
fest when the devices are stressed to performance limits
(e.g., saturated disk or network).

Our approach can compensate for some deviations in
hardware performance as long as our algorithm is trained
for stressful workloads where these deviations manifest.
The tradeoff, however, is that performance problems of
lower severity (whose impact is less than normal devia-
tions) may be masked. Additionally, there may be fac-
tors that are non-linear in influence. For example, buffer-
cache thresholds are often set as a function of the amount
of free memory in a system. Nodes with different mem-
ory configurations will have different caching seman-
tics, with associated non-linear performance changes that
cannot be easily accounted for during training.

Multiple Clients. Single- vs. multi-client workloads
exhibit performance differences. In PVFS clusters with
caching enabled, the buffer cache aggregates contigu-
ous small writes for single-client workloads, consider-
ably improving throughput. The buffer cache is not as ef-
fective with small writes in multi-client workloads, with
the penalty due to interfering seeks reducing throughput
and pushing disks to saturation.
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Figure 7: Single (top) and multiple (bottom) client
cwnds for ddw workloads with receive-pktloss faults.
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Figure 8: Disk-busy fault influence on faulty server’s
cwnd for ddr workload.

This also impacts network congestion (see Figure 7).
Single-client write workloads create single-source bulk
data transfers, with relatively little network congestion.
This creates steady client cwnds that deviate sharply
during a fault. Multi-client write workloads create multi-
source bulk data transfers, leading to interference, con-
gestion and chaotic, widely varying cwnds. While a
faulty server’s cwnds are still distinguishable, this high-
lights the need to train on stressful workloads.

Cross-Resource Fault Influences. Faults can exhibit
cross-metric influence on a single resource, e.g., a disk-
hog creates increased throughput on the faulty disk, sat-
urating that disk, increasing request queuing and latency.

Faults affecting one resource can manifest unintu-
itively in another resource’s metrics. Consider a disk-
busy fault’s influence on the faulty server’s cwnd for a



54 FAST ’10: 8th USENIX Conference on File and Storage Technologies USENIX Association

large read workload (see Figure 8). cwnd is updated
only when a server is both sending and experiencing con-
gestion; thus, cwnd does not capture the degree of net-
work congestion when a server is not sending data. Un-
der a disk-busy fault, (i) a single client would send re-
quests to each server, (ii) the fault-free servers would re-
spond quickly and then idle, and (iii) the faulty server
would respond after a delayed disk-read request.

PVFS’ lack of client read-ahead blocks clients on
the faulty server’s responses, effectively synchronizing
clients. Bulk data transfers occur in phases (ii) and (iii).
During phase (ii), all fault-free servers transmit, creating
network congestion and chaotic cwnd values, whereas
during phase (iii), only the faulty server transmits, ex-
periencing almost no congestion and maintaining a sta-
ble, high cwnd value. Thus, the faulty server’s cwnd is
asymmetric w.r.t. the other servers, mistakenly indicat-
ing a network-related fault instead of a disk-busy fault.

We can address this by assigning greater weight to
storage-metric anomalies over network-metric anomalies
in our root-cause analysis (§ 10.2). With Lustre’s client
read-ahead, read calls are not as synchronized across
clients, and this influence does not manifest as severely.

Metadata Request Heterogeneity. Our peer-similarity
hypothesis does not apply to PVFS metadata servers.
Specifically, since each PVFS directory entry is stored
in a single server, server requests are unbalanced during
path lookups, e.g., the server containing the directory “/”
is involved in nearly all lookups, becoming a bottleneck.

We address this heterogeneity by training on the
postmark metadata-heavy workload. Unbalanced
metadata requests create a spread in network-throughput
metrics for each server, contributing to a larger training
threshold. If the request imbalance is significant, the re-
sulting large threshold for network-throughput metrics
will mask nearly all network-hog faults.

Buried ACKs. Read/write-network-hogs induce de-
viations in both receive and send network-throughput
due to the network-hog’s payload and associated ac-
knowledgments. Since network-hog ACK packets are
smaller than data packets, they can easily be “buried”
in the network-throughput due to large-I/O traffic. Thus,
network-hogs can appear to influence only one of rxbyt
or txbyt, for read or write workloads, respectively.
rxpck and txpck metrics are immune to this ef-

fect, and can be used as alternatives for rxbyt and
txbyt for network-hog diagnosis. Unfortunately, the
non-homogeneous nature of metadata operations (in par-
ticular, postmark) result in rxpck/txpck fault man-
ifestations being masked in most circumstances.

Delayed ACKs. In contradiction to Observation 5, a
receive-(send-) packet-loss fault during a large-write
(large-read) workload can cause a steady receive (send)

network throughput on the faulty node and asymmetric
decreases on non-faulty nodes. Since the receive (send)
throughput is almost entirely comprised of ACKs, this
phenomenon is the result of delayed ACK behavior.

Delayed ACKs reduce ACK traffic by acknowledg-
ing every other packet when packets are received in or-
der, effectively halving the amount of ACK traffic that
would otherwise be needed to acknowledge packets 1:1.
During packet-loss, each out-of-order packet is acknowl-
edged 1:1 resulting in an effective doubling of receive
(send) throughput on the faulty server as compared to
non-faulty nodes. Since the packet-loss fault itself results
in, approximately, a halving of throughput, the overall
behavior is a steady or slight increase in receive (sent)
throughput on the faulty node during the fault period.

Network Metric Diagnosis Ambiguity. A single net-
work metric is insufficient for diagnosis of network
faults because of three properties of network through-
put and congestion. First, write-network-hogs during
write workloads create enough congestion to deviate the
client cwnd; thus, cwnd is not an exclusive indicator
of a packet-loss fault. Second, delayed ACKs contribute
to packet-loss faults manifesting as network-throughput
deviations, on rxbyt or txbyt; thus, the absence of
a throughput deviation in the presence of a cwnd does
not sufficiently diagnose all packet-loss faults. Third,
buried ACKs contribute to network-hog faults manifest-
ing in only one of rxbyt and txbyt, but not both; thus,
the presence of both rxbyt and txbyt deviations does
not sufficiently indicate all network-hog faults.

Thus, we disambiguate network faults in the third
root-cause analysis step as follows. If both rxbyt
and txbyt are asymmetric across servers, regardless
of cwnd, a network-hog fault exists. If either rxbyt
or txbyt is asymmetric, in the absence of cwnd, a
network-hog fault exists. If cwnd is asymmetric regard-
less of either rxbyt or txbyt (but not both, due to the
first rule above), then a packet-loss fault exists.

13 Related Work
Peer-comparison Approaches. Our previous work
[14] utilizes a syscall-based approach to diagnosing per-
formance problems in addition to propagated errors and
crash/hang problems in PVFS. Currently, the perfor-
mance metric approach described here is capable of more
accurate diagnosis of performance problems with supe-
rior root-cause determination as compared to the syscall-
based approach, although the syscall approach is capa-
ble of diagnosing non-performance problems in PVFS
that would otherwise escape diagnosis here. The syscall-
based approach also has a significantly higher worst-
observed runtime overhead (≈65%) and per-server data
volumes on the order of 1 MB/s, raising performance and
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scalability concerns in larger deployments.
Ganesha [18], seeks to diagnose performance-related

problems in Hadoop by classifying slave nodes, via clus-
tering of performance metrics, into behavioral profiles
which are then peer-compared to indict nodes behaving
anomalously. While the node indictment methods are
similar, our work peer-compares a limited set of perfor-
mance metrics directly (without clustering), which en-
ables us to attribute the affected metrics to a root-cause.
In contrast, Ganesha is limited to identifying faulty nodes
only, it does not perform root-cause analysis.

The closest non-authored work is Mirgorodskiy et
al. [17], which localizes code-level problems by trac-
ing function calls and peer comparing their execution
times across nodes to identify anomalous nodes in an
HPC cluster. As a debugging tool, it is designed to lo-
cate the specific functions where problems manifest in
cluster software. The performance problems studied in
our work tend to escape diagnosis with their technique
as the problems manifest in increased time spent in the
file servers’ descriptor poll loop that is symmetric across
faulty and fault-free nodes. Thus, our work aims to target
the resource responsible for performance problems.

Metric Selection. Cohen et al. [8] uses a statistical ap-
proach to metric selection for problem diagnosis in large
systems with many available metrics by identifying those
with a high efficacy at diagnosing SLO violations. They
achieve this by a summary and index of system history as
expressed by the available metrics and by marking signa-
tures of past histories as being indicative of a particular
problem, which enables them to diagnose future occur-
rences. Our metric selection is expert-based, since in the
absence of SLOs, we must determine which metrics reli-
ably peer-compare to determine if a problem exists. We
also select metrics based on semantic relevance, so that
we can attribute asymmetries to behavioral indications of
particular problems that hold across different clusters.

Message-based Problem Diagnosis. Many previous
works have focused on path-based [1, 19, 3] and
component-based [7, 16] approaches to problem diag-
nosis in Internet Services. Aguilera et al. [1] treats
components in a distributed system as black-boxes, in-
ferring paths by tracing RPC messages and detecting
faults by identifying request flow paths with abnor-
mally long latencies. Pip [19] traces causal request
flows with tagged messages, which are checked against
programmer-specified expectations. Pip identifies re-
quests and specific lines of code as faulty when they vi-
olate these expectations. Magpie [3] uses expert knowl-
edge of event orderings to trace causal request flows in
a distributed system. Magpie then attributes system re-
source utilizations (e.g. memory, CPU) to individual re-
quests and clusters them by their resource usage profiles

to detect faulty requests. Pinpoint [7, 16] tags request
flows through J2EE web-service systems, and, once a re-
quest is known to have failed, it identifies the responsible
request processing components.

Each of the path- and component-based approaches
rely on tracing of intercomponent messages (e.g., RPCs)
as the primary means of instrumentation. This requires
either modification of the messaging libraries (which, for
parallel file systems is usually contained in server ap-
plication code) or, at minimum, the ability to sniff mes-
sages and extract features from them. Unfortunately, the
message interfaces used by parallel file systems are often
proprietary and insufficiently documented, making such
instrumentation difficult. Hence, our initial attempts to
diagnose problems in parallel file systems specifically
avoid message-level tracing by identifying anomalies
through peer-comparison of global performance metrics.

While performance metrics are lightweight and easy
to obtain, we believe that traces of component-level mes-
sages (i.e., client requests & responses) would serve as a
rich source of behavioral information, and would prove
beneficial in diagnosing problems with subtler manifes-
tations. With the recent standardization of Parallel NFS
[21] as a common interface for parallel storage, future
adoption of this protocol would encourage investigation
of message-based techniques in our problem diagnosis.

14 Future Work
We intend to improve our diagnosis algorithm by incor-
porating a ranking mechanism to account for secondary
fault manifestations. Although our threshold selection
is good at determining whether a fault exists at all in
the cluster, if a fault presents in two metrics with sig-
nificantly different degrees of manifestation, then our al-
gorithm should place precedence on the metric with the
greater manifestation instead of indicting one arbitrarily.

In addition, we intend to validate our diagnosis ap-
proach on a large HPC cluster with a significantly in-
creased client/server ratio and real scientific workloads
to demonstrate our diagnosis capability at scale. We in-
tend to expand our problem coverage to include more
complex sources of performance faults. Finally, we in-
tend to expand our instrumentation to include additional
black-box metrics as well as client request tracing.

15 Conclusion
We presented a black-box problem-diagnosis approach
for performance faults in PVFS and Lustre. We have also
revealed our (empirically-based) insights about PVFS’s
and Lustre’s behavior with regard to performance faults,
and have used these observations to motivate our analysis
approach. Our fault-localization and root-cause analysis
identifies both the faulty server and the resource at fault,
for storage- and network-related problems.
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Abstract
A number of techniques have been proposed to reduce

the risk of data loss in hard-drives, from redundant disks
(e.g., RAID systems) to error coding within individual
drives. Disk scrubbing is a background process that reads
disks during idle periods to detect irremediable read er-
rors in infrequently accessed sectors. Timely detection
of such latent sector errors (LSEs) is important to reduce
data loss.
In this paper, we take a clean-slate look at disk scrub-

bing. We present the first formal definition in the liter-
ature of a scrubbing algorithm, and translate recent em-
pirical results on LSE distributions into new scrubbing
principles. We introduce a new simulation model for
LSE incidence in disks that allows us to optimize our
proposed scrubbing techniques and demonstrate the sig-
nificant benefits of intelligent scrubbing to drive reliabil-
ity. We show how optimal scrubbing strategies depend
on disk characteristics (e.g., the BER rate), as well as
disk workloads.

1 Introduction

With the unremitting growth of digital information in the
world, there is an ever increasing reliance on hard drives
for critical data storage. Hard drives serve not only as
primary storage devices, but due to their growing capac-
ity and dropping prices, they are now an attractive build-
ing block for a range of storage systems, including large-
scale secondary systems (e.g., archival or backup sys-
tems). In these environments, their reliability becomes
significant and needs to be quantified, as some of these
systems demand strict and high availability guarantees.
A significant body of research focuses on designing re-

liable storage systems by adding redundant disks. RAID
systems enhance reliability by storing parity blocks in

redundant arrays. Most systems today employ RAID-5
or RAID-6 mechanisms that are resilient to one or two
simultaneous disk failures, respectively. Data loss in
RAID is amplified by latent sector errors (LSEs), sector
errors in drives that are not detected when they occur, but
only when the disk area is accessed in the normal course
of use. In RAID-5, a disk failure coupled with only one
latent error on another disk induces data loss.

To increase the reliability of both single drives and
RAID systems, researchers have studied techniques such
as intra-disk redundancy [5] or disk scrubbing [15].
Intra-disk redundancy applies an erasure code over a sub-
set (segment) of consecutive sectors in the drive and
stores the parity blocks in the same disk. It protects
against a small number of LSEs in each segment, de-
pending on the parameters of the erasure code.

Disk scrubbing is a background process that reads
disk sectors during idle periods, with the goal of detect-
ing latent sector errors in infrequently accessed blocks.
Most existing systems perform sequential disk scrub-
bing, meaning that they access disk sectors by increas-
ing logical block address, and use a scrubbing rate that
is constant or dependent on the amount of disk idle time.
Mi et al. [9], for instance, suggest that disk scrubbing
should be scheduled whenever the disk is idle in order
to maximize scrubbing rates. A notable exception is the
work of Schwarz et al. [15], which considers alternative
scrubbing strategies with varying rates; the goal is to
minimize disk power-on time in large archival systems
whose disks are generally powered off.

In this paper, we define the first formal model for
scrubbing strategies, along with a performance metric for
the single-drive setting. Through a simulation model, we
empirically search the space of scrubbing strategies and
find optimal points in this space. We translate new results
in the literature on the distribution of LSEs in hard drives

1
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[2] into new scrubbing principles. The main message of
the paper is that by exploiting a richer design space for
scrubbing strategies, we can design better algorithms that
significantly improve current technologies. We have to
note, though, that our results are highly sensitive to some
disk parameters that are not always made public by disk
manufacturers. We hope that this paper will open up a
new line of research that will further refine our results as
more accurate disk failure data becomes available to the
community.
In more detail, our main technical contributions are:

Formal model for scrubbing strategies We give the
first formal model for scrubbing strategies that considers
a number of disk parameters (e.g., disk age, disk model,
disk failure rates), as well as history of disk usage. We
view a scrubbing strategy as a function which, given in-
formation about a drive, outputs the set of sectors to be
scrubbed in the next time interval.
The metrics most commonly used for hard drive re-

liability are MTTF (Mean Time To Failure) for single
drives, and MTTDL (Mean Time To Data Loss) for a
RAID system. For single drive reliability, MTTF mea-
sures the disk lifetime before total failure, and does not
give a measure of its resilience to LSEs. MTTDL is a
systemic measure, and not applicable to the study of er-
rors in a single drive. Thus we define a new metric for
hard drives called MLET (“Mean Latent Error Time”).
MLET captures the percentage of time in which the disk
is susceptible to data loss due to an LSE (and can serve as
a basis for determining MTTDL). We define an optimal
scrubbing strategy for a drive to be one that minimizes
our new MLET metric.

Latent-sector error model Based on the results pre-
sented by Bairavasundaram et al. [2], and known re-
sults about usage-related LSEs [6], we propose a sim-
ple model for LSE development. Our model considers
both age-related and usage-related LSEs, and captures
their spatial and temporal locality. Since we do not have
complete information about LSE distribution from the
academic literature, we derive additional assumptions to
generate a complete LSEmodel. We show that our model
accurately reflects the field data presented by Bairava-
sundaram et al. We believe that our model is of general
interest in the study of LSEs, as it provides a simplified
and efficient tool for experimentation.

Find optimal strategy through simulation Guided by
new empirical results on LSE distributions in the liter-
ature, we identify new scrubbing principles for single

disks, summarized in Table 1. These principles suggest
several new dimensions in the formulation of scrubbing
strategies (e.g., variable scrubbing rates) and lead us to a
newly enriched design space. Using a simulation based
on our proposed LSE model, we search this design space
for MLET-optimal scrubbing strategies. We find an opti-
mal scrubbing strategy which, compared with straight-
forward sequential scrubbing, improves on the MLET
metric by an order of magnitude.

Organization We review related work in Section 2.
We create a model for the distribution of LSEs using the
study of Bairavasundaram et al. [2] and additional as-
sumptions, and validate this model against the study’s
empirical data in Section 3. We define scrubbing strate-
gies formally, introduce our new design dimensions, and
formulate our search space for scrubbing strategies in
Section 4. We describe our simulation model and present
our results on simulation-optimized scrubbing strategies
in Section 5. We conclude in Section 6.

2 Related Work

Several recently published papers have shifted the stor-
age community’s perspective on disk failures in the real
world. Schroeder and Gibson [14] show that annual disk
failure rates are higher than those published by manu-
facturers, and determine that disks do not exhibit expo-
nential times between failures (as commonly believed).
Instead, time between failures is modeled more accu-
rately by a Weibull distribution. Pinheiro et al. [11] offer
statistics on disk survival rates conditioned on various
SMART parameters. The first study on latent sector er-
rors (LSEs) for field data is that of Bairavasundaram et
al. [2]. They show that LSE rates increase linearly with
disk age, and that LSEs are highly correlated, exhibiting
both spatial and temporal locality.
Disk scrubbing is a well known technique used exten-

sively to detect latent sector errors early. Most existing
systems use a sequential scrubbing strategy in which sec-
tors are read from disk in increasing order of their logical
address. In the academic literature, more sophisticated
scrubbing strategies have been proposed by Schwartz et
al. [15] in the context of large archival storage systems.
In such systems, one goal is to keep the disk powered
down as much as possible, and minimize the number of
power ups. Their opportunistic strategy piggybacks on
normal read accesses—scrubbing when a disk is pow-
ered up for another operation. They also propose a sim-
ple, three-state Markov model that captures disk degra-
dation due to scrubbing. Within this analytic model, they

2
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Facts about LSE distribution Corresponding proposed scrubbing principles
1. LSE rate is low in the first 60 days of operation 1. Keep scrubbing rate low during the first 60 days of operation
2. After 60 days, LSE rate is higher, but fairly constant before the first 2. After 60 days, increase scrubbing rate and keep it constant before
LSE develops detecting a first LSE

3. LSEs exhibit temporal locality 3. Increase scrubbing rate after LSE detection
4. LSEs exhibit spatial locality 4. Staggered scrubbing (defined in Section 4.2) is superior to sequential

or randomized scrubbing
5. LSEs develop as a function of disk usage 5. Scrubbing is not free: limit scrubbing rate to avoid collateral LSEs

Table 1: Translation of results on LSEs in the literature into scrubbing principles

calculate the optimal scrubbing rate.
To the best of our knowledge, our work provides the

first general formalization of scrubbing strategies for
hard drives and optimizes such strategies over a large
search space. In contrast to Schwartz et al., we are in-
terested in enterprise disks that are powered up most
of the time, and we do not consider the power-up ef-
fect on reliability. Interestingly, we observe the adverse
effect of aggressive scrubbing, much like Schwartz et
al. While in [15], aggressive scrubbing detrimentally in-
creases the number of disk power ups, in our system ag-
gressive scrubbing triggers LSEs by increasing disk us-
age. Through our newly defined MLET metric, we are
able to capture the effect of usage errors for drive relia-
bility. We thus dispute the common belief that scrubbing
is most effective at maximum capacity.
A number of research papers examine the effect of

scrubbing and LSEs on RAID reliability. In his Ph.D.
thesis [8], Kari developed the first Markov model for
RAID reliability that considers LSEs (in addition to to-
tal disk failures). He obtained theoretical equations for
MTTDL (the RAID reliability metric defined by Patter-
son et al. [10]), assuming that the distribution of LSEs
is exponential. More recently, Elerath and Pecht [6] pro-
pose a 5-state simulation model for RAID-5, in which
both the disk failure and LSE distributions are modeled
by a Weibull probability density function.
Baker et al. [3] provide a reliability model for two-

way mirroring in the context of long-term archival stor-
age. In their Markov model, they consider exponentially
distributed LSEs and their spatial and temporal correla-
tion, which they model via an increased rate in their ex-
ponential distribution. They also show that scrubbing at
a constant rate (every two weeks) reduces MTTDL.
Beyond scrubbing, there exist other single-disk tech-

niques to protect against LSEs. Intra-disk redundancy
schemes (IDR) [5] encode additional redundancy within
the disk itself in the form of erasure codes. Dholakia et
al. [5] propose encoding consecutive disk sectors under a
custom-crafted XOR erasure code. Iliadis et al. [7] com-
pare disk scrubbing and IDR with respect to RAID reli-

ability. Mi et al. [9] consider the problem of scheduling
background activities, including scrubbing and IDR, to
increase the MTTDL metric for RAID. They show that
combining scrubbing and IDR greatly improves RAID
reliability.

3 Modeling the Distribution of Latent Sec-
tor Errors

We model the distribution of latent sector errors (LSEs)
using the data presented in the recent NetApp study of
Bairavasundaram et al. [2]. The NetApp study is the only
published academic paper that gives a substantial char-
acterization of LSE development. That said, the paper
does not contain or reference detailed data: The LSE-
development data sets on which the paper is based are
proprietary, and have not been publicly released. Given
these facts, our only choice to derive a meaningful LSE
model was to reverse engineer some of the graphs pre-
sented in the NetApp paper. We make additional as-
sumptions about LSE development as needed to gener-
ate a complete LSE model. We validate our LSE model
against the graphs provided by the NetApp paper, but, of
course, thorough validation of the model requires access
to real data.

3.1 Results from NetApp study
The NetApp study [2] presents results on the LSE dis-
tribution of 1.53 million disks from various models and
manufacturers over a 24-month period. The disks are di-
vided into two classes: nearline and enterprise. In our
work here, though, we restrict our study to enterprise
disks. The main findings of the NetApp study on en-
terprise disks are summarized below:
1. LSEs develop at a fairly constant rate in the first

two years of a drive’s age. An exception are the first
two months; these exhibit a slightly lower LSE rate. The
fraction of disks developing at least one LSE is highly
variable for different disk models, ranging at the end of
the 24-month study from 1% to 4%.

3
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2. LSEs exhibit spatial locality at the logical address
level, as shown by two graphs in the paper. Figure 5
from the NetApp study shows the probability of another
error within a given radius of an existing LSE. For most
disk models, the probability of another latent error within
10MB of an existing error is 0.5. Figure 6 from the
NetApp study shows the average number of errors within
a given radius of an existing error. While both graphs
provide some information about how LSEs are clustered
together, the NetApp study does not provide full details
about the exact probability distribution function of LSE
locations in disks.
3. LSEs exhibit temporal locality. More than 80% of

errors arrive at an interval of less than an hour from pre-
vious errors. Figure 7 in [2] shows that the inter-arrival
time distribution has very long tails.
4. As shown in Figure 8 of [2], most additional errors

occur in the first month after the first LSE, and the prob-
ability of developing these errors decays exponentially
over time. For instance, the probability of a disk devel-
oping 1, 10, and 50 additional errors in the first month is
0.6, 0.25 and 0.1, respectively.

3.2 Latent sector error model

The NetApp study shows how latent errors develop in
disks as a function of disk age. We call such errors age
errors. Additionally, latent errors develop due to disk
usage or disk wear-out. A hard-drive metric that cap-
tures usage is the byte-error rate (BER). While there is
no consensus in the literature on the interpretation of this
metric [4], we assume that both reads and writes con-
tribute to development of usage errors, albeit with differ-
ent weights. In our disk model, we vary the BER metric
between 10−15 and 10−13 (to capture disks with vari-
ous characteristics), and we define a read/write weight
for each disk, denoted RW Weight (to characterize the
relative contribution of read and write operations to disk
wear-out). We refer to the errors that develop due to disk
wear-out as usage errors.
There is no explicit information in the academic liter-

ature about the exact distribution of usage-related LSEs.
Since it is very likely that during the 24-month NetApp
study at least several usage-related LSEs developed, we
make the assumption that usage-related LSEs follow a
spatial and temporal distribution similar to age errors.
The NetApp study shows that LSEs are clustered both

spatially and temporally. We further categorize age and
usage LSEs into two types of errors. The first type is
that of triggering errors. We define a triggering error to
be either the first age-related error in a drive, or the first

usage-related error that develops after a specified amount
of data has been accessed (counting from the time the
previous usage-related error developed). A triggering er-
ror induces a cluster of additional errors, called triggered
errors. These errors develop in a short interval of time af-
ter the corresponding triggering error, and are clustered
spatially on disk closely to the triggering error.
Before giving full details on our LSE model, let us

start with some intuition on modeling the spatial and
temporal distribution of LSEs.

Modeling spatial distribution on disk As the NetApp
study observes, most LSEs are clustered at radii of
around 10-100MB. We define the centroid of a cluster
to be the median error in the cluster with respect to block
logical addresses. In our simulation model in Section 5,
we need to generate errors in increasing order of occur-
rence time. For convenience in that model, we assume
that the triggering error (i.e., the first error in a cluster)
is also the cluster centroid. Since the NetApp study does
not provide the exact location on disk of error clusters
(but only error relative distance), we assume that the cen-
troid location is uniformly distributed across all disk sec-
tors. We model the triggered errors as being clustered
around the centroid with radii determined from the dis-
tribution given in Figure 5 of [2]. In Section 3.3, we re-
generate the graphs presenting spatial locality of LSEs
in the NetApp study using our LSE model, in order to
validate our simplifying assumptions.

Modeling temporal distribution We model the time
at which a triggering error develops after the data in the
NetApp study. Figure 1 in [2] gives the probability that
a disk develops an age error in its first 24 months in the
field; the results are presented at the granularity of six
months. Combined with the results from Figure 10 in
[2], we infer that the disk error rate is lower in the first
60 days of disk operation, and fairly constant after that.
In our simulation model, we work at the temporal gran-
ularity of one hour. Without finer granularity on how
triggering age errors develop temporally, we assume that
the time a disk develops its first LSE error is uniformly
distributed within the month in which the triggering error
arises.
The time a usage error develops is determined by the

disk BER metric, which we vary between 10−15 and
10−13. We assume that usage error development follows
a normal distribution with mean 1/BER. A usage error
is triggered once the number of bytes accessed (due to
both normal disk workloads and the scrubbing process)
weighted by RW Weight, exceeds on average 1/BER.

4



USENIX Association  FAST ’10: 8th USENIX Conference on File and Storage Technologies 61

Once the occurrence time of the centroid is deter-
mined, we generate the number of additional errors in
the disk based on the graph from Figure 8 in [2]. Fig-
ure 8 gives the probability of a disk developing up to 50
errors after a first LSE. The NetApp study does not pro-
vide a maximum limit on the number of LSEs in a disk,
but it states that about 80% of disks develop less than 50
errors. We set the maximum number of LSEs in the disk
to 100. The inter-arrival time for each triggered error is
modeled with the distribution from Figure 7 in [2].
To generate the distributions from Figures 1, 5 and 7

in the NetApp paper we used piecewise uniform distri-
butions with points given by those graphs. For Figure 8,
we used curve fitting in Mathematica.
We summarize the assumptions made in generating

our LSE model in Table 2.

1. Age errors form a single cluster on disk.
2. Usage error clusters develop due to both reads and writes,
albeit with different weights.
3. Usage error clusters follow spatial and temporal correlations
similar to those exhibited by age errors.
4. Development of a new triggering usage error follows a normal
distribution with mean 1/BER and small deviation.
5. The triggering error of an error cluster is the cluster centroid.
6. Triggered errors developing closely in time are clustered around
the centroid.
7. Cluster centroids are uniformly distributed on disk.
8. The time a triggering error develops in a month is uniformly
distributed within the month.

Table 2: Assumptions for generating LSE model.

Formally, we define an LSE model as a probability
distribution function PLSE. First, let us define a bit vec-
tor Et over all sectors in the disk, such that Et(s) = 1
if sector s has developed a latent sector error at time
t and Et(s) = 0, otherwise. Taking as input time
t, sector s, the cumulative write and read usage up to
time t in bytes, denoted Wt and Rt, respectively, and
the history of latent error development E1, . . . , Et−1,
PLSE(t, s,Wt, Rt, E1, . . . , Et−1) is the probability that
sector s develops a latent sector error at time t. Let us
denote the space of all LSE models as L.
We give now full details on our LSE model.

1. Modeling triggering age LSE. Using Figures 1
and 10 from [2], we determine the probability that a disk
develops an age error in each month of its first 24 months
in the field. If a disk develops a triggering error in month
0 ≤ m ≤ 23, then the exact occurrence time in hours is
uniformly generated in the month, according to the dis-
tribution U(720 ∗m, 720 ∗ (m+ 1)− 1). (Here U(a, b)
is the uniform distribution on [a, b].)
2. Modeling triggering usage LSE. We fix

the BER metric for a disk to a value in the set
{10−15, 10−14.5, 10−14, 10−13.5, 10−13}. Once
the BER metric is fixed (e.g., 10−14), a us-
age error is developed when Bytes Written +
Bytes Read/RW Weight >= 1/BER. If we use a
fixed value for BER in the above equation, we get a
fixed trigger time of usage errors, which results in a
very restrictive model. We instead randomize usage
error development: we assume that 1/BER is just the
mean of the number of bytes accessed after the disk
develops an usage error, and we assume that usage
error development follows a normal distribution with
mean 1/BER and small variance σ (e.g., 20% of the
mean). We first generate a Gaussian random variable
X ∼ N(1/BER, σ), and then trigger a usage error
once Bytes Written + Bytes Read/RW Weight >= X .
For the read/write weight RW Weight we use values
between 1 and 9.
3. Location of triggering error. Assuming that a disk

develops a triggering error (either age or usage) at time
tc (expressed in hours), we determine its exact location lc
on disk as a uniformly distributed random variable over
all disk sectors.
4. Number of triggered errors. We determine the

number of triggered LSE from Figure 8 in [2]. Using
curve fitting in Mathematica, we determine that the prob-
ability that a disk develops x triggered errors is given (ap-
proximately) by the function f(x) = 1.04x−0.185−0.42.
5. Location of triggered LSEs. We assume that the

triggered LSEs are clustered around the triggering error,
with a relative distance following the piecewise uniform
distribution from Figure 5 in the NetApp study.
6. Time of triggered LSEs. The inter-arrival time for

each LSE from the previous one in the cluster is modeled
with the piecewise uniform distribution from Figure 7 in
the NetApp study.
We list the range of parameters used in our LSE model

in Table 3.

Parameter Range/value Justification
Max number of errors 100 [2]
BER [10−15, 10−13] [6]
RW Weight [1,9] Heuristic assumption
Deviation σ of usage
error development 20% of mean Heuristic assumption

Table 3: Parameter ranges in LSE model.

3.3 Model validation
We perform several experiments to validate our LSE
model. We generate age-related LSEs for 100,000 disks
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Figure 1: Fraction of errors within a given radius of an
existing LSE in our simulation model.
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Figure 2: Average number of errors within a given radius
of an existing LSE in our simulation model.

using our model and based on Figures 1, 5, 7, 8 and 10 of
the NetApp study. While Figures 8 and 10 represent dis-
tributions for all disk models, Figures 1, 5 and 7 give dif-
ferent distributions depending on the disk model. There
are six different enterprise models common to these three
figures (denoted f-2, k-1, k-2, k-3, n-2 and n-3). These
disk models are anonymized in the NetApp paper and we
do not have information about exact disk characteristics.
According to the NetApp study, drives labeled with the
same letter have the same (anonymized) manufacturer,
and a higher number denotes higher drive capacity (e.g.,
k1, k2 and k3 have the same manufacturer and increasing
capacities).
As monthly error rates and inter-arrival time for age

errors in our simulation are generated exactly as in the
NetApp study, we focus on validating our spatial LSE
model. Our main goal is to validate assumptions we
make due to incomplete data in the distribution of LSE
location on disk, as explained above. For that, we re-
generate graphs from Figures 5 and 6 in the NetApp
study after the location of age errors is generated with
our simulation model. Note that the results from Figure
6 are not used in our simulation model at all.
As in Figures 5 and 6 in [2], Figure 1 shows the prob-

ability of a new error arising within a given radius of an
existing error, and Figure 2 shows the average number of
errors within a given radius of an LSE, for the six disk
models described above.
We observe that our simulation model closely reflects

the results from the NetApp study. For disk models that
exhibit high locality (e.g., f-2), the results of the simula-
tion are within 1% of the study results. For models with
a lower degree of locality, our simulation model slightly
over-estimates the two metrics, but our simulation results

differ by 6% on average from the study results.
Due to its simplicity and accuracy, we believe our LSE

model is of general and practical value in the study of
LSEs.

4 Scrubbing Strategies

In this section, we give the first formalization of scrub-
bing strategies in the literature that takes into account in-
formation about the disk model and its history. Most sys-
tems today use a simple constant-rate sequential scrub-
bing strategy. To capture the spatial and temporal lo-
cality of LSE development, we expand the space of
scrubbing strategies across several dimensions. First,
we propose a staggered strategy that traverses disk re-
gions more rapidly than sequential reading. Thanks to
the spatial locality of LSEs, it discovers LSEs faster
than sequential scrubbing. We evaluate the performance
impact of staggering, and determine parameters for
which its overhead—resulting from frequent disk-head
movement—is minimal (2%) compared with sequential
scrubbing. Second, we consider scrubbing strategies that
adaptively change their scrubbing rate according to drive
age and the history of LSE development. Based on
these new ideas, we propose an expanded design space
of scrubbing strategies.

4.1 Formal Definition

Our formalization of scrubbing strategies accounts for
disk model and age, as well as historical factors, includ-
ing disk usage, the number of developed latent errors,
and the scrubbing history.

6
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Figure 3: Representation of sequential (left) and staggered (right) scrubbing strategies.

Formally, we define a scrubbing strategy as a function
of the disk age t, cumulative disk write and read usage,
latent error distribution, disk failure distribution, latent
error development history and scrubbing history. This
function outputs the number and addresses of sectors to
be scrubbed in the current time interval t.

Definition 1. A scrubbing strategy for a disk with n sec-
tors is a function S. For inputs disk age t, cumulative
disk write Wt and read usage Rt, latent error distribu-
tion PLSE ∈ L, disk failure distribution PDF in space F ,
latent error development history Lh

t = {E1, . . . , Et−1}
(as defined in Section 3.2), and scrubbing history Sh

t =
{vi, [1, n]vi}i=1,...t−1 (including the number and ad-
dresses of sectors scrubbed at all previous time intervals),
it outputs the number of sectors selected for scrubbing vt,
and their logical block addresses (LBA1, . . . , LBAvt).

For example, assuming that LBAs are between 0 and
n− 1, the sequential strategy with constant-rate r can be
formally defined as S(t,Wt, Rt,PLSE,PDF, L

h
t , S

h
t ) =

{r, (rt+ 1 mod n, . . . , r(t+ 1) mod n)}. Note that the
constant-rate sequential strategy only depends on disk
age, but it does not take into account other disk char-
acteristics or history of error development.
We leave the definition of the disk failure distribution

as general as possible. It can depend on disk age, disk
usage and failure history, similar to the definition of LSE
distribution. We omit the disk failure history from the
scrubbing strategy definition since once a disk fails, it is
replaced with a new one and our model is restarted.

4.2 Staggered scrubbing
Our staggered scrubbing regime—again, aimed at ex-
ploiting the spatial locality of LSEs—is as follows. The
disk is partitioned into m regions, each consisting of r
segments. Staggered scrubbing reads the first segment of

each disk region in turn, ordered by LBA. Then it reads
the second segment in each disk region, and so forth, up
to the rth segment, as depicted in Figure 3. (Once a full
scrubbing pass is complete, it is initiated again with the
first segment.)
Intuitively, staggering is effective because LSEs tend

to arise in clusters: if a given region develops LSEs, there
is a good chance that many of its segments will contain at
least one. Consequently, repeated sampling of a region—
which is what staggering accomplishes over a full scrub-
bing pass—is more effective than full sequential scrub-
bing of a region. To see this more clearly, consider an
extreme case of clustering: suppose that when a region
develops an LSE, all of its segments develop one. In
this case, sampling any one segment suffices to detect
an LSE-affected region; there is no benefit to scrubbing
more than one segment per region. So it is best to sample
one segment per region, move on as quickly as possible,
and return later to check for fresh LSEs, i.e., to stagger.
Staggering does have a drawback, though. It requires

more disk-head movement than sequential scrubbing.
(Sequential scrubbing is clearly optimal in terms of disk-
head movement.) Thankfully, as we show next, for care-
fully chosen parameters, the slowdown due to disk-head
movement in staggered scrubbing is minimal.
We determined through experiments parameters for

the staggered strategy that do not affect performance.
The first question we needed to answer is the optimal
request size when reading from disk sequentially. As
suggested by previous literature [12], read performance
improves with increasing request sizes, as function calls
and interrupts introduce a performance penalty.
We performed a first experiment in which we read

16GB from a 7200 RPMHitachi drive using request sizes
between 1KB and 64KB. We found that a disk request
size of 16KB is nearly optimal; performance improves
negligibly for larger request sizes. This suggets that re-

7



64 FAST ’10: 8th USENIX Conference on File and Storage Technologies USENIX Association

quest sizes in sequential scrubbing strategies should be
at least 16KB.
Second, we want to quantify the performance over-

head for staggered scrubbing versus sequential reading
from disk. We consider staggered scrubbing with regions
of different sizes, ranging from 50MB to 500MB, and
different request sizes, ranging from 32KB to 2MB. We
found out that, while the overhead of staggering for small
request sizes (32KB or 64KB) is large (a factor of 5 to 8),
the overhead becomes minimal when the request size in-
creases to several MB. For instance, for a request size of
1MB or 2MB, the overhead is about 2%.
These experimental findings provide guidance for our

parameter choices in staggered scrubbing. To minimize
the performance impact of staggering, we choose a seg-
ment size of 1MB. For that segment size, our results
show that the staggering overhead is not highly depen-
dent on the region size. We thus choose a region size that
aligns with the radius of most error clusters (128MB).

4.3 Strategies with Adaptive Scrubbing
Rates

To capture temporal locality of latent sector errors, we
introduce scrubbing strategies with scrubbing rates that
change adaptively according to drive history. From the
results in the NetApp study, we know that monthly LSE
rates are fairly constant before the development of the
first LSE in a drive. (Again, an exception is the first 60
days of drive operation, which exhibit slightly lower LSE
rates.) Once a first LSE develops, i.e., a triggering error,
more errors are likely to develop shortly afterward.
We propose to start with a scrubbing rate SR First60

in the first 60 days of disk operation, and change it to
rate SR PreLSE before any LSEs are detected. Once the
disk develops a first LSE, the strategy enters into an ac-
celerated interval (with length Int Acc) and adjusts the
scrubbing rate to SR Acc. At the end of the accelerated
interval, the scrubbing rate is modified to SR PostLSE.
The process is repeated every time a LSE is detected:
the strategy enters an accelerated interval with an ad-
justed scrubbing rate, and then reverts to SR PostLSE.
Disks that never develop an LSE are scrubbed with
rate SR First60 in the first 60 days of operation and
SR PreLSE after that.

4.4 Modeling the Design / Search Space of
Scrubbing Strategies

Combining the ideas of staggering and adaptive scrub-
bing rates, we propose an expanded design space of

scrubbing strategies that we will search for optimal
strategies in the next section of the paper. A strategy in
this design space operates as follows. Before the detec-
tion of the first LSE, the strategy proceeds in a staggered
fashion with scrubbing rates SR First60 in the first 60
days of drive operation and SR PreLSE after that. Once
a first LSE is detected, the strategy enters into an accel-
erated interval and switches to a sequential strategy with
scrubbing rate SR Acc. It scrubs sequentially regions
of the disk centered at the detected error and continues
with regions further away. When the accelerated inter-
val ends, the strategy reverts to staggered scrubbing with
rate SR PostLSE, starting from the first disk sector.
The parameters that characterize our design space are

graphically depicted in Figure 4. A point in our design
space is given by coordinates (SR First60, SR PreLSE,
SR Acc, SR PostLSE, Int Acc).
To convert our design space into a search space, i.e., to

specify the constraints on our search for optimal strate-
gies, we must choose concrete parameter ranges and
granularities. While this is a somewhat heuristic process,
experimental guidance motivates the following choices:

- The staggered strategy uses a region of size 128MB,
and a segment size of 1MB. These choices were ex-
plained in Section 4.2.
- We specify the scrubbing rates in terms of gigabytes

scrubbed per hour. We constrain these rates to an interval
whose maximum value corresponds to a full disk scrub
in one day (which amounts to 20GB/hour for a 500GB
disk). We define the search space for these scrubbing
rates with a granularity of 0.5GB/hour, starting from the
minimum value of 0.5GB/hour.
- The length of interval Int Acc is a parameter with

minimum value 3 hours and maximum value the time it
takes to scrub the full disk sequentially with rate SR Acc.
We search this interval at a granularity of 3 hours.
- The size of the regions scrubbed sequentially in ac-

celerated intervals is 128MB, since this is the clustering
radius of about 80% of LSEs. We scrub the regions of
size 128MB centered at the first error found, and then
continue with the regions further away.

5 Simulation Model and Evaluation

Before describing our simulation model, we specify our
new metric MLET (Mean Latent Error Time). Intu-
itively, for a single disk with a specified latent error
model and scrubbing strategy, MLET measures the av-
erage (over LSE patterns) fraction of the total drive op-
eration time during which the drive has undetected LSEs
and is thus susceptible to data loss.

8
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Figure 4: Search space of scrubbing strategies given by parameters SR First60, SR PreLSE, SR Acc, SR PostLSE
and Int Acc.

Formally, consider a latent sector error probability dis-
tribution PLSE from space L and a scrubbing strategy S
from space S . For a given pattern of latent-error de-
velopment LSE from PLSE, we define the Latent Error
Time LET(t, LSE, S) as the fraction of the time inter-
vals up to disk age t during which the drive has unde-
tected LSEs. MLET(t, S) is then defined as the mean of
LET(t, LSE, S) over the probability distribution PLSE.
We note that this definition holds for a deterministic

scrubbing strategy S. We could extend the definition
for probabilistic strategies, to average over the scrubbing
strategy distribution S .

5.1 Simulation Model

We have written an event-driven simulation model in
Java that simulates the behavior of a disk for T time in-
tervals, each of length one hour. In our experiments, we
run our simulation for maximum 24 months for 100,000
disks. (The NetApp data span 24 months of disk oper-
ation.) We consider enterprise disk model n-2 and sim-
ulate hard drives with a capacity of 500GB. We model
the disk normal workload using the HP Cello 99 traces,
available from the SNIA IOTTA repository [1]. In our
simulation we are interested only in total number of bytes
read and written per time interval (i.e., hour). We com-
pute the number of bytes accessed for one hard drive in
the original Cello traces. Since these traces are ten years
old, we expect that the utilization level is low compared
to today’s environments. To simulate different utilization
levels we scale the number of bytes accessed by a factor

between 1 and 100. We simulate both sequential strate-
gies with fixed scrubbing rates and staggered strategies
with fixed and adaptive rates.
The events of interest to our simulator are the trigger-

ing of age and usage errors, detection of errors, and the
moments in time when the scrubbing rate changes, i.e.,
the disk age reaches 60 days, an accelerated interval be-
gins, or an accelerated interval ends. Age errors are trig-
gered by the distribution derived from the NetApp paper,
as described in Section 3.2. The simulator keeps track
of the usage rates due to both normal accesses and disk
scrubbing and triggers a usage error once the usage for a
disk exceeds a random variable normally distributed, as
described in Section 3.2.
One important challenge arises in the construction of

an efficient simulator. Recall that in our LSE model, a
triggering LSE is followed by a cascade of other LSEs.
The interval of time between the first error trigger and
the detection of all errors in a cluster is what we call a
critical interval, depicted in Figure 4. It is possible that
while in the critical interval of one cluster of errors, an-
other cluster of errors develops. Accommodating a po-
tentially large number of overlapping and nested criti-
cal intervals would complicate our model and simulation
considerably. For this reason, we make the simplifying
assumption that clusters of usage errors do not overlap.
We do, however, treat the case in which an age error clus-
ter overlaps with an usage error cluster.
In practice, following a LSE detection, a logical-to-

physical remapping of the affected sector takes place. We
do not consider the effect of this remapping in our simu-
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lation model, but this needs to be addressed in an actual
implementation of scrubbing strategies in hard drives.

5.2 Simulation Results

Our goal is to determine optimal scrubbing strategies
in the design space outlined in Section 4.4. Since our
design space for scrubbing strategies proved to be too
large to be searched exhaustively in an efficient manner,
we implemented a more efficient heuristic search algo-
rithm. Based on brief experimentation, we believe that
this heuristic finds strategies close to optimal. For a fixed
BER, read/write weight RW Weight, and disk workload,
the algorithm to determine an approximation to the opti-
mal scrubbing strategy in our design space is the follow-
ing:

- We search exhaustively for the scrub rate λ (between
0.5GB/hour and maximum scrubbing rate) that achieves
the minimum MLET for staggered fixed-rate strategies.
- We vary the rate in the accelerated interval between

λ and the maximum scrub rate (given by a full scrub per
day), and the length of the accelerated interval (between
3 hours and the time it takes to scrub the full disk with
the accelerated scrub rate). We determine thus the scrub
rate λacc and the length of accelerated interval int acc
that minimize MLET.
- We vary the rate in the first 60 days from 0.5GB/hour

to the maximum allowed scrub rate, and determine λ60

that minimizes MLET. Similarly, we vary SR PreLSE
and SR PostLSE to determine λprelse and λpostlse.
- We output the point (λ60, λprelse, λacc, λpostlse,

int acc) as an estimate of the optimal strategy.
In the rest of the paper, we sometimes refer to the out-

put of the previous algorithm as “optimal strategy”.

Optimal strategy dependence on different BER and
read/write weights. First, we show how the optimal
scrubbing strategy depends on the drive BER and the
read/write weight RW Weight. We plot on the left graph
in Figure 5 the optimal MLET for staggered adaptive
strategies and on the right graph in Figure 5 its relative
improvement compared to optimal fixed-rate sequential
strategies. We vary BER between 10−15 and 10−13, and
the read/write weight between 1 (i.e., read and write con-
tribute equally to disk wear-out) and 9 (i.e., contribution
of reads to disk wear-out is 9 times lower than that of
writes).

The left graph in Figure 5 shows howMLET decreases
for more reliable disks (i.e., disks with higher BER): for
instance, for a read/write weight of 1, MLET varies be-
tween 0.031 for a 10−13 BER to 9.69 · 10−5 for a 10−15

BER. As expected, MLET also decreases when the disk
wear-out due to reads is lower (i.e., the read/write weight
increases), as the disk is developing fewer usage errors.

From the right graph in Figure 5, we infer that the stag-
gered adaptive strategy improves MLET relative to the
optimal fixed-rate sequential strategy by at most 30%.
Improvements are larger for disks with higher develop-
ment of usage errors. We expect that this effect will be
amplified when considering RAID-5 or RAID-6 config-
urations with multiple disks. In RAID-5, for instance,
data loss occurs when a drive failure is coupled with a
latent error on any of the other drives. The vulnerability
interval due to latent errors (the time intervals in which
at least one drive has undetected LSEs) consists of all
vulnerability intervals of the drives in the RAID config-
uration. Consequently, a reduction in the MLET metric
for one drive will produce an amplified reduction on the
length of the vulnerability interval for the array (roughly

10
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Weighted factor for writes
BER 1 3 5 7 9
10−13 fixed-rate 4 0.5 0.5 0.5 1

adaptive (0.5,10,18.5,2.5) (0.5,12.5,14.5,0.5) (0.5,0.5,12.5,0.5) (0.5,0.5,18.5,0.5) (0.5,1,17,1.5)
10−13.5 fixed-rate 0.5 1.5 2.5 4 5

adaptive (0.5,0.5,12.5,0.5) (1,1.5,15.5,1.5) (3,3,14,3) (3.5,3.5,17,3.5) (5,5,18,5)
10−14 fixed-rate 2 6 9.5 12.5 17.5

adaptive (1,2,18,1) (2,6,19.5,5) (10,10,18.5,10) (13,13,19,13) (18,18,19.5,18)
10−14.5 fixed-rate 6.5 19 20 20 20

adaptive (7,7,19,7) (12.5,20,20,20) (17,20,20,20) (17,20,20,20) (17,20,20,20)
10−15 fixed-rate 20 20 20 20 20

adaptive (19,19,19,19) (17,20,20,20) (17,20,20,20) (17,20,20,20) (17,20,20,20)

Table 4: Optimal points for sequential fixed-rate and adaptive staggered strategies for different BERs and weighted
factors for writes. For sequential fixed-rate strategy, the table includes the optimal scrubbing rate. For the adaptive
staggered strategy, the table shows the optimal point (SR First60, SR PreLSE, SR Acc, SR PostLSE).
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scaled by the number of drives in the RAID configura-
tion).

Table 4 gives an interesting insight on the optimal
scrubbing rates used by both fixed-rate sequential and
adaptive staggered strategies. For disks featuring high
development of usage errors (due to high BER, and
low read/write weight), the optimal fixed-rate sequential
strategy is using a fairly low scrubbing rate (since in this
case the scrubbing process itself will contribute to disk
wear-out and LSE development). The optimal staggered
adaptive strategy also uses low scrub rates, except for ac-
celerated intervals, when the scrubbing rate is increased
to almost maximum allowed rate to detect LSEs quickly.
In contrast, for disks developing few usage errors (due to
low BER and high read/write weight), the optimal scrub-
bing strategies (both sequential and staggered adaptive)
use a high scrubbing rate that is close to the maximum
allowed rate.

Improvement of staggered adaptive strategy over
several widely used fixed-rate sequential scrubbing
strategies. We compare next the MLET metric for the
optimal adaptive staggered strategy and various fixed-
rate sequential strategies (i.e., scrub the disk once a
month, once every two weeks, once every week, and
once every two days). These fixed-rate sequential strate-
gies are widely used today in many systems. Graphs
in Figures 6, 7 and 8 show the MLET metric for these
strategies as a function of the simulation interval. The
results demonstrate that by using more intelligent scrub-
bing than the ad-hoc approaches in use today, the MLET
metric can be improved by at least a factor of two and at
most a factor of 20.

An important observation derived from these graphs is
that optimal strategies are highly dependent on disk char-
acteristics. For disks that develop a high number of us-
age errors (Figure 6 with BER 10−13.5 and the read/write
weight 1), the optimal adaptive staggered strategy is clos-
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est to scrubbing the disk once every month (i.e., infre-
quent scrubbing). For disks with medium number of us-
age errors (Figure 7 with BER 10−14 and the read/write
weight 3), the optimal strategy is closer to scrubbing
the disk once every week. In Figure 8, disks that de-
velop low number of usage errors (e.g., BER 10−15 and
the read/write weight 9) have optimal strategies closer to
scrubbing every two days. This clearly demonstrates that
it is infeasible to develop a good “one-size-fit-all” recipe
for disk scrubbing.
Interestingly, Figures 6 and 7 show that the optimal

strategy for time t is not always the optimal strategy for
all previous time intervals. This observation suggests
that we could achieve further optimizations when design-
ing scrubbing strategies by expanding our search space.
In particular, an idea that deserves further exploration is
to periodically adapt the scrubbing strategy over time.
Instead of computing one optimal strategy for the entire
drive operational time, we could instead compute new
optimal strategies for short time intervals (e.g., 3 or 6
months). With this approach, the optimal strategy for
disks that develop a medium number of errors, for in-
stance, is to scrub with a constant rate (once every two
weeks) for the first 15 months, and then switch to an
adaptive staggered strategy.

Benefit of staggered and adaptive strategies. We as-
sess next the benefit of our two main optimizations:
using a staggered approach for scrubbing, and varying
scrubbing rates adaptively. We show in Figure 9 relative
improvements of these two optimizations compared to
the optimal fixed-rate sequential strategy. We plot results
for disks with three different characteristics, classified by

the occurrence of high, medium or low occurrence of us-
age errors, respectively.
We observe that the idea of staggering compared to

sequentially reading the disk produces a steady improve-
ment in MLET by around 10% for all disk characteris-
tics. On the other hand, adaptively changing the scrub-
bing rate has a greater impact on disks that develop a
higher number of usage errors. The relative improvement
in MLET by adaptively changing the scrubbing rate is as
high as 15% for disks with a high number of usage er-
rors, and as low as 2% for most reliable disks. These
results are consistent with our previous observation that
the optimal scrubbing strategy for disks with few usage
errors is scrubbing at the maximum fixed rate.
Interestingly, a paper concurrently and independently

written [13] shows that our experimental results might
underestimate the benefit of the staggering technique.
Schroeder et al. [13] evaluate staggered scrubbing in
comparison with fixed-rate sequential strategies on real
failure data and report that staggered scrubbing can im-
prove mean time of error detection compared to sequen-
tial scrubbing by up to 40%. While Schroeder et al. use a
different metric in comparing different scrubbing strate-
gies, these results confirm the benefit of staggering.

Optimal strategy dependence on disk workloads.
Finally, we assess the impact of different disk workloads
on optimal scrubbing strategies. We consider the work-
loads of one disk from the HP Cello 1999 I/O traces, and
scale them by a factor of 1, 10 and 100. We plot on
the left of Figure 10 the MLET value for optimal stag-
gered adaptive strategy and on the right its relative im-
provement compared to fixed-rate sequential strategies.

12
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Figure 10: Optimal MLET for staggered adaptive strategies (left) and its relative percentage improvement compared
to optimal fixed rate sequential strategies (right) for different disk characteristics and different workloads.

In both graphs, usage levels are scaled by a factor of 1,
10 and 100, respectively. As in previous experiments, we
consider disks that develop a high, medium and low level
of usage errors.
The left graph in Figure 10 shows that disks develop-

ing high and medium number of usage errors exhibit sen-
sitivity to normal access workloads. In particular, scal-
ing the disk workloads by a factor of 10 has the effect
of increasing the optimal MLET metric by an order of
magnitude for disks developing a high number of usage
errors. Disks that exhibit low number of usage errors are
not sensitive to disk workloads at all.
The right graph in Figure 10 shows the relative im-

provement of the optimal staggered adaptive strategy
compared to the optimal fixed-rate sequential strategy
for different disk usage levels. Disks exhibiting high
and medium development of usage errors benefit mostly
from the staggered adaptive technique. For these types of
disks, the relative improvements of the staggered adap-
tive strategy increase with higher disk utilization. The
exception is the case of disks developing high number of
usage errors under heavy workload (scaled by a factor
of 100). In that case, we conjecture that the number of
usage errors increases greatly, leading to lower relative
improvements of the staggered adaptive strategy than for
lower disk utilization. We observe again that disks de-
veloping a low number of errors are insensitive to disk
workloads: the relative improvement of the staggered
adaptive strategy is around 10%, independent of the disk
workload.

Discussion. We have demonstrated that we can design
more intelligent scrubbing algorithms than those in use

today by taking into account disk characteristics and the
history of error development. We have characterized
the resilience of a single drive to latent sector errors by
defining the new MLET metric. Our results demonstrate
that optimal scrubbing strategies need to be carefully
crafted for different disk characteristics. In particular,
optimal strategies are highly dependent on the BER and
the read/write weight RW Weight of a disk.

For disks that develop a high number of usage er-
rors, scrubbing benefits greatly from adaptively chang-
ing rates. The optimal strategy uses a low scrubbing rate,
that is increased to almost the maximum allowed rate in
the accelerated interval immediately following the detec-
tion of a LSE. For disks that develop a low number of
usage errors, the optimal strategy uses the maximum al-
lowed scrubbing rate that does not interfere with the nor-
mal disk usage. Staggering across disk regions instead of
sequentially reading the disk improves the MLET metric
for all disk models.

Our optimal scrubbing strategies can improve the
MLET metric compared to widely used strategies (e.g.,
scrub the disk sequentially once every week) by an order
of magnitude. We expect that this effect will be ampli-
fied when considering the MTTDL metric for an array of
disks (e.g., RAID-5 or RAID-6 configuration).

A limitation of the current work is the high sensitivity
of the results to disk parameters that are not always made
public by disk manufacturers. We hope that, as more
failure data becomes available, our results can be further
refined by the community.

13
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6 Conclusions

Our work is a first step in the exploration of more in-
telligent scrubbing strategies for hard drives. It shows
that single drive reliability can be greatly improved by
expanding the design space for scrubbing strategies be-
yond naı̈ve sequential and constant-rate approaches.
Several challenging options for further research arise

in our work. The first is an expansion of our design
and search spaces for scrubbing strategies. Appealing
to search heuristics such as hillclimbing or simulated an-
nealing would enable us to consider a more fine-grained
and sophisticated design space.
Second, we plan to evaluate the performance overhead

of various scrubbing strategies in conjunction with real-
istic disk workloads.
Third, with the emergence of FLASH technology, an

intriguing question is how (and if) our results trans-
late into the FLASH realm. With completely differ-
ent physical characteristics than hard drives, and a com-
plex physical-to-logical translation layer, FLASH would
seem a challenging target for the development of latent
error and scrubbing models.
Finally, we have only studied the effect of scrubbing

on single-drive reliability. Extension of our work to a
systemic analysis in the context of replication systems
like RAID seems an interesting area of future research.
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Abstract

Latent sector errors (LSEs) refer to the situation where

particular sectors on a drive become inaccessible. LSEs

are a critical factor in data reliability, since a single LSE

can lead to data loss when encountered during RAID re-

construction after a disk failure. LSEs happen at a sig-

nificant rate in the field [1], and are expected to grow

more frequent with new drive technologies and increas-

ing drive capacities. While two approaches, data scrub-

bing and intra-disk redundancy, have been proposed to

reduce data loss due to LSEs, none of these approaches

has been evaluated on real field data.

This paper makes two contributions. We provide an

extended statistical analysis of latent sector errors in the

field, specifically from the view point of how to protect

against LSEs. In addition to providing interesting in-

sights into LSEs, we hope the results (including param-

eters for models we fit to the data) will help researchers

and practitioners without access to data in driving their

simulations or analysis of LSEs. Our second contribution

is an evaluation of five different scrubbing policies and

five different intra-disk redundancy schemes and their

potential in protecting against LSEs. Our study includes

schemes and policies that have been suggested before,

but have never been evaluated on field data, as well as

new policies that we propose based on our analysis of

LSEs in the field.

1 Motivation

Over the past decades many techniques have been pro-

posed to protect against data loss due to hard disk fail-

ures [3, 4, 8, 9, 14, 15, 18]. While early work focused on

total disk failures, new drive technologies and increasing

capacities have led to new failure modes. A particular

concern are latent sector errors (LSEs), where individual

sectors on a drive become unavailable. LSEs are caused,

for example, by write errors (such as a high-fly write) or

by media imperfections, like scratches or smeared soft

particles.

There are several reasons for the recent shift of at-

tention to LSEs as a critical factor in data reliability.

First and most importantly, a single LSE can cause

data loss when encountered during RAID reconstruc-

tion after a disk failure. Secondly, with multi-terabyte

drives using perpendicular recording hitting the markets,

the frequency of LSEs is expected to increase, due to

higher areal densities, narrower track widths, lower fly-

ing heads, and susceptibility to scratching by softer par-

ticle contaminants [6]. Finally, LSEs are a particularly

insidious failure mode, since these errors are not detected

until the affected sector is accessed.

The mechanism most commonly used in practice to

protect against LSEs is a background scrubber [2, 12,

13, 17] that continually scans the disk during idle peri-

ods in order to proactively detect LSEs and then correct

them using RAID redundancy. Several commercial stor-

age systems employ a background scrubber, including,

for example, NetApp’s systems.

Another mechanism for protection against LSEs is

intra-disk redundancy, i.e. an additional level of redun-

dancy inside each disk, in addition to the inter-disk re-

dundancy provided by RAID. Dholakia et al. [5, 10] re-

cently suggested that intra-disk redundancy can make a

system as reliable as a system without LSEs.

Devising effective new protection mechanisms or ob-

taining a realistic understanding of the effectiveness of

existing mechanisms requires a detailed understanding

of the properties of LSEs. To this point, there exists only

one large-scale field study of LSEs [1], and no field data

that is publicly available. As a result, existing work typ-

ically relies on hypothetical assumptions, such as LSEs

that follow a Poisson process [2, 7, 10, 17]. None of the

approaches described above for protecting against LSEs

has been evaluated on field data.

This paper provides two main contributions. The first

contribution is an extended statistical study of the data
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in [1]. While [1] provides a general analysis of the data,

we focus in our study on a specific set of questions that

are relevant from the point of view of how to protect

against data loss due to LSEs. We hope that this analy-

sis will help practitioners in the field, who operate large-

scale storage systems and need to understand LSEs, as

well as researchers who want to simulate or analyze sys-

tems with LSEs and don’t have access to field data. It

will also give us some initial intuition on the real-world

potential of different protection schemes that have been

proposed and what other schemes might work well.

The second contribution is an evaluation of different

approaches for protecting against LSEs, using the field

data from [1]. Our study includes several intra-disk re-

dundancy schemes (simple parity check schemes, inter-

leaved parity [5, 10], maximum distance separable era-

sure codes, and two new policies that we propose) and

several scrubbing policies, including standard sequen-

tial scrubbing, the recently proposed staggered scrub-

bing [13] and some new policies.

The paper is organized as follows. We provide some

background information on LSEs and the data we are us-

ing in Section 2. Section 3 presents a statistical anal-

ysis of the data. Section 4 evaluates the effectiveness

of intra-disk redundancy for protecting against LSEs and

Section 5 evaluates the effectiveness of proactive error

detection through scrubbing. We discuss the implications

of our results in Section 6.

2 Background and Data

For our study, we obtained a subset of the data that was

used by Bairavasundaram et al. [1]. While we refer the

reader to [1] for a full description of the data, the systems

they come from and the error handling mechanisms in

those systems, we provide a brief summary below.

Bairavasundaram et al. collected data on disk errors

on NetApp production storage systems installed at cus-

tomer sites over a period of 32 months. These systems

implement a proprietary software stack consisting of the

WAFL filesystem, a RAID layer and the storage layer.

The handling of latent sector errors in these systems de-

pends on the type of disk request that encounters an er-

roneous sector and the type of disk. For enterprise class

disks, the storage layer re-maps the disk request to an-

other (spare) sector. For read operations, the RAID layer

needs to reconstruct the data before the storage layer can

remap it. For nearline disks, the process for reads is sim-

ilar, however the remapping of failed writes is performed

internally by the disk and transparent to the storage layer.

All systems periodically scrub their disks to proactively

detect LSEs. The scrub is performed using the SCSI ver-

ify command, which validates a sector’s integrity with-

out transferring data to the storage layer. A typical scrub

interval is 2 weeks. Bairavasundaram et al. found that

the majority of the LSEs in their study (more than 60%)

were detected by the scrubber, rather than an application

access.

In total the collected data covers more than 1.5 million

drives and contains information on three different types

of disk errors: latent sector errors, not-ready-condition-

errors and recovered errors. Bairavasundaram et al. find

that a significant fraction of drives (3.45%) develops la-

tent sector errors at some point in their life and that the

fraction of drives affected by LSEs grows as disk capac-

ity increases. They also study some of the temporal and

spatial dependencies between errors and find evidence of

correlations between the three different types of errors.

For our work, we have been able to obtain a subset of

the data used in [1]. This subset is limited to informa-

tion on latent sector errors (no information on not-ready-

condition-errors and recovered errors) and contains for

each drive that developed LSEs information on the time

when the error was detected and the logical block number

of the sector that was affected. Note that since LSEs are

by definition latent errors, i.e. errors that are unknown to

the system until it tries to access the affected sector, we

cannot know for sure when exactly the error happened.

The timestamps in our data refer to the time when the er-

ror was detected, not necessarily when it first happened.

We can, however, narrow down the time of occurrence to

a 2-week time window: since the scrub interval in Ne-

tApp’s systems is two weeks, any error must have hap-

pened within less than two weeks before the detection

time. For applications in this paper where the timestamp

of an error matters we use three different methods for

approximating timestamps, based on the above observa-

tion, in addition to using the timestamps directly from

the trace. We describe the details in Section 5.1.

We focus in our study on drives that have been in the

field for at least 12 months and have experienced at least

one LSE.We concentrate on the four most common near-

line drive models (the models referred to as A-1, D-2, E-

1, E-2 in [1]) and the four most common enterprise drive

models (k-2, k-3, n-3, and o-3). In total, the data covers

29,615 nearline drives and 17,513 enterprise drives.

3 Statistical properties of LSEs

We begin with a study of several statistical properties of

LSEs. Many baseline statistics, such as the frequency

of LSEs and basic temporal and spatial properties, have

been covered by Bairavasundaram et al. in [1], and we

are not repeating them here. Instead we focus on a spe-

cific set of questions that is relevant from the point of

view of how to protect against data loss due to LSEs.
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Figure 1: Distribution of the number of contiguous errors in a burst (left), cumulative distribution function of the sector

distance between errors that occur within same 2-week interval (middle), and the location of errors on the drive (right)

3.1 How long are error bursts?

When trying to protect against LSEs, it is important to

understand the distribution of the lengths of error bursts.

By an error burst we mean a series of errors that is con-

tiguous in logical block space. The effectiveness of intra-

disk redundancy schemes, for example, depends on the

length of bursts, as a large number of contiguous errors

likely affects multiple sectors in the same parity group

preventing recovery through intra-disk redundancy.

Figure 1(left) shows for each model the cumulative

distribution function of the length of error bursts. We

observe that in 90–98% of cases a burst consists of one

single error. For all models, except A-1 and n-3, less than

2.5% of runs consist of two errors and less than 2.5%

have more than 2 errors.

An interesting question is how to best model the length

of an error burst and the number of good sectors that sep-

arate two bursts. Themost commonly usedmodel is a ge-

ometric distribution, as it is convenient to use and easy to

analyze. We experimented with 5 different distributions

(Geometric, Weibull, Rayleigh, Pareto, and Lognormal),

that are commonly used in the context of system reliabil-

ity, and evaluated their fit through the total squared dif-

ferences between the actual and hypothesized frequen-

cies (χ2 statistic). We found consistently across all mod-

els that the geometric distribution is a poor fit, while the

Pareto distribution provides the best fit. For the length

of the error bursts, the deviation of the geometric from

the empirical distribution was more than 13 times higher

than that of the Pareto (13.50 for nearline and 14.34 for

enterprise), as measured by the χ2 statistic. For the dis-

tance between bursts the geometric fit was even worse.

The deviation under the geometric distribution compared

to the Pareto distribution is 46 and 110 times higher for

nearline and enterprise disks, respectively. The geomet-

ric distribution proved such a poor fit because it failed to

capture the long tail behavior of the data, i.e. the pres-

ence of long error bursts and the clustering of errors.

The top two rows in Table 1 summarize the parame-

ters for the Pareto distribution that provided the best fit.

For the number of good sectors between error bursts the

parameter in the table is the α parameter of the Pareto

distribution. For modeling the burst lengths we used two

parameters. The first parameter p gives the probability

that the burst consists of a single error, i.e. (1− p) is

the probability that an error burst will be longer than one

error. The second parameter is the α parameter of the

Pareto distribution that best fits the number of errors in

bursts of length > 1.

3.2 How far are errors spaced apart?

Knowing at what distances errors are typically spaced

apart is relevant for both scrubbing and intra-disk re-

dundancy. For example, errors that are close together

in space are likely to affect several sectors in the same

parity group of an intra-disk redundancy scheme. If they

also happen close together in time it is unlikely that the

system has recovered the first error before the second er-

ror happened.

Figure 1 (middle) shows the cumulative distribution

function (CDF) of the distance between an error and

the closest neighbor that was detected within a 2-week

period (provided that there was another error within 2

weeks from the first). We chose a period of 2 weeks,

since this is the typical scrub interval in NetApp’s filers.

Not surprisingly we find that very small distances are

the most common. Between 20–60% of all errors have

a neighbor within a distance of less than 10 sectors in

logical sector space. However, we also observe that al-

most all models have pronounced “bumps” (parts where

the CDF is steeper) indicating higher probability mass in

these areas. For example, model o-2 has bumps at dis-

tances of around 103 and 105 sectors. Interestingly, we

also observe that the regions where bumps occur tend

3
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Variable Dist./Params. A-1 D-2 E-1 E-2 k-2 k-3 n-3 o-2

Error burst length Pareto p, α 0.9, 1.21 0.98, 1.79 0.98, 1.35 0.96, 1.17 0.97, 1.2 0.97, 1.15 0.93, 1.25 0.97, 1.44

Distance btw. bursts Pareto α 0.008 0.022 0.158 0.128 0.017 0.00045 0.077 0.05

#LSEs in 2 weeks Pareto α 0.73 0.93 0.63 0.82 0.80 0.70 0.45 0.22

#LSEs per drive Pareto α 0.58 0.81 0.34 0.44 0.63 0.58 0.31 0.11

Table 1: Parameters from distribution fitting

to be consistent for different models of the same family.

For example, the CDFs of models E-1 and E-2 follow a

similar shape, as do the CDFs for models k-2 and k-3.

We therefore speculate that some of these distances with

higher probability are related to the disk geometry of a

model, such as the number of sectors on a track.

3.3 Where on the drive are errors located?

The next question we ask is whether certain parts of the

drive are more likely to develop errors than others. Un-

derstanding the answer to this question might help in

devising smarter scrubbing or redundancy schemes that

employ stronger protection mechanisms (e.g. more fre-

quent scrubbing or stronger erasure codes) for those parts

of the drive that are more likely to develop errors.

Figure 1 (right) shows the CDF of the logical sector

numbers with errors. Note that the X -axis does not con-

tain absolute sector numbers, since this would reveal the

capacity of the different models, information that is con-

sidered confidential. Instead, the X -axis shows percent-

age of the logical sector space, i.e. the point (x,y) in the

graph means that y% of all errors happened in the first

x% of the logical sector space.

We make two interesting observations: The first part

of the drive shows a clearly higher concentration of er-

rors than the remainder of the drive. Depending on the

model, between 20% and 50% of all errors are located

in the first 10% of the drive’s logical sector space. Sim-

ilarly, for some models the end of the drive has a higher

concentration. For models E-2 and k-3, 30% and 20%

of all errors, respectively, are concentrated in the highest

10% of the logical sector space. The second observa-

tion is that some models show three or four “bumps” in

the distribution that are equidistant in logical sector space

(e.g. model A-1 has bumps at fractions of around 0.1, 0.4

and 0.7 of the logical sector space).

We speculate the areas of the drive with an increased

concentration of errors might be are areas with different

usage patterns, e.g. filesystems often store metadata at

the beginning of the drive.

3.4 What is the burstiness of errors in time?

While Bairavasundaram et al. [1] provide general evi-

dence of temporal locality between errors, the specific

question we are interested in here is how quickly exactly

the probability of seeing another error drops off with time

and how errors are distributed over time. Understanding

the conditional probability of seeing an error in a month,

given that there was an error x months ago, is useful for

scrubbing policies that want to adapt the scrubbing rate

as a function of the current probability of seeing an error.

To answer the question above, Figure 2 (left) consid-

ers for each drive the time of the first error and shows for

each subsequent 2-week period the probability of see-

ing an additional error. We chose 2-week intervals, since

this is the typical scrubbing interval in NetApp’s systems,

and hence the resolution of the error detection time. We

observe that after the first month after the first error is

detected, the probability of seeing additional errors drops

off exponentially (note the log-scale on theY -axis), drop-

ping close to 1% after only 10 weeks and below 0.1%

after 30 weeks.

Figure 2 (middle) illustrates how errors are distributed

over time. We observe each drive for one year after its

first error and count how many 2-week scrub intervals in

this time period encounter any errors. We observe that

for 55–85% of drives, all errors are concentrated in the

same 2-week period. Only 10–15% of drives experience

errors in two different 2-week periods, and for most mod-

els less than 15% see errors in more than two 2-week

periods.

Summarizing the above observations, we find that the

errors a drive experiences occur in a few short bursts,

i.e. errors are highly concentrated in a few short time in-

tervals. One might suspect that this bursty behavior is

poorlymodeled by a Poisson process, which is often used

in modeling LSE arrivals [2,7,10,17]. The reason for the

common use of Poisson processes in modeling LSEs is

that they are easy to analyze and that so far little data has

been available that allows the creation of more realistic

models. We fitted a Poisson distribution to the number

of errors observed in a 2-week time interval and to the

number of errors a drive experiences during its lifetime,

and found the Poisson distribution to be a poor fit in both

cases. We observe that the empirical distribution has a

significantly longer tail than a Poisson distribution, and

find that instead a Pareto distribution is a much better

fit. For illustration, Figure 2 (right) shows for model n-3

the empirical distribution for the number of errors in a

disks’s lifetime and the Poisson and Pareto distributions
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Figure 2: The probability of seeing an error x 2-week periods after first error (left), the number of 2-week periods in a

disk’s life with at least one error (middle), and the distribution of the number of errors a disk sees in its lifetime (right).

fitted to it. We provide the Pareto α parameter for both

empirical distributions for all models in Table 1.

3.5 What causes LSEs?

This is obviously a broad question that we cannot hope

to answer with the data we have. Nevertheless, we want

to address this question briefly, since our observations in

Section 3.3 might lead to hasty conclusions. In particu-

lar, a possible explanation for the concentration of errors

in certain parts of the drive might be that these areas see a

higher utilization. While we do not have access to work-

load data for NetApp’s systems, we have been able to

obtain two years of data on workload, environmental fac-

tors and LSE rates for five large (> 50,000 drives each)

clusters at Google containing five different drive models.

None of the clusters showed a correlation between either

the number of reads or the number of writes that a drive

sees (as reported by the drive’s SMART parameters) and

the number of LSEs it develops. We plan a detailed study

of workload and environmental factors and how they im-

pact LSEs as part of future work.

3.6 Does close in space mean close in time?

Prior work [1] and the questions above have focused on

spatial and temporal correlations in isolation. For most

error protection schemes, it is crucial to understand the

relationship between temporal and spatial correlation.

For example, for intra-disk redundancy schemes it does

not only matter how long a burst of errors is (i.e. the num-

ber of consecutive errors in the burst), but also howmuch

time there is between errors in a burst. More time be-

tween errors increases the chance that the first error is

detected and corrected before the second error happens.

Figure 3 (left) shows the distribution of the time an

error burst spans, i.e. the time difference between the

first and last error in a burst. We observe that in more

than 90% of the bursts the errors are discovered within

the same 2-week scrub interval and in more than 95%

of bursts the errors are detected within a month from

each other. Less than 2% of error bursts span more than

3 months. These observations indicate that the errors

in most bursts are likely caused by the same event and

hence occurred at the same time.

Figure 3 (right) shows a more general view of the cor-

relation between spatial and temporal locality. The graph

shows for radii ranging from one sector to 50GB two

bars: the first gives the probability that an error has at

least one neighbor within this radius at some point dur-

ing the disk’s lifetime; the second bar gives the proba-

bility that an error has at least one neighbor within this

radius within 2 weeks of time. As the graph shows, for

small radii the two bars are virtually identical, indicat-

ing that errors that happened close in space were likely

caused by the same event and hence happened at nearly

the same time. We also observe that even for larger radii

the two bars are still very close to each other. The figure

shows results for model n-3, but we found results to be

similar for all other models.

4 Protecting against LSEs with Intra-disk

Redundancy

While inter-disk redundancy has a long history [3,4,8,9,

14, 14, 15, 18], there are much fewer instances of intra-

disk redundancy. Some filesystems [11] create in-disk

replicas of selected metadata, IRON file systems [16]

suggest to add a parity block per file, and recent work

by Dholakia et al. [5, 10] introduces a new intra-disk re-

dundancy scheme for all data blocks in a drive.

The motivation behind intra-disk redundancy is to re-

duce data loss when LSEs are encountered during RAID

reconstruction, or where there is no inter-disk redun-

dancy available. Dholakia et al. [5, 10] predict that with

5
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Figure 3: Distribution of the time spanned by an error burst (left), and comparison of the probability of seeing another

error within radius x in the 2 weeks after first error versus entire disk life (right)

the use of intra-disk redundancy a system could achieve

essentially the same reliability as that of a system oper-

ating without LSEs. Highly effective intra-disk redun-

dancy might obviate the need for a background scrubber

(and its potential impact on foreground traffic); in the

best case, they might also enhance the reliability of a

single parity RAID system sufficiently to make the use

of double parity (e.g. RAID-4 or RAID-5) unnecessary,

thereby avoiding the overheads and additional power us-

age of the second parity disk.

The intra-disk redundancy schemes we consider di-

vide a disk into segments of k contiguous data sectors

followed by m redundant sectors. The m redundant sec-

tors are typically obtained using XOR-based operations

on the data sectors. Different schemes vary in their reli-

ability guarantees and their overhead depending on how

the parity sectors are computed.

In our work, we evaluate 5 different intra-disk re-

dundancy schemes. Three of the schemes (SPC, MDS,

IPC) have been previously proposed, but have never been

evaluated on field data. Two of the schemes are new

schemes (MDS+SCP, CDP) that we suggest based on re-

sults from Section 3. All schemes are described below.

We would like to note at this point, that while we do dis-

cuss the difference in overheads introduced by the differ-

ent schemes, the focus of this section is to compare the

relative degree of protection they can offer, rather than a

detailed evaluation of their impact on performance.

Single parity check (SPC): A k+1 SPC scheme stores

for each set of k contiguous data sectors one parity sector

(typically a simple XOR on all data sectors). We refer to

the set of k contiguous data sectors and the corresponding

parity sector as a parity group. SPC schemes can tolerate

a single error per parity group. Recovery from multiple

errors in a parity group is only possible if there’s an addi-

tional level of redundancy outside the disk (e.g. RAID).

SPC schemes are simple and have little I/O overhead,

since a write to a data sector requires only one additional

write (to update the corresponding parity sector). How-

ever, a common concern is that due to spatial locality

among sector errors, an error event will frequently affect

multiple sectors in the same parity group.

Maximum distance separable (MDS) erasure codes:

A k + m MDS code consisting of k data sectors and m

parity sectors can tolerate the loss of any m sectors in the

segment. A well-known member of this code family are

Reed-Solomon codes. While MDS codes are stronger

than SPC they also create higher computational over-

heads (for example in the case of Reed-Solomon codes

involving computations on Galois fields) and higher I/O

overheads (for each write to a data sector all m parity

sectors need to be updated). In most environments, these

overheads make MDS codes impractical for use in intra-

disk redundancy. Nevertheless, MDS codes provide an

interesting upper bound on what reliability levels one can

hope to achieve with intra-disk redundancy.

Interleaved parity check codes (IPC): A scheme pro-

posed by Dholakia et al. [5, 10], specifically for use in

intra-disk redundancy with lower overheads than MDS,

but potentially weaker protection. The key idea is to en-

sure that the sectors within a parity group are spaced

further apart than the length m of a typical burst of er-

rors. A k+m IPC achieves this by dividing k consecutive

data sectors into l = k/m segments of size m each, and

imagining the l × m sectors s1, ...,sl×m layed out row-

wise in an l ×m matrix. Each one of the m parity sec-

tors is computed as an XOR over one of the columns of

this imaginary matrix, i.e. parity sector pi is an XOR of

si,si+m,si+2m, ...,si+(l−1)m. We refer to the data sectors in

a column and the corresponding parity sector as a parity

6
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Data Data Data Data Row Par. Diag. Par.

Disk Disk Disk Disk Disk Disk

0 (s0) 1 (s4) 2 (s8) 3 (s12) 4 (p0) 0 (p4)

1 (s1) 2 (s5) 3 (s9) 4 (s13) 0 (p1) 1 (p5)

2 (s2) 3 (s6) 4 (s10) 0 (s14) 1 (p2) 2 (p6)

3 (s3) 4 (s7) 0 (s11) 1 (s15) 2 (p3) 3 (p7)

Table 2: Illustration of how to adapt RAID R-DP [4]

with p = 5 for use in our intra-disk redundancy scheme

CDP. The number in each block denotes the diagonal

parity group a block belongs to. The parentheses show

how an intra-disk redundancy segment with data sectors

s0, ...,s15 and parity sectors p0, ..., p7 is mapped to the

blocks in R-DP.

group, and the l×m data sectors and the m parity sectors

together as a parity segment. Observe, that all sectors in

the same parity group have a distance of at least m. IPC

can tolerate up to m errors provided they all affect differ-

ent columns (and therefore different parity groups), but

IPC can tolerate only a single error per column.

Hybrid SPC and MDS code (MDS+SPC): This

scheme is motivated by Section 3.3, where we observed

that for many models a disproportionately large fraction

of all errors is concentrated in the first 5-15% of the log-

ical block space. This scheme therefore uses a stronger

(MDS) code for this first part of the drive, and a simple

8+1 SPC for the remainder of the drive.

Column Diagonal Parity (CDP): The motivation here

is to provide a code that can tolerate a more diverse set

of error patterns than IPC, but with less overhead than

MDS. Our idea is to adapt the row-diagonal parity algo-

rithm (R-DP) [4], which was developed to tolerate dou-

ble disk failures in RAID, for use in intra-disk redun-

dancy. R-DP uses p + 1 disks, where p is a prime num-

ber, and assigns each data block to one row parity set and

one diagonal parity set. R-DP uses p− 1 disks for data,

and two disks for row and diagonal parity. Figure 2 il-

lustrates R-DP for p = 5. The row disk holds the parity

for each row, and the number in each block denotes the

diagonal parity group that the block belongs to.

We translate an R-DP scheme with parameter p to an

intra-disk redundancy scheme with k = (p−1)2 data sec-
tors and m = 2(p− 1) parity sectors by mapping sec-

tors to blocks as follows. We imagine traversing the

matrix in Figure 2 column-wise and assigning the data

sectors s0, ...,s15 consecutively to the blocks in the data

disks and the parity sectors p0, ..., p7 to the blocks in

the parity disks. The resulting assignment of sectors to

blocks is shown in parentheses in the figure. Observe

that without the diagonal parity, this scheme is identical

to IPC: the row-parity of R-DP corresponds to to the par-

ity sectors that IPC computes over the columns of the

(p−1)× (p−1) matrix formed by rows of the data sec-

tors. We therefore refer to our scheme as the column-

diagonal parity (CDP) scheme.

CDP can tolerate any two error bursts of length p− 1

that remove two full columns in Figure 2 (corresponding

to two total disk failures in the R-DP scheme). In

addition, CDP can tolerate a large number of other error

patterns. Any data sector, whose corresponding column

parity group has less than two errors or whose diagonal

parity group has less than two errors, can be recovered1.

Moreover, in many cases it will be possible to recover

sectors where both the column parity group and the

diagonal parity group have multiple errors, e.g. if the

other errors in the column parity group can be recovered

using their respective diagonal parity.

Note that for all codes there is a trade-off between the

storage efficiency (i.e. k/(k+m)), the I/O overheads and

the degree of protection a code can offer, depending on

its parameter settings. Codes with higher storage effi-

ciency generally have lower reliability guarantees. For

a fixed storage efficiency, codes with larger parity seg-

ments provide stronger reliability for correlated errors

that appear in bursts. At the same time, larger parity

segments usually imply higher I/O overheads, since data

sectors and the corresponding parity sectors are spaced

further apart, requiring more disk headmovement for up-

dating parity sectors. The different schemes also differ

in the flexibility that their parameters offer in control-

ling those trade-offs. For example, CDP cannot achieve

any arbitrary combination of storage efficiency and par-

ity segment size, since its only parameter p controls both

the storage efficiency and the segment size.

4.1 Evaluation of redundancy schemes

4.1.1 Simple parity check (SPC) schemes

The question we want to answer in this section is what

degree of protection simple parity check schemes can

provide. Towards this end we simulate SPC schemes

with varying storage efficiency, ranging from 1+1 to

128+1 schemes. While we explore the whole range of

k from 1 to 128, in most applications the low storage ef-

ficiency of codes with values of k below 8 or 9 would

probably render them impractical. Figure 4 shows the

fraction of disks with uncorrectable errors (i.e. disks that

have at least one parity group with multiple errors), the

fraction of parity groups that have multiple errors, and

the number of sectors per disk that cannot be recovered

with SPC redundancy.

We observe that for values of k in the practically fea-

sible range, a significant fraction of drives (about a quar-

1Exceptions are sectors in the diagonal parity group p−1, as R-DP

stores no parity for this group.

7
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Figure 4: Evaluation of k + 1 SPC for different values of k. Fig. 4 (left) shows the fraction of disks with at least one

uncorrectable error, i.e. disks that have at least one parity group with multiple errors; Fig. 4 (middle) shows the

fraction of parity groups with multiple (and hence uncorrectable) errors; and Fig. 4 (right) shows the average number

of sectors with uncorrectable errors per disk (due to multiple errors per parity group)

ter averaged across all models) sees at least one uncor-

rectable error (i.e. a parity group with multiple errors).

For some models (E-1, E-2, n-3, o-2) nearly 50% of

drives see at least one uncorrectable error. On average

more than 5 sectors per drive cannot be recovered with

intra-disk redundancy. Even under the 1+ 1 scheme,

which sacrifices 50% of disk space for redundancy, on

average 15% of disks have at least one parity group with

multiple errors. It is noteworthy that there seems to be lit-

tle difference in the results between enterprise and near-

line drives.

The potential impact of multiple errors in a parity

group depends on how close in time these errors occur.

If there is ample time between the first and the second

error in a group there is a high chance that either a back-

ground scrubber or an application access will expose and

recover the first error, before the second error occurs.

Figure 5 (left) shows the cumulative distribution function

of the detection time between the first and the second er-

ror in parity groups with multiple errors. We observe that

the time between the first two errors is small. More than

90% of errors are discovered within the same scrub in-

terval (2 weeks, i.e. around 2.4×106 seconds). We con-

clude from Figure 5 that multiple errors in a parity group

tend to occur at the same time, likely because they have

been caused by the same event.

We are also interested in the distribution of the num-

ber of errors in groups that have multiple errors. If in

most cases most of the sectors in a parity group are er-

roneous, even stronger protection schemes would not be

able to recover those errors. On the other hand, if typi-

cally only a small number of sectors (e.g. 2 sectors) are

bad, a slightly stronger code would be sufficient to re-

cover those errors. Figure 5 (right) shows a histogram of

the number of errors in parity groups with multiple er-

rors for the 8+1 SPC scheme. We observe that across all

models the most common case is that of double errors

with about 50% of groups having two errors.

The above observations motivate us to look at stronger

schemes in the next section.

4.1.2 More complex schemes

This section provides a comparative evaluation of IPC,

MDS, CDP and SPC+MDS for varying segment sizes

and varying degrees of storage efficiency. Larger seg-

ments have the potential for stronger data protection, as

they space data and corresponding parity sectors further

apart. At the same time larger segments lead to higher

I/O overhead, as a write to a data sector requires updat-

ing the corresponding parity sector(s), which will require

more head movement if the two are spaced further apart.

For CDP, the segment size and the storage efficiency

are both determined by its parameter p (which has to be

a prime number), while the other schemes are more flex-

ible. In our first experiment we therefore start by vary-

ing p and adjusting the parameters of the other schemes

to achieve the same m and k (i.e. k = (p − 1)2 and

m = 2(p− 1)). The bottom row in Figure 6 shows the

results for p ranging from 5 to 23, corresponding to a

range of storage efficiency from 66% to 92%, and seg-

ment sizes ranging from 24 to 528 sectors. In our sec-

ond experiment, we keep the storage efficiency constant

at 87% (i.e. on average 1 parity segment for 8 data seg-

ments), and explore different segment sizes by increasing

m and k. The results are shown in the top row of Figure 6.

For both experiments we show three different metrics:

the fraction of disks with uncorrectable errors (graphs in

left column), the average number of uncorrectable sec-

tors per drive (middle column), and the fraction of parity

8
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Figure 5: Distribution of time between the first and second error in 8+1 SPC parity groups with multiple errors (left)

and number of errors within a parity group with multiple errors for the case of an 8+1 SPC (right).

segments with uncorrectable errors (right column).

We observe that all schemes provide clearly superior

performance to SPC (for m = 1, IPC and MDS reduce

to SPC). We also observe that MDS consistently pro-

vides the best performance, which might not be surpris-

ing as it is the scheme with the highest computational and

I/O overheads. Among the remaining schemes CDP per-

forms best, with improvements of an order of magnitude

over IPC and SPC+MDS for larger p. SPC+MDS is not

as strong, however its improvements of around 25% over

simple SPC are impressive given that it applies stronger

protection than SPC to only 10% of the total drive.

A surprising result might be the weak performance

of IPC compared to MDS or CDP. The original pa-

pers [5, 10] proposing the idea of IPC predict the proba-

bility of data loss under IPC to be nearly identical to that

of MDS. In contrast, we find that MDS (and CDP) con-

sistently outperform IPC. For example, simply moving

from an 8+1 to a 16+2 MDS scheme reduces nearly all

metrics by 50%. Achieving similar results with an IPC

scheme requires at least a 56+7 or 64+8 scheme. For

larger segment sizes, MDS and CDP outperform IPC by

an order of magnitude.

One might ask why IPC does not perform better.

Based on our results in Section 3 we believe there are

two reasons. First, the work in [5, 10] assumes that the

only correlation between errors is that within an error

burst and that different bursts are identically and inde-

pendently distributed. However, as we saw in Section 3

there are significant correlations between errors that go

beyond the correlation within a burst. Second, [5,10] as-

sumes that the length of error bursts follows a geometric

distribution. Instead we found that the distribution of the

length of error bursts has long tails (recall Figure 1) and

is not fit well by a geometric distribution. As the authors

observe in [10] the IPC scheme is sensitive to long tails

in the distribution. The above observations underline the

importance of using real-world data for modeling errors.

5 Proactive error detection with scrubbing

Scrubbing has been proposed as a mechanism for en-

hancing data reliability by proactively detecting er-

rors [2, 12, 17]. Several commercial systems, including

NetApp’s, are making use of a background scrubber. A

scrubber periodically reads the entire disk sequentially

from the beginning to the end and uses inter-disk redun-

dancy (e.g. provided by RAID) to correct errors. The

scrubber runs continuously at a slow rate in the back-

ground as to limit the impact on foreground traffic, i.e.

for a scrubbing interval s and drive capacity c, a drive is

being scrubbed at a rate of c/s. Common scrub intervals

are one or two weeks. We refer to a scrubber that works

as described above as a standard periodic scrubber. In

addition to standard periodic scrubbing, we investigate

four additional policies.

Localized scrubbing: Given the spatial and temporal

locality of LSEs, one idea for improving on standard pe-

riodic scrubbing is to take the detection of an error dur-

ing a scrub interval as an indication that there are likely

more errors in the neighborhood of this error. A scrubber

could therefore decide upon the detection of an error to

immediately scrub also the r sectors that follow the er-

roneous sector. These neighboring sectors are read at an

accelerated rate a, rather than the default rate of c/s.

Accelerated scrubbing: This policy can be viewed as

an extreme form of localized scrubbing: Once a bad sec-

tor is detected in a scrubbing interval, the entire remain-

9
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Figure 6: Comparison of IPC, MDS, SPC+MDS, and CDP under three different metrics: the fraction of disks with at

least one uncorrectable error (left), the number of sectors with unrecoverable errors per disk (middle), and the fraction

of parity segments that have an unrecoverable error (right). In the top row, we keep the storage efficiency constant by

varying m and adjusting k = 8×m. In the bottom row, we vary the p parameter of CDP and adjust all other policies

to have the same m and k values, i.e. k = (p−1)2 and m = 2(p−1).

der of the drive is scrubbed immediately at an accelerated

rate a (rather than the default rate of c/s).

Staggered scrubbing: This policy has been proposed

very recently by Oprea et al. [13] and aims to exploit the

fact that errors happen in bursts. Rather than sequentially

reading the disk from the beginning to the end, the idea is

to quickly “probe” different regions of the drive, hoping

that if a region of the drive has a burst of errors we will

find one in the probe and immediately scrub the entire

region. More formally, the drive is divided into r regions

each of which is divided into segments of size s. In each

scrub interval, the scrubber begins by reading the first

segment of each region, then the second segment of each

region, and so on. The policy uses the standard scrub

rate of c/s and depends on two additional parameters,

the segment size s and the number of regions r.

Accelerated staggered scrubbing: A combination of

the two previous policies. We scrub segments in the or-

der given by staggered scrubbing. Once we encounter an

error in a region we immediately scrub the entire region

at an increased scrub rate a (instead of the default c/s).

5.1 Evaluation methodology

Our goal is to evaluate the relative performance of the

four different scrubbing policies described above. Any

evaluation of scrubbing policies presents two difficulties.

First, the performance of a scrub policy will critically

depend on the temporal and spatial properties of errors.

While our data contain logical sector numbers and times-

tamps for each reported LSE, the timestamps correspond

to the time when an error was detected, not necessarily

the time when it actually happened. While we have no

way of knowing the exact time when an error happened

we will use three different methods for approximating

this time. All methods rely on the fact that we know

the time window during which an error must have hap-

pened: since the scrub interval on NetApp’s systems is

two weeks, an error can be latent for at most 2 weeks be-

fore it is detected. Hence an error must have happened

within 2 weeks before the timestamp in the trace. In ad-

dition to running simulations directly on the trace we use

the three methods below for approximating timestamps:

Method 1: The strong spatial and temporal local-

ity observed in Section 3 indicate that errors that are
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Figure 7: Comparison of all policies for varying scrub intervals (results averaged across all disk models)

detected within the same scrub period are likely to be

caused by the same error event (e.g. a scratch in the

surface or a high-fly write). Method 1 assumes that all

errors that happened within a radius of 50MB of each

other in the same scrub interval were caused by the same

event and assigns all these errors the same timestamp (the

timestamp of the error that was detected first).

Method 2: This method goes one step further and as-

sumes that all errors that are reported in the same scrub

interval happened at the same time (not an unlikely as-

sumption, recall Figure 3) and assigns all of them the

timestamp of the first error in the scrub interval.

Method 3: The last method takes an adversary’s

stance andmakes the (unlikely) assumption that all errors

in a scrub interval happened completely independently

of each other and assigns each error a timestamp that lies

randomly in the 2-week interval before the error was de-

tected.

The second difficulty in evaluating scrubbing policies

is that there is a possibility that the scrubbing frequency

itself affects the rate at which errors happen, i.e. the ad-

ditional workload created by frequent scrubbing might

cause additional errors. After talking to vendors and

studying reports [6, 7] on the common error modes lead-

ing to LSEs, it seems unlikely that the read frequency in

a system (in contrast to the write frequency) would have

a major impact on errors. The majority of reported er-

ror modes are either directly related to writes (such as

high-fly writes) or can happen whenever the disk is spin-

ning, independent of whether data is being read or writ-

ten (such as thermal asperities, corrosion, and scratches

or smears). Nevertheless we are hesitant to assume that

the scrub frequency has zero impact on the error rate.

Since the goal of our study is not to determine the op-

timal scrub frequency, but rather to evaluate the rela-

tive performance of the different policies, we only com-

pare the performance of different policies under the same

scrub frequency. This way, all policies would be equally

affected by an increase in errors caused by additional

reads.

The main metric we use to evaluate the effectiveness

of a scrub policy is the mean time to error detection (MT-

TED). The MTTED will be a function of the scrub in-

terval since for all policies more frequent scrubs are ex-

pected to lead to shorter detection times.

5.2 Comparison of scrub policies

Figure 7 shows a comparison of the four different scrub

policies described in the beginning of this section. The

graphs, from left to right, show the mean time to error

detection (MTTED), the reduction in MTTED (in hours)

that each policy provides over standard periodic scrub-

bing, and the percentage improvement in MTTED over

standard periodic scrubbing. We vary the scrub interval

from one day to 50 days. The scrub radius in the local

policy is set to 128MB. The accelerated scrub rate a for

all policies is set to 7000 sectors/sec, which is two times

slower than the read performance2 reported for scrubs

in [13]. For the staggered policies we chose a region

size of 128MB and a segment size of 1MB (as suggested

in [13]). We later also experiment with other parame-

ter choices for the local and the staggered scrub algo-

rithms. When generating the graphs in Figure 7, we took

the timestamps verbatim from the trace. In Section 5.2.4

we will discuss how the results change when we use one

of the three methods for approximating timestamps, as

described in Section 5.1.

5.2.1 Local scrubbing

The performance of the local scrub policy turns out to

be disappointing, being virtually identical to that of stan-

dard scrubbing. We explain this with the fact that its only

potential for improvements lies in getting faster to errors

that are within a 128MB radius of a previously detected

2The SCSI verify command used in scrubs is faster than a read oper-

ation as no data is transferred, so this estimate should be conservative.
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error. However, errors within this close neighborhood

will also be detected quickly by the standard sequential

scrubber (as they are in the immediate neighborhood).

To evaluate the broader potential of local scrubbing,

we experimented with different radii, to see whether this

yields larger improvements. We find that only for very

large radii (on the order of several GB) the results are

significant and even then only some of the models show

improvements of more than 10%.

5.2.2 Accelerated scrubbing

Similar to local scrubbing, also accelerated scrubbing

(without staggering) does not yield substantial improve-

ments. The reasons are likely the same as those for lo-

cal scrubbing. Once it encounters an error, accelerated

scrubbing will find subsequent errors quicker. However,

due to spatial locality most of the subsequent errors will

be in the close neighborhood of the first and will also be

detected soon by standard scrubbing. We conclude that

the main weakness of local and accelerated scrubbing is

that they only try to minimize the time to find additional

errors, once the first error has been found. On the other

hand, staggered scrubbing minimizes the time it takes to

determine whether there are any errors and in which part

of the drive they are.

5.2.3 Staggered scrubbing

We observe that the two staggered policies both provide

significant improvements over standard scrubbing for all

scrubbing frequencies. For commonly used intervals in

the 7-14 day range, improvements in MTTED for these

policies range from 30 to 70 hours, corresponding to an

improvement of 10–20%. These improvements increase

with larger scrubbing intervals. We also note that even

simple (non-accelerated) staggered scrubbing yields sig-

nificantly better performance than both local or acceler-

ated scrubbing, without using any accelerated I/Os.

Encouraged by the good performance of staggered

scrubbing, we take a closer look at the impact of the

choice of parameters on its effectiveness, in particular the

choice of the segment size, as this parameter can greatly

affect the overheads associated with staggered scrubbing.

From the point of view of minimizing overhead intro-

duced by the scrubber, one would like to choose the seg-

ments as large as possible, since the sectors in individ-

ual segments are read through fast sequential I/Os, while

moving between a large number of small segments re-

quires slow random I/Os. On the other hand if the size

of segments becomes extremely large, the effectiveness

of staggered scrubbing in detecting errors early will ap-

proach that of standard scrubbing (the extreme case of

one segment per region leads to a policy identical to stan-

dard scrubbing.)

We explore the effect of the segment size for several

different region sizes. Interestingly, we find consistently

for all region sizes that the segment size has a relatively

small effect on performance. As a rough rule of thumb,

we observe that scrubbing effectiveness is not negatively

affected as long as the segment size is smaller than a

quarter to one half of the size of a region. For example,

for a region size of 128MB, we find the effectiveness of

scrubbing to be identical for segment sizes ranging from

1KB to 32MB. For a segment size of 64MB, the level of

improvement that staggered scrubbing offers over stan-

dard scrubbing drops by 50%. Oprea [13] reports exper-

imental results showing that for segment sizes of 1MB

and up, the I/O overheads of staggered scrubbing are

comparable to that of standard scrubbing. That means

there is a large range of segment sizes that are practically

feasible and also effective in reducing MTTED.

5.2.4 Approximating timestamps

In our simulation results in Figure 7, we assume that the

timestamps in our traces denote the actual times when

errors happened, rather than the time when they were de-

tected. We also repeated all experiments with the three

methods for approximating timestamps described in Sec-

tion 5.1.

We find that under the two methods that try to make

realistic assumptions about the time when errors hap-

pened, based on the spatio-temporal correlations we ob-

served in Section 3, the performance improvements of

the scrub policies compared to standard scrubbing either

stays the same or increases. When following method 1

(all errors detected in the same scrub interval within a

50MB-radius are assigned the same timestamp), the im-

provements of staggered accelerated scrubbing increase

significantly, for somemodels as much as 50%, while the

performance of all other policies stays the same. When

following method 2 (all errors within the same scrub

interval are assigned the same timestamp) all methods

see a slight increase of around 5% in their gains com-

pared to standard scrubbing. When making the (unre-

alistic) worst case assumption of method 3 that errors

are completely uncorrelated in time, the performance im-

provements of all policies compared to standard scrub-

bing drop significantly. Local and accelerated scrubbing

show no improvements, and the MTTDE reduction of

staggered scrubbing and accelerated staggered scrubbing

drops to 2–5%.
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6 Summary and discussion

The main contributions of this paper are a detailed sta-

tistical analysis of field data on latent sector errors and a

comparative evaluation of different approaches for pro-

tecting against LSEs, including some new schemes that

we propose based on our data analysis.

The statistical analysis revealed some interesting prop-

erties. We observe that many of the statistical aspects

of LSEs are well modeled by power-laws, including the

length of error bursts (i.e. a series of contiguous sectors

affected by LSEs), the number of good sectors that sep-

arate error bursts, and the number of LSEs observed per

time. We find that these properties are poorly modeled

by the most commonly used distributions, geometric and

Poisson. Instead we observe that a Pareto distribution fits

the data very well and report the parameters that provide

the best fit. We hope this data will be useful for other

researchers who do not have access to field data. We

find no significant difference in the statistical properties

of LSEs in nearline drives versus enterprise class drives.

Some of our statistical observations might also hold

some clues as to what mechanisms cause LSEs. For ex-

ample, we observe that nearly all drives with LSEs, expe-

rience all LSEs in their lifetime within the same 2-week

period, indicating that for most drives most errors have

been caused by the same event (e.g. one scratch), rather

than a slow and continuous wear-out of the media.

An immediate implication of the above observation is

that both approaches commonly used to model LSEs are

unrealistic. The first approach ties LSE arrivals to the

workload process, by assuming a certain bit error rate,

and assuming that each read or write has the same fixed

probability p of causing an LSE. The second approach

models LSEs by a separate arrival process, most com-

monly a Poisson process. Both will result in a much

smoother process than the one seen in practice.

In our comparative study of the effectiveness of intra-

disk redundancy schemes we find that simple parity

check (SPC) schemes still leave a significant fraction of

drives (50% for some models) with errors that cannot be

recovered by intra-disk redundancy. An observation in

our statistical study that a large fraction of errors (for

some models 40%) is concentrated in a small area of the

drive (the bottom 10% of the logical sector space) leads

us to a new scheme that uses stronger codes for only this

part of the drive and reduces the number of drives with

unrecoverable errors by 30% compared to SPC.

We also evaluate the interleaved-parity check (IPC)

scheme [5,10] that promises reliability close to the pow-

erful maximum distance separable erasure codes (MDS),

with much less overhead. Unfortunately, we find IPC’s

reliability to be significantly weaker than that of MDS.

We attribute the discrepancy between our results and

those in [5, 10] to the difference between the statistical

assumptions (e.g. geometric distribution of error bursts)

in [5,10] and the properties of LSEs in the field (long tails

in error burst distributions). Finally, we present a new

scheme, based on adaptations of the ideas behind row-

diagonal parity [4], with significantly lower overheads

than MDS, but very similar reliability.

In our analysis of scrubbing policies, we find that a

simple policy, staggered scrubbing [13], can improve the

mean time to error detection by up to 40%, compared

to standard sequential scrubbing. Staggered scrubbing

achieves these results just by changing the order in which

sectors are scrubbed, without changing the scrub fre-

quency or introducing significant I/O overhead.

Our work opens up a number of avenues for future

work. Our long-term goal is to understand how scrub-

bing and intra-disk redundancy interact with the redun-

dancy provided by RAID, how different redundancy lay-

ers should be integrated, and to quantify how different

approaches affect the actual mean time to data loss. An-

swering these questions is not easy, as it will require a

complete statistical model that captures spatial and tem-

poral locality, and total disk failures, as well as LSEs.
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Abstract
This paper presents the design, implementation and evalua-

tion of Direct File System (DFS) for virtualized flash storage.
Instead of using traditional layers of abstraction, our layers of
abstraction are designed for directly accessing flash memory de-
vices. DFS has two main novel features. First, it lays out its
files directly in a very large virtual storage address space pro-
vided by FusionIO’s virtual flash storage layer. Second, it lever-
ages the virtual flash storage layer to perform block allocations
and atomic updates. As a result, DFS performs better and it is
much simpler than a traditional Unix file system with similar
functionalities. Our microbenchmark results show that DFS can
deliver 94,000 I/O operations per second (IOPS) for direct reads
and 71,000 IOPS for direct writes with the virtualized flash stor-
age layer on FusionIO’s ioDrive. For direct access performance,
DFS is consistently better than ext3 on the same platform, some-
times by 20%. For buffered access performance, DFS is also
consistently better than ext3, and sometimes by over 149%. Our
application benchmarks show that DFS outperforms ext3 by 7%
to 250% while requiring less CPU power.

1 Introduction

Flash memory has traditionally been the province of em-
bedded and portable consumer devices. Recently, there
has been significant interest in using it to run primary file
systems for laptops as well as file servers in data cen-
ters. Compared with magnetic disk drives, flash can sub-
stantially improve reliability and random I/O performance
while reducing power consumption. However, these file
systems are originally designed for magnetic disks which
may not be optimal for flash memory. A key systems de-
sign question is to understand how to build the entire sys-
tem stack including the file system for flash memory.

Past research work has focused on building firmware
and software to support traditional layers of abstractions
for backward compatibility. For example, recently pro-
posed techniques such as the flash translation layer (FTL)
are typically implemented in a solid state disk controller
with the disk drive abstraction [5, 6, 26, 3]. Systems soft-
ware then uses a traditional block storage interface to sup-
port file systems and database systems designed and op-

timized for magnetic disk drives. Since flash memory is
substantially different from magnetic disks, the rationale
of our work is to study how to design new abstraction
layers including a file system to exploit the potential of
NAND flash memory.

This paper presents the design, implementation, and
evaluation of the Direct File System (DFS) and describes
the virtualized flash memory abstraction layer it uses for
FusionIO’s ioDrive hardware. The virtualized storage ab-
straction layer provides a very large, virtualized block ad-
dressed space, which can greatly simplify the design of a
file system while providing backward compatibility with
the traditional block storage interface. Instead of push-
ing the flash translation layer into disk controllers, this
layer combines virtualization with intelligent translation
and allocation strategies for hiding bulk erasure latencies
and performing wear leveling.

DFS is designed to take advantage of the virtualized
flash storage layer for simplicity and performance. A
traditional file system is known to be complex and typ-
ically requires four or more years to become mature.
The complexity is largely due to three factors: complex
storage block allocation strategies, sophisticated buffer
cache designs, and methods to make the file system crash-
recoverable. DFS dramatically simplifies all three aspects.
It uses virtualized storage spaces directly as a true single-
level store and leverages the virtual to physical block al-
locations in the virtualized flash storage layer to avoid ex-
plicit file block allocations and reclamations. By doing
so, DFS uses extremely simple metadata and data layout.
As a result, DFS has a short datapath to flash memory and
encourages users to access data directly instead of going
through a large and complex buffer cache. DFS leverages
the atomic update feature of the virtualized flash storage
layer to achieve crash recovery.

We have implemented DFS for the FusionIO’s virtu-
alized flash storage layer and evaluated it with a suite
of benchmarks. We have shown that DFS has two main
advantages over the ext3 filesystem. First, our file sys-

1
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tem implementation is about one eighth that of ext3 with
similar functionality. Second, DFS has much better per-
formance than ext3 while using the same memory re-
sources and less CPU. Our microbenchmark results show
that DFS can deliver 94,000 I/O operations per second
(IOPS) for direct reads and 71,000 IOPS direct writes with
the virtualized flash storage layer on FusionIO’s ioDrive.
For direct access performance, DFS is consistently bet-
ter than ext3 on the same platform, sometimes by 20%.
For buffered access performance, DFS is also consistently
better than ext3, and sometimes by over 149%. Our ap-
plication benchmarks show that DFS outperforms ext3 by
7% to 250% while requiring less CPU power.

2 Background and Related Work

In order to present the details of our design, we first pro-
vide some background on flash memory and the chal-
lenges to using it in storage systems. We then provide
an overview of related work.

2.1 NAND Flash Memory
Flash memory is a type of electrically erasable solid-state
memory that has become the dominant technology for ap-
plications that require large amounts of non-volatile solid-
state storage. These applications include music players,
cell phones, digital cameras, and shock sensitive applica-
tions in the aerospace industry.

Flash memory consists of an array of individual cells,
each of which is constructed from a single floating-gate
transistor. Single Level Cell (SLC) flash stores a single
bit per cell and is typically more robust; Multi-Level Cell
(MLC) flash offers higher density and therefore lower cost
per bit. Both forms support three operations: read, write
(or program), and erase. In order to change the value
stored in a flash cell it is necessary to perform an erase
before writing new data. Read and write operations typi-
cally take tens of microseconds whereas the erase opera-
tion may take more than a millisecond.

The memory cells in a NAND flash device are arranged
into pages which vary in size from 512 bytes to as much as
16KB each. Read and write operations are page-oriented.
NAND flash pages are further organized into erase blocks,
which range in size from tens of kilobytes to megabytes.
Erase operations apply only to entire erase blocks; any
data in an erase block that is to be preserved must be
copied.

There are two main challenges in building storage sys-
tems using NAND flash. The first is that an erase oper-
ation typically takes about one or two milliseconds. The
second is that an erase block may be erased successfully
only a limited number of times. The endurance of an
erase block depends upon a number of factors, but usually

ranges from as little as 5,000 cycles for consumer grade
MLC NAND flash to 100,000 or more cycles for enter-
prise grade SLC NAND flash.

2.2 Related Work
Douglis et al. studied the effects of using flash memory
without a special software stack [11]. They showed that
flash could improve read performance by an order of mag-
nitude and decrease energy consumption by 90%, but that
due to bulk erasure latency, write performance also de-
creased by a factor of ten. They further noted that large
erasure block size causes unnecessary copies for cleaning,
an effect often referred to as “write amplification”.

Kawaguchi et al. [14] describe a transparent device
driver that presents flash as a disk drive. The driver dy-
namically maps logical blocks to physical addresses, pro-
vides wear-leveling, and hides bulk erasure latencies us-
ing a log-structured approach similar to that of LFS [27].
State-of-the art implementations of this idea, typically
called the Flash Translation Layer, have been imple-
mented in the controllers of several high-performance
Solid State Drives (SSDs) [3, 16].

More recent efforts focus on high-performance in
SSDs, particularly for random writes. Birrell et al. [6],
for instance, describe a design that significantly improves
random write performance by keeping a fine-grained map-
ping between logical blocks and physical flash addresses
in RAM. Similarly, Agrawal et al. [5] argue that SSD per-
formance and longevity is strongly workload dependent
and further that many systems problems that previously
have appeared higher in the storage stack are now relevant
to the device and its firmware. This observation has lead to
the investigation of buffer management policies for a vari-
ety of workloads. Some policies, such as Clean First LRU
(CFLRU) [24] trade off a reduced number of writes for
additional reads. Others, such as Block Padding Least Re-
cently Used (BPLRU) [15] are designed to improve per-
formance for fine-grained updates or random writes.

eNVy [33] is an early file system design effort for flash
memory. It uses flash memory as fast storage, a battery-
backed SRAM module as a non-volatile cache for com-
bining writes into the same flash block for performance,
and copy-on-write page management to deal with bulk
erasures

More recently, a number of file systems have been de-
signed specifically for flash memory devices. YAFFS,
JFFS2, and LogFS [19, 32] are example efforts that
hide bulk erasure latencies and perform wear-leveling of
NAND flash memory devices at the file system level using
the log-structured approach. These file systems were ini-
tially designed for embedded applications instead of high-
performance applications and are not generally suitable
for use with the current generation of high-performance

2



USENIX Association  FAST ’10: 8th USENIX Conference on File and Storage Technologies 87

flash devices. For instance, YAFFS and JFFS2 manage
raw NAND flash arrays directly. Furthermore, JFFS2
must scan the entire physical device at mount time which
can take many minutes on large devices. All three filesys-
tems are designed to access NAND flash chips directly,
negating the performance advantages of the hardware and
software in emerging flash device. LogFS does have some
support for a block-device compatibility mode that can be
used as a fall-back at the expense of performance, but
none are designed to take advantage of emerging flash
storage devices which perform their own flash manage-
ment.

3 Our Approach

This section presents the three main aspects of our ap-
proach: (a) new layers of abstraction for flash memory
storage systems which yield substantial benefits in sim-
plicity and performance; (b) a virtualized flash storage
layer, which provides a very large address space and im-
plements dynamic mapping to hide bulk erasure latencies
and to perform wear leveling; and (c) the design of DFS
which takes full advantage of the virtualized flash storage
layer. We further show that DFS is simple and performs
better than the popular Linux ext3 file system.

3.1 Existing vs. New Abstraction Layers
Figure 1 shows the architecture block diagrams for ex-
isting flash storage systems and our proposed architec-
ture. The traditional approach is to package flash memory
as a solid-state disk (SSD) that exports a disk interface
such as SATA or SCSI. An advanced SSD implements a
flash translation layer (FTL) in its controller that main-
tains a dynamic mapping from logical blocks to physi-
cal flash pages to hide bulk erasure latencies and to per-
form wear leveling. Since a SSD uses the same inter-
face as a magnetic disk drive, it supports the traditional
block storage software layer which can be either a sim-
ple device driver or a sophisticated volume manager. The
block storage layer then supports traditional file systems,
database systems, and other software designed for mag-
netic disk drives. This approach has the advantage of
disrupting neither the application-kernel interface nor the
kernel-physical storage interface. On the other hand, it has
a relatively thick software stack and makes it difficult for
the software layers and hardware to take full advantage of
the benefits of flash memory.

We advocate an architecture in which a greatly simpli-
fied file system is built on top of a virtualized flash stor-
age layer implemented by the cooperation of the device
driver and novel flash storage controller hardware. The
controller exposes direct access to flash memory chips to
the virtualized flash storage layer.

The virtualized flash storage layer is implemented at the
device driver level which can freely cooperate with spe-
cific hardware support offered by the flash memory con-
troller. The virtualized flash storage layer implements a
large virtual block addressed space and maps it to physi-
cal flash pages. It handles multiple flash devices and uses
a log-structured allocation strategy to hide bulk erasure
latencies, perform wear leveling, and handle bad page re-
covery. This approach combines the virtualization and
FTL together instead of pushing FTL into the disk con-
troller layer. The virtualized flash storage layer can still
provide backward compatibility to run existing file sys-
tems and database systems. The existing software can
benefit from the intelligence in the device driver and hard-
ware rather than having to implement that functionality
independently in order to use flash memory. More impor-
tantly, flash devices are free to export a richer interface
than that exposed by disk-based interfaces.

Direct File System (DFS) is designed to utilize the
functionality provided by the virtualized flash storage
layer. In addition to leveraging the support for wear-
leveling and for hiding the latency of bulk erasures, DFS
uses the virtualized flash storage layer to perform file
block allocations and reclamations and uses atomic flash
page updates for crash recovery. This architecture allows
the virtualized flash storage layer to provide an object-
based interface. Our main observation is that the sep-
aration of the file system from block allocations allows
the storage hardware and block management algorithms
to evolve jointly and independently from the file system
and user-level applications. This approach makes it easier
for the block management algorithms to take advantage of
improvements in the underlying storage subsystem.

3.2 Virtualized Flash Storage Layer
The virtual flash storage layer provides an abstraction to
enable client software such as file systems and database
systems to take advantage of flash memory devices while
providing backward compatibility with the traditional
block storage interface. The primary novel feature of the
virtualized flash storage layer is the provision for a very
large, virtual block-addressed space. There are three rea-
sons for this design. First, it provides client software with
the flexibility to directly access flash memory in a single
level store fashion across multiple flash memory devices.
Second, it hides the details of the mapping from virtual
to physical flash memory pages. Third, the flat virtual
block-addressed space provides clients with a backward
compatible block storage interface.

The mapping from virtual blocks to physical flash
memory pages deals with several flash memory issues.
Flash memory pages are dynamically allocated and re-
claimed to hide the latency of bulk erasures, to distribute
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Figure 1: Flash Storage Abstractions

writes evenly to physical pages for wear-leveling, and to
detect and recover bad pages to achieve high reliability.
Unlike a conventional Flash Translation Layer (FTL), the
mapping supports a very large number of virtual pages
– orders-of-magnitude larger than the available physical
flash memory pages.

The virtualized flash storage layer currently supports
three operations: read, write, and trim or deallocate. All
operations are block-based operations, and the block size
in the current implementation is 512 bytes. The write op-
eration triggers a dynamic mapping from a virtual to phys-
ical page, thus there is no explicit allocation operation.
The deallocate operation deallocates a range of virtual ad-
dresses. It removes the mappings of all mapped physical
flash pages in the range and hands them to a garbage col-
lector to recycle for future use. We anticipate that future
versions of the VFSL will also support a move operation
to allow data to be moved from one virtual address to an-
other without incurring the cost of a read, write, and deal-
locate operation for each block to be copied.

The current implementation of the virtualized flash stor-
age layer is a combination of a Linux device driver and Fu-
sionIO’s ioDrive special purpose hardware. The ioDrive is
a PCI Express card densely populated with either 160GB
or 320GB of SLC NAND flash memory. The software
for the virtualized flash storage layer is implemented as a
device driver in the host operating system and leverages
hardware support from the ioDrive itself.

The ioDrive uses a novel partitioning of the virtualized
flash storage layer between the hardware and device driver
to achieve high performance. The overarching design phi-
losophy is to separate the data and control paths and to

implement the control path in the device driver and the
data path in hardware. The data path on the ioDrive card
contains numerous individual flash memory packages ar-
ranged in parallel and connected to the host via PCI Ex-
press. As a consequence, the device achieves highest
throughput with moderate parallelism in the I/O request
stream. The use of PCI Express rather than an existing
storage interface such as SCSI or SATA simplifies the par-
titioning of control and data paths between the hardware
and device driver.

The device provides hardware support of checksum
generation and checking to allow for the detection and
correction of errors in case of the failure of individual flash
chips. Metadata is stored on the device in terms of physi-
cal addresses rather than virtual addresses in order to sim-
plify the hardware and allow greater throughput at lower
economic cost. While individual flash pages are relatively
small (512 bytes), erase blocks are several megabytes in
size in order to amortize the cost of bulk erase operations.

The mapping between virtual and physical addresses is
maintained by the kernel device driver. The mapping be-
tween 64-bit virtual addresses and physical addresses is
maintained using a variation on B-trees in memory. Each
address points to a 512-byte flash memory page, allow-
ing a virtual address space of 273 bytes. Updates are
made stable by recording them in a log-structured fashion:
the hardware interface is append-only. The device driver
is also responsible for reclaiming unused storage using
a garbage collection algorithm. Bulk erasure scheduling
and wear leveling algorithms for flash endurance are inte-
grated into the garbage collection component of the device
driver.
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A primary rationale for implementing the virtual to
physical address translation and garbage collection in the
device driver rather than in an embedded processor on the
ioDrive itself is that the device driver can automatically
take advantage of improvements in processor and mem-
ory bus performance on commodity hardware without re-
quiring significant design work on a proprietary embed-
ded platform. This approach does have the drawback of
requiring potentially significant processor and memory re-
sources on the host.

3.3 DFS
DFS is a full-fledged implementation of a Unix file system
and it is designed to take advantage of several features of
the virtualized flash storage layer, including large virtual-
ized address space, direct flash access and its crash recov-
ery mechanism. The implementation runs as a loadable
kernel module in the Linux 2.6 kernel. The DFS kernel
module implements the traditional Unix file system APIs
via the Linux VFS layer. It supports the usual methods
such as open, close, read, write, pread, pwrite, lseek, and
mmap. The Linux kernel requires basic memory mapped
I/O support in order to facilitate the execution of binaries
residing on DFS file systems.

3.3.1 Leveraging Virtualized Flash Storage

DFS delegates I-node and file data block allocations and
deallocations to the virtualized flash storage layer. The
virtualized flash storage layer is responsible for block al-
locations and deallocations, for hiding the latency of bulk
erasures, and for wear leveling.

We have considered two design alternatives. The first is
to let the virtualized storage layer export an object-based
interface. In this case, a separate object is used to repre-
sent each file system object and the virtualized flash stor-
age layer is responsible for managing the underlying flash
blocks. The main advantage of this approach is that it can
provide a close match with what a file system implemen-
tation needs. The main disadvantage is the complexity of
an object-based interface that provides backwards com-
patibility with the traditional block storage interface.

The second is to ask the virtualized flash storage layer
to implement a large logical address space that is sparse.
Each file system object will be assigned a contiguous
range of logical block addresses. The main advantages
of this approach are its simplicity and its natural support
for the backward compatibility with the traditional block
storage interface. The drawback of this approach is its po-
tential waste of the virtual address space. DFS has taken
this approach for its simplicity.

We have configured the ioDrive to export a sparse 64-
bit logical block address space. Since each block contains

512 bytes, the logical address space spans 273 bytes. DFS
can then use this logical address space to map file system
objects to physical storage.

DFS allocates virtual address space in contiguous “al-
location chunks”. The size of these chunks is configurable
at file system initialization time but is 232 blocks or 2TB
by default. User files and directories are partitioned into
two types: large and small. A large file occupies an en-
tire chunk whereas multiple small files reside in a sin-
gle chunk. When a small file grows to become a large
file, it is moved to a freshly allocated chunk. The current
implementation must implement this by copying the file
contents, but we anticipate that future versions of the vir-
tual flash storage layer will support changing the virtual to
physical translation map without having to copy data. The
current implementation does not support remapping large
files into the small file range should a file shrink.

When the filesystem is initialized, two parameters must
be chosen: the maximum size of a small file, which must
be a power of two, and the size of allocation chunks,
which is also the maximum size of a large file. These
two parameters are fixed once the filesystem is initialized.
They can be chosen in a principled manner given the antic-
ipated workload. There have been many studies of file size
distributions in different environments, for instance those
by Tannenbaum et al. [28] and Docuer and Bolosky [10].
By default, small files are those less than 32KB.

The current DFS implementation uses a 32-bit I-node
number to identify individual files and directories and a
32-bit block offset into a file. This means that DFS can
support up to −1 + 232 files and directories in total since
the first I-node number is reserved for the system. The
largest supported file size is 2TB with 512-byte blocks
since the block offset is 32 bits. The I-node itself stores
the base virtual address for the logical extent containing
the file data. This base address together with the file off-
set identifies the virtual address of a file block. Figure 2
depicts the mapping from file descriptor and offset to log-
ical block address in DFS.

The very simple mapping from file and offset to logi-
cal block address has another beneficial implication. Each
file is represented by a single logical extent, making it
straightforward for DFS to combine multiple small I/O re-
quests to adjacent regions into a single larger I/O. No com-
plicated block layout policies are required at the filesys-
tem layer. This strategy can improve performance because
the flash device delivers higher transfer rates with larger
I/Os. Our current implementation aggressively merges
I/O requests; a more nuanced policy might improve per-
formance further.

DFS leverages the three main operations supported by
the virtualized flash storage layer: read from a logical
block, write to a logical block, and discard a logical block
range. The discard directive marks a logical block range
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Figure 2: DFS logical block address mapping for large
files; only the width of the file block number differs for
small files

Figure 3: Layout of DFS system and user files in virtual-
ized flash storage. The first 2TB is used for system files.
The remaining 2TB allocation chunks are for user data or
directory files. A large file takes the whole chunk; multi-
ple small files are packed into a single chunk.

as garbage for the garbage collector and ensures that sub-
sequent reads to the range return only zeros. A version
of the discard directive already exists in many flash de-
vices as a hint to the garbage collector; DFS, by contrast,
depends upon it to implement truncate and remove. It is
also possible to interrogate a logical block range to deter-
mine if it contains allocated blocks. The current version
of DFS does not make use of this feature, but it could be
used by archival programs such as tar that have special
representations for sparse files.

3.3.2 DFS Layout and Objects

The DFS file system uses a simple approach to store files
and their metadata. It divides the 64-bit block addressed
virtual flash storage space (DFS volume) into block ad-
dressed subspaces or allocation chunks. The size of these
two types of subspaces are configured when the filesystem
is initialized. DFS places large files in their own allocation
chunks and stores multiple small files in a chunk.

As shown in Figure 3, there are three kinds of files in
the DFS file system. The first file is a system file which
includes the boot block, superblock and all I-nodes. This

file is a “large” file and occupies the first allocation chunk
at the beginning of the raw device. The boot block oc-
cupies the first few blocks (sectors) of the raw device. A
superblock immediately follows the boot block. At mount
time, the file system can compute the location of the su-
perblock directly. The remainder of the system file con-
tains all I-nodes as an array of block-aligned I-node data
structures.

Each I-node is identified by a 32-bit unique identifier or
I-node number. Given the I-node number, the logical ad-
dress of the I-node within the I-node file can be computed
directly. Each I-node data structure is stored in a single
512-byte flash block. Each I-node contains the I-number,
base virtual address of the corresponding file, mode, link
count, file size, user and group IDs, any special flags, a
generation count, and access, change, birth, and modifica-
tion times with nanosecond resolution. These fields take
a total of 72 bytes, leaving 440 bytes for additional at-
tributes and future use. Since an I-node fits in a single
flash page, it will be updated atomically by the virtualized
flash storage layer.

The implementation of DFS uses a 32-bit block-
addressed allocation chunk to store the content of a reg-
ular file. Since a file is stored in a contiguous, flat space,
the address of each block offset can be simply computed
by adding the offset to the virtual base address of the space
for the file. A block read simply returns the content of the
physical flash page mapped to the virtual block. A write
operation writes the block to the mapped physical flash
page directly. Since the virtualized flash storage layer trig-
gers a mapping or remapping on write, DFS does the write
without performing an explicit block allocation. Note that
DFS allows holes in a file without using physical flash
pages because of the dynamic mapping. When a file is
deleted, the DFS will issue a deallocation operation pro-
vided by the virtualized flash storage layer to deallocate
and unmap virtual space of the entire file.

A DFS directory is mapped to flash storage in the same
manner as ordinary files. The only difference is its in-
ternal structure. A directory contains contains an array
of name, I-node number, type triples. The current imple-
mentation is very similar to that found in FFS [22]. Up-
dates to directories, including operations such as rename,
which touch multiple directories and the on-flash I-node
allocator, are made crash-recoverable through the use of
a write-ahead log. Although widely used and simple to
implement, this approach does not scale well to large di-
rectories. The current version of the virtualized flash stor-
age layer does not export atomic multi-block updates. We
anticipate reimplementing directories using hashing and a
sparse virtual address space made crash recoverable with
atomic updates.
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3.3.3 Direct Data Accesses

DFS promotes direct data access. The current Linux im-
plementation of DFS allows the use of the buffer cache in
order to support memory mapped I/O which is required
for the exec system call. However, for many workloads
of interest, particularly databases, clients are expected to
bypass the buffer cache altogether. The current imple-
mentation of DFS provides direct access via the direct
I/O buffer cache bypass mechanism already present in the
Linux kernel. Using direct I/O, page-aligned reads and
writes are converted directly into I/O requests to the block
device driver by the kernel.

There are two main rationales for this approach. First,
traditional buffer cache design has several drawbacks. The
traditional buffer cache typically uses a large amount of
memory. Buffer cache design is quite complex since it
needs to deal with multiple clients, implement sophisti-
cated cache replacement policies to accommodate vari-
ous access patterns of different workloads, and maintain
consistency between the buffer cache and disk drives, and
support crash recovery. In addition, having a buffer cache
imposes a memory copy in the storage software stack.

Second, flash memory devices provide low-latency ac-
cesses, especially for random reads. Since the virtualized
flash storage layer can solve the write latency problem,
the main motivation for the buffer cache is largely elimi-
nated. Thus, applications can benefit from the DFS direct
data access approach by utilizing most of the main mem-
ory space typically used for the buffer cache for a larger
in memory working set.

3.3.4 Crash Recovery

The virtualized flash storage layer implements the basic
functionality of crash recovery for the mapping from log-
ical block addresses to physical flash storage locations.
DFS leverages this property to provide crash recovery.
Unlike traditional file systems that use non-volatile ran-
dom access memory (NVRAM) and their own logging im-
plementation, DFS piggybacks on the flash storage layer’s
log.

NVRAM and file system level logging require complex
implementations and introduce additional costs for the tra-
ditional file systems. NVRAM is typically used in high-
end file systems so that the file system can achieve low-
latency operations while providing fault isolations and
avoiding data loss in case of power failures. The tradi-
tional logging approach is to log every write and performs
group commits to reduce overhead. Logging writes to disk
can impose significant overheads. A more efficient ap-
proach is to log updates to NVRAM, which is the method
typically used in high-end file systems [12]. NVRAMs are
typically implemented with battery-backed DRAMs on a
PCI card whose price is similar to a few high-density mag-

netic disk drives. NVRAMs can substantially reduce the
file system write performance because every write must
go through the NVRAM. For a network file system, each
write will have to go through the I/O bus three times, once
for the NIC, once for NVRAM, and once for writing to
disks.

Since flash memory is a form of NVRAM, DFS lever-
ages the support from the virtualized flash storage layer
to achieve crash recoverability. When a DFS file system
object is extended, DFS passes the write request to the vir-
tualized flash storage layer which then allocates a physical
page of the flash device and logs the result internally. Af-
ter a crash, the virtualized flash storage layer runs recov-
ery using the internal log. The consistency of the contents
of individual files is the responsibility of applications, but
the on-flash state of the file system is guaranteed to be
consistent. Since the virtualized flash storage layer uses a
log-structured approach to tracking allocations for perfor-
mance reasons and must handle crashes in any case, DFS
does not impose any additional onerous requirements.

3.3.5 Discussion

The current DFS implementation has several limitations.
The first is that it does not yet support snapshots. One of
the reasons we did not implement snapshot is that we plan
to support snapshots natively in the virtualized flash stor-
age layer which will greatly simplify the snapshot imple-
mentation in DFS. Since the virtualized flash storage layer
is already log-structured for performance and hence takes
a copy-on-write approach by default, one can implement
snapshots in the virtualized flash storage layer efficiently.

The second is that we are currently implementing sup-
port for atomic multi-block updates in the virtualized flash
storage layer. The log-structured, copy-on-write nature of
the flash storage layer makes it possible to export such
an interface efficiently. For example, Prabhakaran et al.
recently described an efficient commit protocol to imple-
ment atomic multi-block writes [25]. This type of meth-
ods will allow DFS to guarantee the consistency of direc-
tory contents and I-node allocations in a simple fashion.
In the interim, DFS uses a straightforward extension of
the traditional UFS/FFS directory structure.

The third is the limitations on the number of files and
the maximum file size. We have considered a design that
supports two file sizes: small and very large. The file lay-
out algorithm initially assumes a file is small (e.g., less
than 2GB). If it needs to exceed the limit, it will become a
very large file (e.g., up to 2PB). The virtual block address
space is partitioned so that a large number of small file
ranges are mapped in one partition and a smaller number
of very large file ranges are mapped into the remaining
partition. A file may be promoted from the small partition
to the very large partition by copying the mapping of a
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virtual flash storage address space to another at the virtu-
alized flash storage layer. We plan to export such support
and implement this design in the next version of DFS.

4 Evaluation

We are interested in answering two main questions:
• How do the layers of abstraction perform?
• How does DFS compare with existing file systems?

To answer the first question, we use a microbenchmark to
evaluate the number of I/O operations per second (IOPS)
and bandwidth delivered by the virtualized flash storage
layer and by the DFS layer. To answer the second ques-
tion, we compare DFS with ext3 by using a microbench-
mark and an application suite. Ideally, we would compare
with existing flash filesystems as well, however filesys-
tems such as YAFFS and JFFS2 are designed to use raw
NAND flash and are not compatible with next-generation
flash storage that exports a block interface.

All of our experiments were conducted on a desktop
with Intel Quad Core processor running at 2.4GHz with a
4MB cache and 4GB DRAM. The host operating system
was a stock Fedora Core installation running the Linux
2.6.27.9 kernel. Both DFS and the virtualized flash stor-
age layer implemented by the FusionIO device driver were
compiled as loadable kernel modules.

We used a FusionIO ioDrive with 160GB of SLC
NAND flash connected via PCI-Express x4 [1]. The ad-
vertised read latency of the FusionIO device is 50µs. For
a single reader, this translates to a theoretical maximum
throughput of 20,000 IOPS. Multiple readers can take
advantage of the hardware parallelism in the device to
achieve much higher aggregate throughput. For the sake
of comparison, we also ran the microbenchmarks on a
32GB Intel X25-E SSD connected to a SATA II host bus
adapter [2]. This device has an advertised typical read la-
tency of about 75µs.

Our results show that the virtualized flash storage layer
delivers performance close to the limits of the hardware,
both in terms of IOPS and bandwidth. Our results also
show that DFS is much simpler than ext3 and achieves
better performance in both the micro- and application
benchmarks than ext3, often using less CPU power.

4.1 Virtualized Flash Storage Performance
We have two goals in evaluating the performance of the
virtualized flash storage layer. First, to examine the po-
tential benefits of the proposed abstraction layer in com-
bination with hardware support that exposes parallelism.
Second, to determine the raw performance in terms of
bandwidth and IOPs delivered in order to compare DFS

and ext3. For both purposes, we designed a simple mi-
crobenchmark which opens the raw block device in di-
rect I/O mode, bypassing the kernel buffer cache. Each
thread in the program attempts to execute block-aligned
reads and writes as quickly as possible.

To evaluate the benefits of the virtualized flash storage
layer and its hardware, one would need to compare a tra-
ditional block storage software layer with flash memory
hardware equivalent to the FusionIO ioDrive but with a
traditional disk interface FTL. Since such hardware does
not exist, we have used a Linux block storage layer with
an Intel X25-E SSD, which is a well-regarded SSD in the
marketplace. Although this is not a fair comparison, the
results give us some sense of the performance impact of
the abstractions designed for flash memory.

We measured the number of sustained random I/O
transactions per second. While both flash devices are
enterprise class devices, the test platform is the typical
white box workstation we described earlier. The results
are shown in Figure 4. Performance, while impressive
compared to magnetic disks, is less than that advertised
by the manufacturers. We suspect that the large IOPS per-
formance gaps, particularly for write IOPS, are partially
limited by the disk drive interface and limited resources
in a drive controller to run sophisticated remapping algo-
rithms.

Device Read IOPS Write IOPS
Intel 33,400 3,120
FusionIO 98,800 75,100

Figure 4: Device 4KB Peak Random IOPS

Device Threads Read (MB/s) Write (MB/s)
Intel 2 221 162
FusionIO 2 769 686

Figure 5: Device Peak Bandwidth 1MB Transfers

Figure 5 shows the peak bandwidth for both cases. We
measured sequential I/O bandwidth by computing the ag-
gregate throughput of multiple readers and writers. Each
client transferred 1MB blocks for the throughput test
and used direct I/O to bypass the kernel buffer cache.
The results in the table are the bandwidth results using
two writers. The virtualized flash storage layer with io-
Drive achieves 769MB/s for read and 686MB/s for write,
whereas the traditional block storage layer with the Intel
SSD achieves 221MB/s for read and 162MB/s for write.

4.2 Complexity of DFS vs. ext3
Figure 6 shows the number of lines of code for the ma-
jor modules of DFS and ext3 file systems. Although both
implement Unix file systems, DFS is much simpler. The
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Module DFS Ext3
Headers 392 1583
Kernel Interface (Superblock, etc.) 1625 2973
Logging 0 7128
Block Allocator 0 1909
I-nodes 250 6544
Files 286 283
Directories 561 670
ACLs, Extended Attrs. N/A 2420
Resizing N/A 1085
Miscellaneous 175 113
Total 3289 24708

Figure 6: Lines of Code in DFS and Ext3 by Module

simplicity of DFS is mainly due to delegating block al-
locations and reclamations to the virtualized flash storage
layer. The ext3 file system, for example, has a total of
17,500 lines of code and relies on an additional 7,000 lines
of code to implement logging (JBD) for a total of nearly
25,000 lines of code compared to roughly 3,300 lines of
code in DFS. Of the total lines in ext3, about 8,000 lines
(33%) are related to block allocations, deallocations and I-
node layout. Of the remainder, another 3,500 lines (15%)
implement support for on-line resizing and extended at-
tributes, neither of which are supported by DFS.

Although it may not be fair to compare a research pro-
totype file system with a file system that has evolved for
several years, the percentages of block allocation and log-
ging in the file systems give us some indication of the rel-
ative complexity of different components in a file system.

4.3 Microbenchmark Performance of DFS
vs. ext3

We use Iozone [23] to evaluate the performance of DFS
and ext3 on the ioDrive when using both direct and
buffered access. We record the number of 4KB I/O trans-
actions per second achieved with each file system and also
compute the CPU usage required in each case as the ratio
between user plus system time to elapsed wall time. For
both file systems, we ran Iozone in three different modes:
in the default mode in which I/O requests pass through the
kernel buffer cache, in direct I/O mode without the buffer
cache, and in memory-mapped mode using the mmap sys-
tem call.

In our experiments, both file systems run on top of the
virtualized flash storage layer. The ext3 file system in this
case uses the backward compatible block storage interface
supported by the virtualized flash storage layer.

Direct Access

For both reads and writes, we consider sequential and uni-
form random access to previously allocated blocks. Our

goal is to understand the additional overhead due to DFS
compared to the virtualized flash storage layer. The re-
sults indicate that DFS is indeed lightweight and imposes
much less overhead than ext3. Compared to the raw de-
vice, DFS delivers about 5% fewer IOPS for both read
and write whereas ext3 delivers 9% fewer read IOPS and
more than 20% fewer write IOPS. In terms of bandwidth,
DFS delivers about 3% less write bandwidth whereas ext3
delivers 9% less write bandwidth.

File System Threads Read (MB/s) Write (MB/s)
ext3 2 760 626
DFS 2 769 667

Figure 7: Peak Bandwidth 1MB Transfers on ioDrive

Figure 7 shows the peak bandwidth for sequential 1MB
block transfers. This microbenchmark is the filesystem
analog of the raw device bandwidth performance shown
in Figure 5. Although the performance difference between
DFS and ext3 for large block transfers is relatively mod-
est, DFS does narrow the gap between filesystem and raw
device performance for both sequential reads and writes.

Figure 8 shows the average direct random I/O perfor-
mance on DFS and ext3 as a function of the number of
concurrent clients on the FusionIO ioDrive. Both of the
file systems also exhibit a characteristic that may at first
seem surprising: aggregate performance often increases
with an increasing number of clients, even if the client
requests are independent and distributed uniformly at ran-
dom. This behavior is due to the relatively long latency of
individual I/O transactions and deep hardware and soft-
ware request queues in the flash storage subsystem. This
behavior is quite different from what most applications ex-
pect and may require changes to them in order to realize
the full potential of the storage system.

Unlike read throughput, write throughput peaks at
about 16 concurrent writers and then decreases slightly.
Both the aggregate throughput and the number of concur-
rent writers at peak performance are lower than when ac-
cessing the raw storage device. The additional overhead
imposed by the filesystem on the write path reduces both
the total aggregate performance and the number of con-
current writers that can be handled efficiently.

We have also measured CPU utilization per 1,000 IOPS
delivered in the microbenchmarks. Figure 9 shows the
improvement of DFS over ext3. We report the average
of five runs of the IOZone based microbenchmark with a
standard deviation of one to three percent. For reads, DFS
CPU utilization is comparable to ext3; for writes, partic-
ularly with small numbers of threads, DFS is more effi-
cient. Overall, DFS consumes somewhat less CPU power,
further confirming that DFS is a lighter weight file system
than ext3.

One anomaly worthy of note is that DFS is actually
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Figure 8: Aggregate IOPS for 4K Random Direct I/O as a Function of the Number of Threads

Threads Read Random
Read Write Random

Write

1 8.1 2.8 9.4 13.8
2 1.3 1.6 12.8 11.5
3 0.4 5.8 10.4 15.3
4 -1.3 -6.8 -15.5 -17.1
8 0.3 -1.0 -3.9 -1.2
16 1.0 1.7 2.0 6.7
32 4.1 8.5 4.8 4.4

Figure 9: Improvement in CPU Utilization per 1, 000

IOPS using 4K Direct I/O with DFS relative to Ext3

more expensive than ext3 per I/O when running with four
clients, particularly if the clients are writers. This is due
to the fact that there are four cores on the test machine
and the device driver itself has worker threads that re-
quire CPU and memory bandwidth. The higher perfor-
mance of DFS translates into more work for the device
driver and particularly for the garbage collector. Since
there are more threads than cores, cache hit rates suffer
and scheduling costs increase; under higher offered load,
the effect is more pronounced, although it can be miti-
gated somewhat by binding the garbage collector to a sin-
gle processor core.

Buffered Access

To evaluate the performance of DFS in the presence of the
kernel buffer cache, we ran a similar set of experiments as
in the case of direct I/O. Each experiment touched 8GB
worth of data using 4K block transfers. The buffer cache
was invalidated after each run by unmounting the file sys-
tem and the total data referenced exceeded the physical
memory available by a factor of two. The first run of each
experiment was discarded and the average of the subse-
quent ten runs reported.

Figures 10 and 11 show the results via the Linux buffer
cache and via memory-mapped I/O data path which also
uses the buffer cache. There are several observations.

Seq. Read IOPS x 1K Rand. Read IOPS x 1K
Thr. ext3 DFS (Speedup) ext3 DFS (Speedup)
1 125.5 191.2 (1.52) 17.5 19.0 (1.09)
2 147.6 194.1 (1.32) 32.9 34.0 (1.03)
3 137.1 192.7 (1.41) 44.3 46.6 (1.05)
4 133.6 193.9 (1.45) 55.2 57.8 (1.05)
8 134.4 193.5 (1.44) 78.7 80.5 (1.02)
16 132.6 193.9 (1.46) 79.6 81.1 (1.02)
32 132.3 194.8 (1.47) 95.4 101.2 (1.06)

Seq. Write IOPS x 1K Rand. Write IOPS x 1K
Thr. ext3 DFS (Speedup) ext3 DFS (Speedup)
1 67.8 154.9 (2.28) 61.2 68.5 (1.12)
2 71.6 165.6 (2.31) 56.7 64.6 (1.14)
3 73.0 156.9 (2.15) 59.6 62.8 (1.05)
4 65.5 161.5 (2.47) 57.5 63.3 (1.10)
8 64.9 148.1 (2.28) 57.0 58.7 (1.03)
16 65.3 147.8 (2.26) 52.6 56.5 (1.07)
32 65.3 150.1 (2.30) 55.2 50.6 (0.92)

Figure 10: Buffer Cache Performance with 4KB I/Os

First, both DFS and ext3 have similar random read IOPS
and random write IOPS to their performance results us-
ing direct I/O. Although this is expected, DFS is better
than ext3 on average by about 5%. This further shows
that DFS has less overhead than ext3 in the presence of a
buffer cache.

Second, we observe that the traditional buffer cache is
not effective when there are a lot of parallel accesses. In
the sequential read case, the number of IOPS delivered by
DFS basically doubles its direct I/O access performance,
whereas the IOPS of ext3 is only modestly better than its
random access performance when there are enough paral-
lel accesses. For example, when there are 32 threads, its
IOPS is 132,000, which is only 28% better than its random
read IOPS of 95,400!

Third, DFS is substantially better than ext3 for both se-
quential read and sequential write cases. For sequential
reads, it outperforms ext3 by more than a factor of 1.4.
For sequential writes, it outperforms ext3 by more than a
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Seq. Read IOPS x 1K Rand. Read IOPS x 1K
Thr. ext3 DFS (Speedup) ext3 DFS (Speedup)

1 42.6 52.2 (1.23) 13.9 18.1 (1.3)
2 72.6 84.6 (1.17) 22.2 28.2 (1.27)
3 94.7 114.9 (1.21) 27.4 32.1 (1.17)
4 110.2 117.1 (1.06) 29.7 35.0 (1.18)

Seq. Write IOPS x 1K Rand. Write IOPS x 1K
Thr. ext3 DFS (Speedup) ext3 DFS (Speedup)

1 28.8 40.2 (1.4) 11.8 13.5 (1.14)
2 39.9 55.5 (1.4) 16.7 18.1 (1.08)
3 41.9 68.4 (1.6) 19.1 20.0 (1.05)
4 44.3 70.8 (1.6) 20.1 22.0 (1.09)

Figure 11: Memory Mapped Performance of Ext3 & DFS

factor of 2.15. This is largely due to the fact that DFS is
simple and can easily combines I/Os.

The story for memory-mapped I/O performance is
much the same as it is for buffered I/O. Random access
performance is relatively poor compared to direct I/O per-
formance. The simplicity of DFS and the short code
paths in the filesystem allow it to outperform ext3 in this
case. The comparatively large speedups for sequential
I/O, particularly sequential writes, is again due to the fact
that DFS readily combines multiple small I/Os into larger
ones. In the next section we show that I/O combining is
an important effect; the quicksort benchmark is a good
example of this phenomenon with memory mapped I/O.
We count both the number of I/O transactions during the
course of execution and the total number of bytes trans-
ferred. DFS greatly reduces the number of write opera-
tions and more modestly the number of read operations.

4.4 Application Benchmarks Performance
of DFS vs. ext3

We have used five applications as an application bench-
mark suite to evaluate the application-level performance
on DFS and ext3.

Application Benchmarks

The table in Figure 12 summarizes the characteristics of
the applications and the reasons why they are chosen for
our performance evaluation.

In the following, we describe each application, its im-
plementation and workloads in detail:

Quicksort. This quicksort is implemented as a single-
threaded program to sort 715 million 24 byte key-value
pairs memory mapped from a single 16GB file. Although
quicksort exhibits good locality of reference, this bench-
mark program nonetheless stresses the memory mapped
I/O subsystem. The memory-mapped interface has the
advantages of being simple, easy to understand, and a
straightforward way to transform a large flash storage de-

Applications Description I/O Patterns
Quicksort A quicksort on a large

dataset
Mem-mapped
I/O

N-Gram A program for querying
n-gram data

Direct, random
read

KNNImpute Processes bioinformatics
microarray data

Mem-mapped
I/O

VM-
Update

Update of an OS on
several virtual machines

Sequential read
& write

TPC-H Standard benchmark for
Decision Support

Mostly
sequential read

Figure 12: Applications and their characteristics.

vice into an inexpensive replacement for DRAM as it pro-
vides the illusion of word-addressable access.

N-Gram. This program indexes all of the 5-grams in
the Google n-gram corpus by building a single large hash
table that contains 26GB worth of key-value pairs. The
Google n-gram corpus is a large set of n-grams and their
appearance counts taken from a crawl of the Web that has
proved valuable for a variety of computational linguistics
tasks. There are just over 13.5 million words or 1-grams
and just over 1.1 billion 5 grams. Indexing the data set
with an SQL database takes a week on a computer with
only 4GB of DRAM [9]. Our indexing program uses 4KB
buckets with the first 64 bytes reserved for metadata. The
implementation does not support overflows, rather an oc-
cupancy histogram is constructed to find the smallest k

such that 2k hash buckets will hold the dataset without
overflows. With a variant of the standard Fowler-Nolls-
Vo hash, the entire data set fits in 16M buckets and the
histogram in 64MB of memory. Our evaluation program
uses synthetically generated query traces of 200K queries
each; results are based upon the average of twenty runs.
Queries are drawn either uniformly at random or accord-
ing to a Zipf distribution with α = 1.0001. The results
were qualitatively similar for other values of α until lock-
ing overhead dominated I/O overhead.

KNNImpute. This program is a very popular bionfor-
matics code for estimating missing values in data obtained
from microarray experiments. The program uses the KN-
NImpute [29] algorithm for DNA microarrays which takes
as input a matrix with G rows representing genes and
E columns representing experiments. Then a symmetric
GxG distance matrix with the Euclidean distance between
all gene pairs is calculated based on all experiment values
for both genes. Finally, the distance matrix is written to
disk as its output. The program is a multi-threaded imple-
mentation using memory-mapped I/O. Our input data is a
matrix with 41,768 genes and 200 experiments results in
a matrix of about 32MB, and a distance matrix of 6.6GB.
There are 2079 genes with missing values.

VM Update. This benchmark is a simple update of
multiple virtual machines hosted on a single server. We
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Wall Time
Application Ext3 DFS Speedup
Quick Sort 1268 822 1.54

N-Gram (Zipf) 4718 1912 2.47
KNNImpute 303 248 1.22
VM Update 685 640 1.07

TPC-H 5059 4154 1.22

Figure 13: Application Benchmark Execution Time Im-
provement: Best of DFS vs Best of Ext3

choose this application because virtual machines have be-
come popular from both a cost and management perspec-
tive. Since each virtual machine typically runs the same
operating system but has its own copy, operating system
updates can pose a significant performance problem. Each
virtual machine needs to apply critical and periodic sys-
tem software updates at the same time. This process is
both CPU and I/O intensive. To simulate such an environ-
ment, we installed 4 copies of Ubuntu 8.04 in four differ-
ent VirtualBox instances. In each image, we downloaded
all of the available updates and then measured the amount
of time it took to install these updates. There were a to-
tal of 265 packages updated containing 343MB of com-
pressed data and about 38,000 distinct files.

TPC-H. This is a standard benchmark for decision sup-
port workloads. We used the Ingres database to run the
Transaction Processing Council’s Benchmark H (TPC-
H) [4]. The benchmark consists of 22 business oriented
queries and two functions that respectively insert and
delete rows in the database. We used the default con-
figuration for the database with two storage devices: the
database itself, temporary files, and backup transaction
log were placed on the flash device and the executables
and log files were stored on the local disk. We report the
results of running TPC-H with a scale factor of 5, which
corresponds to about 5GB of raw input data and 90GB for
the data, indexes, and logs stored on flash once loaded into
the database.

Performance Results of DFS vs. ext3

This section first reports the performance results of DFS
and ext3 for each application, and then analyzes the results
in detail.

The main performance result is that DFS improves ap-
plications substantially over ext3. Figures 13 shows the
elapsed wall time of each application running with ext3
and DFS on the same execution environment mentioned
at the beginning of the section. The results show that
DFS improves the performance all applications and the
speedups range from a factor of 1.07 to 2.47.

To explain the performance results, we will first use
Figure 14 to show the number of read and write IOPS,
and the number of bytes transferred for reads and writes

for each application. The main observation is that DFS is-
sues a smaller number of larger I/O transactions than ext3,
though the behaviors of reads and writes are quite dif-
ferent. This observation explains partially why DFS im-
proves the performance of all applications, since we know
from the microbenchmark performance that DFS achieves
better IOPS than ext3 and significantly better throughput
when the I/O transaction sizes are large.

One reason for larger I/O transactions is that in the
Linux kernel, file offsets are mapped to block numbers
via a per-file-system get block function. The DFS im-
plementation of get block is aggressive about mak-
ing large transfers when possible. A more nuanced pol-
icy might improve performance further, particularly in the
case of applications such as KNNImpute and the VM Up-
date workload which actually see an increase in the total
number of bytes transferred. In most cases, however, the
result of the current implementation is a modest reduction
in the number of bytes transferred.

But, the smaller number of larger I/O transactions does
not completely explain the performance results. In the fol-
lowing, we will describe our understanding of the perfor-
mance of each application individually.

Quicksort. The Quicksort benchmark program sees a
speedup of 1.54 when using DFS instead of ext3 on the
ioDrive. Unlike the other benchmark applications, the
quicksort program sees a large increase in CPU utiliza-
tion when using DFS instead of ext3. CPU utilization in-
cludes both the CPU used by the FusionIO device driver
and by the application itself. When running on ext3, this
benchmark program is I/O bound; the higher throughput
provided by DFS leads to higher CPU utilization, which
is actually a desirable outcome in this particular case. In
addition, we collected statistics from the virtualized flash
storage layer to count the number of read and write trans-
actions issued in each of the three cases. When running
on ext3, the number of read transactions is similar to that
found with DFS, whereas the number of write transac-
tions is roughly twenty-five times larger than that of DFS,
which contributed to the speedup. The average transaction
size with ext3 is about 4KB instead of 64KB with DFS.

Google N-Gram Corpus. The N-gram query bench-
mark program running on DFS achieves a speedup of 2.5
over that on ext3. Figure 15 illustrates the speedup as a
function of the number of concurrent threads; in all cases,
the internal cache is 1,024 hash buckets and all I/O by-
passes the kernel’s buffer cache.

The hash table implementation is able to achieve about
95% of the random I/O performance delivered in the
Iozone microbenchmarks given sufficient concurrency.
As expected, performance is higher when the queries
are Zipf-distributed as the internal cache captures many
of the most popular queries. For Zipf parameter α =

1.0001, there are about 156,000 4K random reads to sat-
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Read IOPS x 1000 Read Bytes x 1M Write IOPS x 1000 Write Bytes x 1M
Application Ext3 DFS (Change) Ext3 DFS (Change) Ext3 DFS (Change) Ext3 DFS (Change)
Quick Sort 1989 1558 (0.78) 114614 103991 (0.91) 49576 1914 (0.04) 203063 192557 (0.95)

N-Gram (Zipf) 156 157 (1.01) 641 646 (1.01) N/A N/A N/A N/A
KNNImpute 2387 1916 (0.80) 42806 36146 (0.84) 2686 179 (0.07) 11002 12696 (1.15)
VM Update 244 193 (0.79) 9930 9760 (0.98) 3712 1144 (0.31) 15205 19767 (1.30)

TPC-H 6375 3760 (0.59) 541060 484985 (0.90) 52310 3626 (0.07) 214265 212223 (0.99)

Figure 14: App. Benchmark Improvement in IOPS Required and Bytes Transferred: Best of DFS vs Best of Ext3
Wall Time in Sec. Ctx Switch x 1K

Threads Ext3 DFS Ext3 DFS
1 10.82 10.48 156.66 156.65
4 4.25 3.40 308.08 160.60
8 4.58 2.46 291.91 167.36
16 4.65 2.45 295.02 168.57
32 4.72 1.91 299.73 172.34

Figure 15: Zipf-Distributed N-Gram Queries: Elapsed
Time and Context Switches (α = 1.0001)

isfy 200,000 queries. Moreover, query performance for
hash tables backed by DFS scales with the number of
concurrent threads much as it did in the Iozone random
read benchmark. The performance of hash tables backed
by ext3 do not scale with the number of threads nearly
so well. This is due to increased per-file lock contention
in ext3. We measured the number of voluntary context
switches when running on each file system as reported by
getrusage. A voluntary context switch indicates that
the application was unable to acquire a resource in the
kernel such as a lock. When running on ext3, the num-
ber of voluntary context switches increased dramatically
with the number of concurrent threads; it did not do so
on DFS. Although it may be possible to overcome the re-
source contention in ext3, the simplicity of DFS allows us
to sidestep the issue altogether. This effect was less pro-
nounced in the microbenchmarks because Iozone never
assigns more than one thread to each file by default.

Bioinformatics Missing Value Estimation. KNNIm-
pute takes about 18% less time to run when using DFS as
opposed to ext3 with a standard deviation of about 1% of
the mean run time. About 36% of the total execution time
when running on ext3 is devoted to writing the distance
matrix to stable storage. Most of the improvement in run
time when running on DFS is during this phase of execu-
tion. CPU utilization increases by almost 7% on average
when using DFS instead of ext3. This is due to increased
system CPU usage during the distance matrix write phase
by the FusionIO device driver’s worker threads, particu-
larly the garbage collector.

Virtual Machine Update. On average, it took 648 sec-
onds to upgrade virtual machines hosted on DFS and 701
seconds to upgrade those hosted on ext3 file systems, for
a net speed up of 7.6%. In both cases, the four virtual
machines used nearly all of the available CPU for the du-

ration of the benchmark. We found that each VirtualBox
instance kept a single processor busy almost 25% percent
of the time even when the guest operating system was idle.
As a result, the virtual machine update workload quickly
became CPU bound. If the virtual machine implementa-
tion itself were more efficient or more virtual machines
shared the same storage system we would expect to see a
larger benefit to using DFS.

TPC-H. We ran the TPC-H benchmark with a scale fac-
tor of five on both DFS and ext3. The average speedup
over five runs was 1.22. For the individual queries DFS
always performs better than ext3, with the speedup rang-
ing from 1.04 (Q1: pricing summary report) to 1.51 (RF2:
old sales refresh function). However, the largest contribu-
tion to the overall speedup is the 1.20 speedup achieved
for Q5 (local supplier volume), which consumes roughly
75% of the total execution time.

There is a large reduction (14.4x) in the number of write
transactions when using DFS as compared to ext3 and a
smaller reduction (1.7x) in the number of read transac-
tions. As in the case of several of the other benchmark ap-
plications, the large reduction in the number of I/O trans-
actions is largely offset by larger transfers in each transac-
tion, resulting in a modest decrease in the total number of
bytes transferred.

CPU utilization is lower when running on DFS as op-
posed to ext3, but the Ingres database thread runs with
close to 100% CPU utilization in both cases. The reduc-
tion in CPU usage is due instead to greater efficiency in
the kernel storage software stack, particularly the flash de-
vice driver’s worker threads.

5 Conclusion

This paper presents the design, implementation, and eval-
uation of DFS and describes FusionIO’s virtualized flash
storage layer. We have demonstrated that novel layers of
abstraction specifically for flash memory can yield sub-
stantial benefits in software simplicity and system perfor-
mance.

We have learned several things from DFS design. First,
DFS is simple and has a short and direct way to access
flash memory. Much of its simplicity comes from lever-
aging the virtualized flash storage layer such as large vir-
tual storage space, block allocation and deallocation, and
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atomic block updates.
Second, the simplicity of DFS translates into perfor-

mance. Our microbenchmark results show that DFS can
deliver 94,000 IOPS for random reads and 71,000 IOPS
random writes with the virtualized flash storage layer on
FusionIO’s ioDrive. The performance is close to the hard-
ware limit.

Third, DFS is substantially faster than ext3. For direct
access performance, DFS is consistently faster than ext3
on the same platform, sometimes by 20%. For buffered
access performance, DFS is also consistently faster than
ext3, and sometimes by over 149%. Our application
benchmarks show that DFS outperforms ext3 by 7% to
250% while requiring less CPU power.

We have also observed that the impact of the traditional
buffer cache diminishes when using flash memory. When
there are 32 threads, the sequential read throughput of
DFS is about twice that for direct random reads with DFS,
whereas ext3 achieves only a 28% improvement over di-
rect random reads with ext3.
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Abstract
We present Griffin, a hybrid storage device that uses a
hard disk drive (HDD) as a write cache for a Solid State
Device (SSD). Griffin is motivated by two observations:
First, HDDs can match the sequential write bandwidth of
mid-range SSDs. Second, both server and desktop work-
loads contain a significant fraction of block overwrites.
By maintaining a log-structured HDD cache and migrat-
ing cached data periodically, Griffin reduces writes to
the SSD while retaining its excellent performance. We
evaluate Griffin using a variety of I/O traces from Win-
dows systems and show that it extends SSD lifetime by a
factor of two and reduces average I/O latency by 56%.

1 Introduction

Over the past decade, the use of flash memory has
evolved from specialized applications in hand-held de-
vices to primary system storage in general-purpose com-
puters. Flash-based Solid State Devices (SSDs) provide
1000s of low-latency IOPS and can potentially eliminate
I/O bottlenecks in current systems. The cost of commod-
ity flash – often cited as the primary barrier to SSD de-
ployment [22] – has dropped significantly in the recent
past, creating the possibility for widespread replacement
of disk drives by SSDs.

However, two trends have a potential to derail the
adoption of SSDs. First, general-purpose (OS) work-
loads are harder on the storage subsystem than hand-held
applications, particularly in terms of write volume and
non-sequentiality. Second, as the cost of NAND flash has
declined with increased bit density, the number of erase
cycles (and hence write operations) a flash cell can tol-
erate has suffered. This combination of a more stressful
workload and fewer available erase cycles reduces useful
lifetime, in some cases to less than one year.

In this paper, we propose Griffin, a hybrid storage de-
sign that, somewhat contrary to intuition, uses a hard

disk drive to cache writes to an SSD. Writes to Griffin
are logged sequentially to the HDD write cache and later
migrated to the SSD. Reads are usually served from the
SSD and occasionally from the slower HDD. Griffin’s
goal is to minimize the writes sent to the SSD without
significantly impacting its read performance; by doing
so, it conserves erase cycles and extends SSD lifetime.

Griffin’s hybrid design is based on two characteristics
observed in block-level traces collected from systems
running Microsoft Windows. First, many of the writes
seen by block devices are in fact overwrites of a small
set of popular blocks. Using an HDD as a write cache
to coalesce overwrites can reduce the write traffic to the
SSD significantly; for the desktop and server traces we
examined, it does by an average of 52%. Second, once
data is written to a block device, it is not read again from
the device immediately; the file system cache serves any
immediate reads without accessing the device. Accord-
ingly, Griffin has a time window within which to coalesce
overwrites on the HDD, during which few reads occur.

A log structured HDD makes for an unconventional
write cache: writes are fast whereas random reads are
slow and can affect the logging bandwidth. By logging
writes to the HDD, Griffin takes advantage of the fact that
a commodity SATA disk drive delivers over 80 MB/s of
sequential write bandwidth, allowing it to keep up with
mid-range SSDs. In addition, hard disks offer massive
capacity, allowing Griffin to log writes for long periods
without running out of space. Since hard disks are very
inexpensive, the cost of the write cache is a fraction of
the SSD cost.

We evaluate Griffin using a simulator and a user-level
implementation with a variety of I/O traces, both from
desktop and server environments. Our evaluation shows
that, for the desktop workloads we studied, our caching
policies can cut down writes to the SSD by approxi-
mately 49% on average, with less than 1% of reads ser-
viced by the slower HDD. For server workloads, the ob-
served benefit is more widely varied, but equally signifi-
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cant. In addition, Griffin improves the sequentiality of
the write accesses to the SSD by an average of 15%,
which can indirectly improve the lifetime of the SSD.
Reducing the volume of writes by half allows Griffin to
extend SSD lifetime by at least a factor of two; by addi-
tionally improving the sequentiality of the workload seen
by the SSD, Griffin can extend SSD lifetime even more,
depending on the SSD firmware design. An evaluation of
the performance of Griffin shows that it performs much
better than a regular SSD, where the average I/O latency
is reduced by 56%.

2 SSD Write-Lifetime

Constraints on the amount of data that can be written to
an SSD stem from the properties of NAND flash. Specif-
ically, a block must be erased before being re-written,
and only a finite number of erasures are possible before
the bit error rate of the device becomes unacceptably
high [7, 20]. SLC (single-level cell) flash typically sup-
ports 100K erasures per flash block. However, as SSD
technology moves towards MLC (multi-level cell) flash
that provides higher bit densities at lower cost, the era-
sure limit per block drops as low as 5,000 to 10,000 cy-
cles. Given that smaller chip feature sizes and more bits-
per-cell both increase the likelihood of errors, we can ex-
pect erasure limits to drop further as densities increase.

Accordingly, we define a device write-lifetime, which
is the total number of writes that can be issued to the de-
vice over its lifetime. For example, an SSD with 60 GB
of NAND flash with 5000 erase-cycles per block might
support a maximum write-lifetime of 300 TB (5000 ×
60 GB). However, write-lifetime is unlikely to be optimal
in practice, depending on the workload and firmware.
For example, according to Micron’s data sheet [18], un-
der a specific workload, its 60 GB SSD only has write-
lifetime of 42 TB, which is a reduction in write-lifetime
by a factor of 7. It is conceivable that under a more stress-
ful workload, SSD write-lifetime decreases by more than
an order of magnitude.

Firmware on commodity SSDs can reduce write-
lifetime due to inefficiencies in the Flash Translation
Layer (FTL), which maintains a map between host log-
ical sector addresses and physical flash addresses [14].
The FTL chooses where to place each incoming logical
sector during a write. If the candidate physical block
is occupied with other data, it must be moved and the
block must be erased. The FTL then writes the new data
and adjusts the map to reflect the position of the new
data. While sequential write patterns are easy to han-
dle, non-sequential write patterns can be problematical
for the FTL by requiring data copying in order to free
up space for each incoming write. In the absolute worst
case of continuous 512 byte writes to random addresses,

it may be necessary to move a full MLC flash block
(512 KB) less 512 bytes for each incoming write, reduc-
ing write-lifetime by a factor of 1000. The effect is usu-
ally known as write-amplification [10] to which we must
also add the cost of maintaining even wear across all
blocks. Although the worst-case workload is not likely,
and the FTL can lessen the negative impact of a non-
sequential write workload by maintaining a pool of re-
serve blocks not included in the drive’s advertised capac-
ity, non-sequential workloads will always trigger more
erasures than sequential ones.

It is not straightforward to map between reduced write
workload and increased write-lifetime. Halving the num-
ber of writes will at least double the lifetime. However,
the effect can be greater to the extent it also reduces
write-amplification. Overwrites are non-sequential by
nature. So if overwrites can be eliminated, or out-of-
order writes made sequential, there will be both fewer
writes and less write-amplification. As explored by
Agrawal et al. [1], FTL firmware can differ wildly in its
ability to handle non-sequential writes. A simple FTL
that maps logical sector addresses to physical flash at
the granularity of a flash block will suffer huge write-
amplification from a non-sequential workload, and there-
fore will benefit greatly from fewer of such writes. The
effect will be more subtle for an advanced FTL that does
the mapping at a finer granularity. However, improved
sequentiality will reduce internal fragmentation within
flash blocks, and therefore will both improve wear-
leveling performance and reduce write-amplification.

Write-lifetime depends on the performance of wear-
leveling and the write-amplification for a given work-
load, both of which cannot be measured. However, we
can obtain a rough estimate of write-amplification by
observing the performance difference between a given
workload and a purely sequential one; the degree of ob-
served slowdown should give us some idea of the effec-
tive write-amplification. The product manual for the In-
tel X25-M MLC SSD [13] indicates that this SSD suffers
at least a factor of 6 reduction in performance when a
random-write workload is compared to a sequential one
(sequential write bandwidth of 70 MB/s versus 3.3 K
IOPS for random 4 KB writes). Thus, after wear-leveling
and other factors are considered, it becomes plausible
that practical write-lifetimes, even for advanced FTLs,
can be an order of magnitude worse than the optimum.

3 Overview of Griffin

Griffin’s design is very simple: it uses a hard disk as a
persistent write cache for an MLC-based SSD. All writes
are appended to a log stored on the HDD and eventu-
ally migrated to the SSD, preferably before subsequent
reads. Structuring the write cache as a log allows Grif-
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fin to operate the HDD at its fast sequential write mode.
In addition to coalescing overwrites, the write cache also
increases the sequentiality of the workload observed by
the SSD; as described in the previous section, this results
in increased write-lifetime.

Since cost is the single biggest barrier to SSD deploy-
ment [22], we focus on write caching for cheaper MLC-
based SSDs, for which low write-lifetime is a signifi-
cant constraint. MLC devices are excellent candidates
for HDD-based write caching since their sequential write
bandwidth is typically equal to that of commodity HDDs,
at 70-80 MB/s [13].

Griffin increases the write-lifetime of an MLC-based
SSD without increasing total cost significantly; as of this
writing, the cost of a 350 GB SATA HDD is around 50
USD, whereas an 128 GB MLC-based SSD is around
300 USD. In comparison, a 128 GB SLC-based SSD,
which offers higher write-lifetime than the MLC variant
currently costs around 4 to 5 times as much.

Griffin also increases write-lifetime without substan-
tially altering the reliability characteristics of the MLC
device. While the HDD write cache represents an ad-
ditional point of failure, any such event leaves the file
system intact on the SSD and only results in the loss of
recent data. We discuss failure handling in Section 5.3.

3.1 Other Hybrid Designs
Other hybrid designs using various combinations of
RAM, non-volatile RAM, and rotating media are clearly
possible. Since a thorough comparative analysis of all
the options is beyond the scope of this paper, we briefly
describe a few other designs and compare them qualita-
tively with Griffin.
• NVRAM as read cache for HDD storage: Given
its excellent random read performance, NVRAM (e.g.,
an SSD) can work well as a read cache in front of a
larger HDD [17, 19, 24]. However, a smaller NVRAM is
likely to provide only incremental performance benefits
as compared to an OS-based file cache in RAM, whereas
a larger NVRAM cache is both costly and subject to wear
as the cache contents change. Any design that uses rotat-
ing media for primary storage will scale-up in capacity
with less cost than Griffin. However, this cost difference
is likely to decline as flash memory densities increase.
• NVRAM as write cache for SSD storage: The Grif-
fin design can accommodate NVRAM as a write cache
in lieu of HDD. The effectiveness of using NVRAM de-
pends on two factors: 1) whether SLC or MLC flash is
used; and, 2) the ratio of reads that hit the write cache
and thus disrupt sequential logging there. The use of
NVRAM can also lead to better power savings. How-
ever, all these benefits come at a higher cost than Griffin
configured with a HDD cache, especially if SLC flash

is used for write caching. Later, we evaluate the Grif-
fin’s performance with both SLC and MLC write caches
(Section 6.4) and explore the minimum write cache size
required (Section 7).
• RAM as write cache for SSD storage: RAM can
make for a fast and effective write cache, however the
overriding problem with RAM is that it is not persis-
tent (absent some power-continuity arrangements). In-
creasing the RAM size or the timer interval for periodic
flushes may reduce the number of writes to storage but
only at the cost of a larger window of vulnerability dur-
ing which a power failure or crash could result in lost
updates. Moreover, a RAM-based write cache may not
be effective for all workloads; for example, we later show
that for certain workloads (Section 6.1.2), over 1 hour of
caching is required to derive better write savings; volatile
caching is not suitable for such long durations.

3.2 Understanding Griffin Performance
The key challenge faced by Griffin is to increase the
write-lifetime of the SSD while retaining its performance
on reads. Write caching is a well-known technique for
buffering repeated writes to a set of blocks. However,
Griffin departs significantly from conventional caching
designs, which typically use small, fast, and expensive
media (such as volatile RAM or non-volatile battery-
backed RAM) to cache writes against larger and slower
backing stores. Griffin’s HDD write cache is both in-
expensive and persistent and can in fact be larger than
the backing SSD; accordingly, the flushing of dirty data
from the write cache to the SSD is not driven by either
capacity constraints or synchronous writes.

However, Griffin’s HDD write cache is also slower
than the backing SSD for read operations, which trans-
late into high latency random I/Os on the HDD’s log. In
addition, reads can disrupt the sequential stream of writes
received by the HDD, reducing its logging bandwidth by
an order of magnitude. As a result, dirty data has to be
flushed to the SSD before it is read again, in order to
avoid expensive reads from the HDD.

Griffin’s performance is thus determined by compet-
ing imperatives — data must be held in the HDD to
buffer overwrites, and data must be flushed from the
HDD to prevent expensive reads. We quantify these with
the following two metrics:
• Write Savings: This is the percentage of total writes
that is prevented from reaching the SSD. For example,
if the hybrid device receives 60M writes and the SSD
receives 45M of them, the write savings is 25%. Ideally,
we want the write savings to be as high as possible.
• Read Penalty: This is the percentage of total reads
serviced by the HDD write cache. For example, if the
hybrid device receives 50M reads and the HDD receives
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1M of these reads, the read penalty is 2%. Ideally, we
want the read penalty to be as low as possible.

There will be no read penalty if an oracle informs Grif-
fin in advance of data to be read; all such blocks can
be flushed to the SSD before an impending read. With
no read penalty, the maximum write savings possible is
workload-dependent and is essentially a measure of the
frequency of consecutive overwrites without intervening
reads. In the worst case, there will be no write savings
if there are no overwrites, i.e., no block is ever written
consecutively without an intervening read. An idealized
HDD write cache achieves the maximum write savings
with no read penalty for any workload.

To understand the performance of an idealized HDD
write cache, consider the following sequence of writes
and reads to a particular block: WWWRWW . Without
a write cache, this sequence results in one read and five
writes to the SSD. An idealized HDD write cache would
coalesce consecutive writes and flush data to the SSD
immediately before each read, resulting in a sequence of
operations to the SSD that contains two writes and one
read: WRW . Accordingly, the maximum write savings
in this simple example is 3/5 or 60%.

Griffin attempts to achieve the performance of an ide-
alized HDD write cache by controlling policy along two
dimensions: what data to cache, and how long to cache
it for. The choice of policy in each case is informed by
the characteristics of real workloads, which we will ex-
amine in the next section. Using these different policies,
Griffin is able to achieve different points in the trade-off
curve between read penalty and write savings.

4 Trace Analysis

In this section, we explore the benefits of HDD-based
write caching by analyzing traces from desktop and
server environments. Our analysis has two aspects. First,
we show that an idealized HDD-based write cache can
provide significant write savings for these traces; in other
words, overwrites commonly occur in real-world work-
loads. Second, we look for spatial and temporal pat-
terns in these overwrites that can help determine Griffin’s
caching policies.

4.1 Description of Traces
Our desktop I/O traces are collected from desktops
and laptops running Windows Vista, which were instru-
mented using the Windows Performance Analyzer. Al-
though we analyzed several desktop traces, we limit our
presentation to 12 traces from three desktops due to
space limitations.

Most of our server traces are from a previous study by
Narayanan et al. [21]. These traces were collected from
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D-1A 114 14 M 43 57 46 87 4
D-1B 70 29 M 45 55 39 87 2
D-1C 153 36 M 50 50 52 88 2
D-1D 27 07 M 40 60 64 84 1
D-2A 99 39 M 49 51 39 71 3
D-2B 105 30 M 48 52 36 63 2
D-2C 149 17 M 44 56 58 52 2
D-2D 103 22 M 56 44 52 47 1
D-3A 52 13 M 56 44 43 68 2
D-3B 105 33 M 50 50 56 72 4
D-3C 96 37 M 52 48 47 77 6
D-3D 55 16 M 51 49 51 78 4
S-EXCH 0.25 209 K 59 41 42 34 0
S-PRXY1 167 543 M 65 35 57 99 63
S-SRC10 168 408 M 47 53 14 11 2
S-SRC22 176 16 M 37 63 47 8 2
S-STG1 168 23 M 93 7 93 41 0
S-WDEV2 166 369 K 1 99 94 10 0

Table 1: Windows Traces.

36 different volumes from 13 servers running Windows
Server 2003 SP2. Out of 36 different traces, we used
only the most write-heavy data volume traces that have
at least one write for every two reads, and have more than
100,000 writes in total (read-intensive workloads already
work well on SSDs and do not require write caching).
In addition, we also used a Microsoft Exchange server
trace, which was collected from a RAID controller man-
aging a terabyte of data.

Table 1 lists the traces we used for the analysis, where
the desktop traces are prefixed by a “D” and server traces
by an “S”. D-1, D-2, and D-3 represent the three desktops
that were traced. EXCH, PRXY1, SRC10/22, STG1,
and WDEV2 correspond to traces from a Microsoft Ex-
change server, firewall or web proxy, source control,
web staging, and a test web server. For each trace, the
columns 2-5 show the total tracing time, number of I/Os,
and read-write percentage.

All the traces contain block-level reads and writes be-
low the NTFS file system cache. Each I/O event specifies
the time stamp (in ms), disk number, logical sector num-
ber, number of sectors transferred, and type of I/O. Even
though the desktop traces contain file system level in-
formation such as which file or directory a block access
belongs to, the server traces do not have them.

4.2 Ideal Write Savings
Our first objective in the trace analysis is to answer
the following question: do desktop and server I/O traf-
fic have enough overwrites to coalesce and if so, what
are the maximum write savings provided by an idealized
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Figure 1: Distribution of Block Overwrites.

HDD write cache? The 6th (highlighted) column in the
Table 1 shows the maximum write savings achieved by
an idealized write cache that incurs no read penalty.

From the 6th column of Table 1, we observe that an
idealized HDD write cache can cut down writes to the
SSD significantly. For example, for desktop traces, the
maximum write saving is at least 36% (for D-2B) and
as much as 64% (for D-1D). The server workloads ex-
hibit similar savings; ideal write savings vary from 14%
(S-SRC10) to 94% (S-WDEV2). On an average, desk-
top and server traces offer write savings of 48.58% and
57.83% respectively. Based on this analysis, the first ob-
servation we make is: desktop and server workloads con-
tain a high degree of overwrites, and an idealized HDD
write cache with no read penalty can achieve significant
write savings on them.

Given that an idealized HDD-based write cache has
high potential benefits, our next step is to explore the
two important policy issues in designing a practical write
cache: what do we cache, and how long do we cache it?
We investigate these questions in the following sections.

4.3 Spatial Access Patterns
If block overwrites exhibit spatial locality, we can
achieve high write savings while caching fewer blocks,
reducing the possibility of reads to the HDD. Specifi-
cally, we want to find out if some blocks are overwritten
more frequently than others. To answer this question, we
studied the traces further and make two more observa-
tions. First, there is a high degree of spatial locality in
block overwrites; for example, on an average 1% of the
most written blocks contribute to 73% and 34% of the
total overwrites in desktop and server traces.

Figure 1 shows the spatial distribution of overwrites
for two sample traces: D-1A and S-EXCH. On y-axis,
we plot the cumulative distribution of overwrites and in
x-axis, we plot the percentage of blocks written. We
can notice that a small fraction of the blocks (e.g., 1%)
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Rank Filenames
1 C:\Outlook.ost
2 C:\...\Search\...\Windows.edb
3 C:\$Bitmap
4 C:\Windows\Prefetch\Layout.ini
5 C:\Users\<name>\NTUSER.DAT
6 C:\$Mft

Table 2: Top Overwritten Files in Desktops.

contribute to a large percentage of overwrites (over 70%
in D-1A and 33.5% in S-EXCH). For all the traces, we
present the percentage of total overwrites that occur in
the top 1% of the most overwritten blocks in 7th column
of Table 1. We can notice that a small number of blocks
absorb most of the overwrite traffic.

The second observation we make is that the blocks that
are most heavily written receive very few reads. Figure 2
presents the total number of writes and reads in the most
heavily written blocks from trace D-1A. We collected
the top 1% of the most written blocks and plotted a his-
togram of the number of writes and reads issued to those
blocks. For all the traces, the percentage of total reads
that occur in the write-heavy blocks is presented in the
last column of Table 1. On average, the top 1% of the
blocks in the desktop traces receive 70% of overwrites
but only 2.7% of all reads; for the server traces, they re-
ceive 0-2% of the reads, excepting S-PRXY1.

To gain some insight into the file-level I/O patterns that
cause spatial clustering of overwrites, we compiled a list
of the most overwritten files for desktops and present it
in Table 2. Not surprisingly, files such as mail boxes,
search indexes, registry files, and file system metadata
receive most of the overwrites. Some of these files are
small enough to fit in the cache (e.g., bitmap or registry
entries) and therefore, incur very few reads. We do not
report on the most overwritten files in the server traces
because they did not contain file-level information. We
believe that a similar pattern will be present in other op-
erating systems where majority of overwrites are issued
to application-level metadata (e.g., search indexes) and
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system-level metadata (e.g., bitmaps).
At a first glance, such a dense spatial locality of over-

written blocks appears as an opportunity for various op-
timizations. First, it might suggest that a small cache of
few tens of megabytes can be used to handle only the
most frequently overwritten blocks. However, separat-
ing blocks in this fashion can break the semantic associ-
ations of logical blocks (for example, within a file) and
make recovery difficult (Section 5.3). Second, a Grif-
fin implementation at the file system-level (Section 7)
can easily relocate heavily overwritten files to the HDD.
However, when Griffin is implemented as a block device,
which is much more tractable in practice, it becomes
quite difficult to make use of overwrite-locality lacking
file system-level and application-level knowledge.

4.4 Temporal Access Patterns
As mentioned earlier, it is also important to find out how
long we can cache a block in the HDD log without incur-
ring expensive reads. To answer this question, we must
first understand the temporal access patterns of I/O traces
and for that purpose, we define two useful metrics.
Write-After-Write (WAW): WAW is the time interval be-
tween two consecutive writes to a block before an inter-
vening read to the same block.
Read-After-Write (RAW): RAW is the time interval be-
tween a write and a subsequent read to the same block.

Figure 3 presents the cumulative distribution of the
WAW time intervals (indicated by black squares) and the
RAW time intervals (indicated by white squares) from 10
seconds to 1 hour for D-1A. Interval larger than 1 hour
is indicated by “Inf” on the x-axis. Table 3 presents the
WAW and RAW distribution for all the traces.

From Figure 3 and Table 3, we notice that a large per-
centage of the WAW intervals on desktops are relatively
small. In other words, most of the consecutive writes to
the same block occur within a short period of time; for
example, on average 54% of the total overwrites occur
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D-1D 76 80 89 93 17 18 27 37
D-2A 51 55 69 75 4 6 22 58
D-2B 38 44 62 70 7 8 13 25
D-2C 28 34 59 68 9 9 16 21
D-2D 25 30 56 66 6 7 16 31
D-3A 40 53 71 78 20 22 31 39
D-3B 57 63 71 75 8 10 27 35
D-3C 60 66 73 77 7 8 40 48
D-3D 62 68 75 79 9 16 50 58
S-EXCH 46 54 100 100 9 16 50 58
S-PRXY1 52 64 98 98 12 37 100 100
S-SRC10 2 2 9 10 0 0 4 6
S-SRC22 15 16 17 85 3 3 14 14
S-STG1 6 7 27 41 1 1 9 9
S-WDEV2 7 20 23 23 0 0 0 0

Table 3: WAW/RAW Distribution

within the first 30 seconds of the previous write. How-
ever, this trend is not so clear in servers, where we see
widely varying behaviors, most likely depending upon
the specific server workloads. But, we still see benefits
from long-term caching: on average, 60% of the over-
writes in the server traces occur within an hour of a pre-
vious write.

In addition, we also notice that the time between a
write to a block and a subsequent read to the same block
(i.e., RAW) is relatively long. For example, only an aver-
age of 30% the written data is read within 900 seconds of
a block write. As with the WAW results, the RAW distri-
bution for the server traces also varies depending on the
specific workload.

We believe that the time interval from a write to a sub-
sequent read is large due to large OS-level buffer caches
and a smaller percentage of most overwritten blocks; as
a result, the buffer cache can service most reads that oc-
cur soon after a write, exposing only later reads that are
issued after the block evict to the block device. These re-
sults are similar to the WAW and RAW results presented
in earlier work by Hsu et al. [9].

We calculated the WAW and RAW time intervals for
the most overwritten files from Table 2. Even though
the WAW distribution was similar to the overall traces,
RAW time intervals were longer. For example, for the
frequently overwritten files, only an average of 21% of
the written data is read within 900 seconds of a write.

From this temporal analysis, we make two observa-
tions that are important in determining the duration of
caching in HDD: first, intervals between writes and sub-
sequent overwrites are typically short for desktops; sec-
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Table 5: Linux WAW/RAW Distribution

ond, the time interval between a block write and its con-
secutive read is large (tens of minutes).

These observations provide us with insight on how
long to cache blocks in the HDD before migrating them
to the SSD: long enough to capture a substantial number
of overwrites (i.e., higher than some fraction of WAW in-
tervals) but not long enough to receive a substantial num-
ber of reads to the HDD (i.e., lower than some fraction of
RAW intervals). Using different values for the migration
interval clearly allows Griffin to trade-off write savings
against read penalty.

4.5 Results from Linux

We also examined Linux block-level traces to find out if
they exhibit similar behavior. We used traces from pre-
vious work by Bhadkamkar et al. [3]. Table 4 presents
results from 3 traces: D-DEV is a trace from a develop-
ment environment; S-SVN consists of traces from SVN
and Wiki server; and S-WEB contains traces from a web
server. We can see certain similarities between the Linux
and Windows traces. For example, in the desktop trace,
coalescing of overwrites leads to only 38% of the total
writes going to the SSD (and thereby resulting in 62%
write savings). Also, we can notice spatial locality in
overwrites, with no read I/Os in the top 1% of the most
written blocks. Table 5 presents the distribution of WAW
and RAW time intervals as was presented for the Win-
dows traces. Unlike Windows, only 50% or less of the
overwrites happen within 1 hour, which motivates longer
caching time periods in the HDD. Although shown here
for completeness, we do not use Linux traces for the rest
of the analysis.

4.6 Summary

We find that block overwrites occur frequently in real-
world desktop and server workloads, validating the cen-
tral idea behind Griffin. In addition, overwrites exhibit
both spatial and temporal locality, providing useful in-
sight into practical caching policies that can maximize
write savings without incurring a high read penalty.

5 Prototype Design and Implementation

Thus far, we have discussed HDD-based write caching in
abstract terms, with a view to defining policies that indi-
cate what data to cache in the HDD and when to move it
to the SSD. The only metrics of concern have been write
savings and read penalty.

However, Griffin’s choice and implementation of poli-
cies are also heavily impacted by other real-world fac-
tors. An important consideration is migration overhead,
both direct (total bytes) and indirect (loss of HDD se-
quentiality). For example, a migration schedule provided
by a hypothetical oracle may be optimal from the stand-
point of write savings and read penalty, but might require
data to be migrated constantly in small increments, de-
stroying the sequentiality of the HDD’s access patterns.

Another major concern is fault tolerance; the HDD in
Griffin represents an extra point of failure, and certain
policies may leave the hybrid system much more unreli-
able than an unmodified SSD. For example, a migration
schedule that pushes data to the SSD while leaving asso-
ciated file system metadata on the HDD would be very
vulnerable to data loss.

Keeping these twin concerns of migration overhead
and fault tolerance in mind, Griffin uses two mechanisms
to support policies on what data to cache and how long
to cache it: overwrite ratios and migration triggers.

5.1 Overwrite Ratios

Griffin’s default policy is full caching, where the HDD
caches every write that is issued to the logical address
space. An alternate policy is selective caching, where
only the most overwritten blocks are cached in the HDD.
In order to implement selective caching, Griffin com-
putes an overwrite ratio for each block, which is the ratio
of the number of overwrites to the number of writes that
the block receives. If the overwrite ratio of a block ex-
ceeds a predefined value (which we call the overwrite
threshold), it is written to the HDD log. Full caching
is enabled simply by setting the overwrite threshold to
zero. As the overwrite threshold is increased, only those
blocks which have a higher overwrite ratio – as a result
of being frequently overwritten – are cached.
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Selective caching has the potential to lower read
penalty, as Section 4.3 showed, and to reduce the amount
of data migrated. However, an obvious downside of se-
lective caching is its high overhead; it requires Griffin to
compute and store per-block overwrite ratios. Addition-
ally, as we will shortly discuss, selective caching also
complicates recovery from failures.

5.2 Migration Triggers

Griffin’s policy on how long to cache data is deter-
mined not by per-block time values, which would be
prohibitively expensive to maintain and enforce, but by
coarse-grained triggers that cause the entire contents of
the HDD cache to be flushed to the SSD. Griffin supports
three types of triggers:

Timeout Trigger: This trigger fires if a certain time
elapses without a migration. The main advantages of this
trigger are that it is simple and predictable. It also bounds
the recency of data lost due to HDD failure; a timeout
value of 5 minutes will ensure that no write older than
5 minutes will be lost. However, since it does not react
to the workload, certain workloads can incur high read
penalties.

Read-Threshold Trigger: The read-threshold trigger
fires when the measured read penalty since the last mi-
gration goes beyond a threshold. The advantage of such
an approach is that it allows the read penalty, which could
be a reason for Griffin’s performance hit, to be bounded.
If used in isolation, however, the read-penalty trigger can
be subject to pathological scenarios; for example, if data
is never read from the device, the measured read penalty
will stay at zero and the data will never be moved from
the HDD to the SSD. This can result in the HDD running
out of space, and also leave the system more vulnerable
to data loss on the failure of the HDD.

Migration-Size Trigger: The migration-size trigger
fires when the total size of migratable data exceeds a cer-
tain size. It is useful in bounding the quantity of data lost
on HDD failure. On its own, this trigger is inadequate in
ensuring low read penalties or constant migration rates.

Used in concert, these triggers can enable complex mi-
gration policies that cover all bases: for example, a pol-
icy could state that the read penalty should never be more
than 5%, and that no more than 100 MB or 5 minutes
worth of data should be lost if the HDD fails.

The actual act of migration is very quick and simple;
data is simply read sequentially from the HDD log and
written to the SSD. Since the log and the actual file sys-
tem are on different devices, this process does not suf-
fer from the performance drawbacks of cleaning mecha-
nisms in log-structured file systems [26], where shuttling
between the log and the file system on the same device
can cause random seeks.

5.3 Failure Handling

Since Griffin uses more than one device to store data,
failure recovery is more involved than on a single device.

Power Failures. Power failures and OS crashes can
leave the storage system state distributed across the HDD
log and the SSD. Recovering the state from the HDD log
to the primary SSD storage is simple; Griffin leverages
well-developed techniques from log-structured and jour-
naling systems [8, 26] for this purpose. On a restart after
a crash, Griffin reads the blockmap that stores the log-
block to SSD-block mapping and restores the data that
were issued before the system crash.

Device Failures. The HDD or SSD can fail irrecov-
erably. Since SSD is the primary storage, its failure is
simply treated as the failure of the entire hybrid storage,
even though the recent writes to the log can be recov-
ered from the HDD. HDD failure can result in the loss of
writes that are logged to the disk but not yet migrated to
the SSD. The magnitude of the loss depends on both the
overwrite ratio and the migration triggers used.

In full caching, since every write is cached, the amount
of lost data can be high. However, full caching exports a
simple failure semantics; that is, every data block that is
available from the SSD is older than every missing write
from the HDD. This recovery semantics, where the most
recent data writes are lost, is simple and well-understood
by file systems. In fact, this can happen even in a single
device if the data stored on the device’s buffer cache is
lost due to say, a power failure.

On the other hand, selective caching minimizes the
amount of data loss because it writes fewer blocks in the
HDD. However, the semantics of the recovered data is
more complex and can lead to unexpected errors: that is,
some of the data that is present in the SSD might be more
recent than the data that is lost from the HDD because of
selective caching.

The migration triggers used directly impact the
amount of data loss, as explained in the previous sub-
section. Timeout and migration-size triggers can be used
to tightly bound the recency and quantity of lost data.

5.4 Prototype

We implemented a trace-driven simulator and a user-
level implementation for evaluating Griffin. The sim-
ulator is used to measure the write savings, HDD read
penalties, and migration overheads, whereas the user-
level implementation is used for obtaining real latency
measurements by issuing the I/Os from the trace to an
actual HDD/SSD combo using raw device interfaces.

On a write to a block, Griffin redirects the I/O to the
tail of the HDD log and records its new location in an
internal in-memory map. The recent contents of the in-
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memory map are periodically flushed to the HDD for re-
covery purposes. On a read to the block, Griffin reads the
latest copy of the block from the appropriate device.

Whenever the chosen migration trigger fires, the
cached data is migrated from the HDD to the SSD. In
order to identify the mapping between the log writes
and the logical SSD blocks, Griffin reads the blockmap
from the HDD (if it is not already present in memory)
and reconstructs the mapping. When migrating, Griffin
reads the log contents as sequentially as possible, skip-
ping only the older versions of the data blocks, sorts the
logged data based on their logical addresses and writes
them back to the SSD. As we show later, this migration
improves the sequentiality of the data writes to the SSD.

Even though writes are logged sequentially, the HDD
may incur rotational latency. Such rotational latencies
can be minimized either by using a small buffer (e.g.,
128 KB) to cache writes before writing them to the HDD
or by using new mechanisms such as range writes [2].

6 Evaluation

6.1 Policy Evaluation
Although we have several caching and migration poli-
cies, we must pick those that are not only effective in
reducing the SSD writes but also efficient, practical, and
high performing. In this section, we analyze all the poli-
cies and pick those that will be used for the evaluation of
write savings and performance.

6.1.1 Caching Policies

We evaluate the full and selective caching policies by
running different traces through the trace-driven simu-
lator, for different overwrite thresholds; a value of zero
for the threshold corresponds to full caching. We then
measure the write savings and the read penalty. We dis-
able migrations in these experiments, to compare their
performance independent of migration policies.

Figure 4a shows the write savings on y-axis for differ-
ent traces on x-axis. Each stacked bar per trace plots the
cumulative write savings for a specific overwrite thresh-
old. From the figure, we notice that using an overwrite
threshold can lower write savings, sometimes substan-
tially as in the server traces.

Figure 4b plots the read penalty on y-axis, where each
stacked bar per trace plots the percentage of total reads
that hit the HDD for the corresponding overwrite thresh-
old. We observe that a high overwrite threshold has the
advantage of eliminating a large fraction of HDD reads.

From Figures 4a and 4b, it is apparent that full caching
has the advantage of providing the maximum write sav-
ings, but suffers from a higher read penalty as well. It

is important to note, however, that the read penalty re-
ported in Figure 4b is an upper bound on the actual read
penalty, since in this experiment data is never migrated
from the HDD and all reads to a block that occur after
a preceding write must be served from the HDD. In ad-
dition, as described in Section 5.1, a non-zero value on
the overwrite threshold comes at a high overhead, requir-
ing Griffin to compute and maintain per-block overwrite
ratios. It also complicates recovery from failures.

These factors lead us to the conclusion that full
caching wins in most cases and therefore, in the remain-
ing experiments, we use full caching exclusively.

6.1.2 Migration Policies

Next, we evaluate different migration policies using the
trace-driven simulator. In addition to the write sav-
ings, we also measure the inter-migration interval, read
penalty, and migration sizes. We start by plotting the
write savings for timeout triggers in Figure 5a. We ob-
serve that logging for 15 minutes (900 s) gives most of
the write savings (over 80% in nearly all cases). For
some traces, such as S-STG1, over 1 hour of caching
is required to derive better write savings. The durability
and large size of the HDD cache allows us to meet such
long caching requirements; alternative mechanisms such
as volatile in-SSD caches are not large enough to hold
writes for more than 10s of seconds.

We also show the read penalty for different timeout
values in Figure 5b. We find that the read penalty is low
(less than 20%) in most cases except one (S-PRXY1).
In particular, read penalty is much lower than the no-
migration upper bound reported in Figure 4b, underlin-
ing the fact that full caching is not hampered by high
read penalties because of frequent migrations. In addi-
tion, we also find that timeout-based migration bounds
the migration size. The average migration size varied be-
tween 91 MB to 344 MB for timeout values of 900 to
3600 seconds.

Figure 6a shows the write savings for read-threshold
triggers. Even a tight read-threshold bound of 1% pro-
duces write savings similar to those for timeout triggers
for most traces. However, the drawback of a smaller
read-threshold is frequent migration. Figure 6b plots the
average time between two consecutive migrations as a
log scale on y-axis for various traces and read penalties.
We observe that for most traces, a smaller read-threshold
triggers more frequent migrations, separated by as low as
6 seconds as in S-PRXY1. Interestingly, for some traces
such as S-WDEV2, which has a very small percentage
of reads, even a small read-trigger such as 1% never fires
and therefore, the data remains on HDD cache for a long
time. As explained earlier (Section 5.3), such behavior
increases the magnitude of data loss on HDD failure. The
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Figure 4: Write Savings and Read Penalty Under Full and Selective Caching.

migration size varied widely from an average of 129 MB
to 1823 MB for 1% to 10% read-thresholds.

Since timeout-based migration was also bounding the
migration size, we simplified our composite trigger to
consist of a timeout-based trigger combined with a read-
threshold trigger. For the rest of the analysis, we use full
caching with the composite migration trigger.

6.2 Increased Sequentiality
One of the additional benefits of aggressive write caching
is that as writes get accumulated for random blocks, the
sequentiality of writes to the SSD increases. Such in-
creased sequentiality in write traffic is an important fac-
tor in improving the performance and lifetime of SSDs
as it reduces write amplification [10].

Figure 7 plots the percentage of sequential page writes
sent to the SSD with and without Griffin, on the desktop
and server traces. We use the trace-driven simulator to
obtain these results. We count a page write as sequential
if the preceding write occurs to an adjacent page. For
most traces, Griffin substantially increases the sequen-
tiality of writes observed by the SSD.

6.3 Lifetime Improvement
As mentioned in Section 2, it is not straightforward to
compute the exact lifetime improvement from write sav-
ings as it depends heavily on the workload and flash
firmware. However, given the write I/O accesses, we can
find the lower bound and upper bound of the flash block
erasures, assuming a perfectly optimal and an extremely
simple FTL, respectively.

We ran all the traces on our simulator with full caching
and composite migration trigger. The I/O writes are fed
into two FTL models to calculate the erasure savings.
Ideal FTL assumes a page-level mapping and issues all

writes sequentially, incurring fewer erasures. Therefore,
erasure savings are smaller on ideal FTL because it is
already good at reducing erasures. Simple FTL uses a
coarse-grained block-level mapping, where if a write is
issued to a physical page that cannot be overwritten, then
the block is erased. Based on these models, Figure 8
presents the SSD block-erasure savings, which can di-
rectly translate into lifetime improvement.

6.4 Latency Measurements

Finally, we measure Griffin’s performance on real HDDs
and SSDs using our user-level implementation. We use
four different configurations for Griffin’s write cache: a
slow HDD, a fast HDD, a slow SSD, and a fast SSD.
In all the measurements, an MLC-based SSD was used
as the primary store. We used the following devices: a
Barracuda 7200 RPM HDD, a Western Digital 10K RPM
HDD, an Intel X25-M 80 GB SSD with MLC flash, and
an Intel X25-E 32 GB SSD with SLC flash with a se-
quential write throughput of 80 MB/s, 118 MB/s, 70
MB/s, and 170 MB/s respectively. When MLC-based
SSD is used for write caching, we used Intel X25-M
SSDs as the write cache as well as the primary storage.

Since each trace is several days long, we picked only
2 hours of I/Os that stress the Griffin framework. Specif-
ically, we selected two 2-hour segments, T1 and T2, out
of all the desktop traces that have a large number of total
reads and writes per second that hit the cache. T2 also
happened to contain the most number of I/Os in a 2 hour
segment. These two trace segments represent I/O streams
that stress Griffin to a large extent. We ran each of these
trace segments under full caching with a migration time-
out of 900 seconds; Griffin’s in-memory blockmap was
flushed every 30 seconds. The average migration sizes
are 2016 MB and 2728 MB for T1 and T2.

Figure 9 compares the latencies (relative to the de-
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Figure 5: Write Savings and Read Penalty in Timeout-based Migration.
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Figure 6: Write Savings and Inter-migration Interval in Reads-Threshold Migration.

fault MLC-based SSD) of all I/Os, reads, and writes with
different write caches. Unsurprisingly, Griffin performs
better than the default SSD in all the configurations (with
HDDs or SSDs as its write cache). This is because of
two reasons: first, write performance improves because
of the excellent sequential throughput of the write caches
(HDD or SSD); second, read latency also improves be-
cause of the reduced write load on the primary SSD. For
example, even when using a slower 7200 RPM HDD as
a cache, Griffin’s average relative I/O latency is 0.44.
That is, Griffin reduces the I/O latencies by 56%. Over-
all performance of Griffin when using an MLC-based
or SLC-based SSD as the write cache is better than the
HDD-based write cache because of the better read laten-
cies of SSD. While it is not a fair comparison, this per-
formance analysis brings the high-level point that even
when a HDD, which is slower than an SSD for most
cases, is introduced in the storage hierarchy the perfor-
mance of the overall system does not degrade. Figure 9
also shows that using another SSD as a write cache in-

stead of an HDD gives faster performance. But, this
comes at a much higher cost because of the price dif-
ferences between an HDD and SSD. Given the excellent
performance of Griffin even with a single HDD, we may
explore setups where a single HDD is used as a cache for
multiple SSDs (Section 7).

7 Discussion

• File system-based designs: Griffin could have been
implemented at the file system level instead of the block
device level. There are three potential advantages of such
an approach. First, a file system can leverage knowl-
edge of the semantic relationships between blocks to bet-
ter exploit the spatial locality described in Section 4.3.
Second, it is possible that Griffin can be easily imple-
mented by modifying existing journaling file systems to
store the update journal on the HDD and the actual data
on the SSD, though current journaling file systems are
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Figure 8: Improved Lifetime.

typically designed to store only metadata updates in the
journal and many of the overwrites we want to buffer oc-
cur within user data.

The third advantage of a file system design is its access
to better information, which can enable it to approach the
performance of an idealized HDD write cache. Recall
that the idealized cache requires an oracle that notifies it
of impending reads to blocks just before they occur, so
dirty data can be migrated in time to avoid reads from
the HDD. At the block level, such an oracle does not
exist and we had to resort to heuristic-based migration
policies. However, at the file system level, evictions of
blocks from the buffer cache can be used to signal im-
pending reads. As long as the file system stores a block
in its buffer cache, it will not issue reads for that block
to the storage device; once it evicts the block, any subse-
quent read has to be serviced from the device. Accord-
ingly, a policy of migrating blocks from the HDD to the
SSD upon eviction from the buffer cache will result in
the maximum write savings with no read penalty.

However, a block device has the significant advantage
of requiring no modification to the software stack, work-
ing with any OS or architecture. Additionally, our evalu-
ation showed that the simple device-level migration poli-
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cies we use are very effective in approximating the per-
formance of an idealized cache.
• Flash as write cache: While Griffin uses an HDD as a
write cache, it could alternatively have used a small SSD
and achieved better performance (Section 6.4). Since
SLC flash is expensive, it is crucial that the size of the
write cache be small. However, the write cache must also
sustain at least as many erasures as the backing MLC-
based SSD, requiring a certain minimum size.

Since each SLC block can endure 10 times the era-
sures of an MLC block, an SLC device subjected to the
same number of writes as the MLC device would need to
be a tenth as large as the MLC to last as long. If the SLC
receives twice as many writes as the MLC, it would need
to be a fifth as large.

Consequently, a caching setup that achieves a write
savings of 50% – and as a result, sends twice as many
writes to the SLC than the MLC – requires an SLC cache
that’s at least a fifth of the MLC. For example, if the
MLC device is 80 GB, then we need an SLC cache of
at least 16 GB. In this analysis we assumed an ideal FTL
that performs page-level mapping, a perfectly sequential
write stream, and identical block sizes for MLC and SLC
devices. If the MLC’s block size is twice as large as the
SLC’s block size, as is the case for current devices, the
required SLC size stays at a fifth for a perfectly sequen-
tial workload, but will drop for more random workloads;
we omit the details of the block size analysis for brevity.
We believe that a 16 GB SLC write cache (for an 80
GB MLC primary store) will continue to be expensive
enough to justify Griffin’s choice of caching medium.
• Power consumption: One of the main concerns that
might arise in the design of Griffin is its power con-
sumption. Since HDDs consume more power than SSDs,
Griffin’s power budget is higher than that of a regu-
lar SSD. One way to mitigate this problem is to use a
smaller, more power-efficient HDD such as an 1.8 inch
drive that offers marginally lower bandwidth; for exam-
ple, Toshiba’s 1.8 inch HDD [28] consumes about 1.1
watts to seek and about 1.0 watts to read or write, which
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is comparable to the power consumption of Micron
SSD [18], thereby offering a tradeoff between power,
performance, and lifetime. Additionally, desktop work-
loads are likely to have intervals of idle time during
which the HDD cache can be spun down to save power.

Finally, we can potentially use a single HDD as a write
cache for multiple SSDs, reducing the power premium
per SSD (as well as the hardware cost). Going by the In-
tel X25-M’s specifications, a single SSD supports 3.3K
random write IOPS, or around 13 MB/s, whereas a HDD
can support 70 to 80 MB/s of sequential writes. Accord-
ingly, a single HDD can keep up with multiple SSDs if
they are all operating on completely random workloads,
though non-trivial engineering is required for disabling
caching whenever the data rate of the combined work-
loads exceeds HDD speed.

8 Related Work

SSD Lifetimes: SSD lifetimes have been evaluated in
several previous studies [6, 7, 20]. The consensus from
these studies is that both the reliability and performance
of the MLC-based SSDs degrade over time. For ex-
ample, the bit error rates increase sharply and the erase
times increase (by as much as three times) as SSDs reach
the end of their lifetime. These trends motivate the pri-
mary goal of our work, which is to reduce the number
of SSD erasures, thus increasing its lifetime. With less
wear, an SSD can provide a higher performance as well.
Disk + SSD: Various hybrid storage devices have been
proposed in order to combine the positive properties of
rotating and solid state media. Most previous work em-
ploys the SSD as a cache on top of the hard disk to
improve read performance. For example, Intel’s Turbo
Memory [17] uses NAND-based non-volatile memory as
an HDD cache. Operating system technologies such as
Windows ReadyBoost [19] use flash memory, for exam-
ple in the form of USB drives, to cache data that would
normally be paged out to an HDD. Windows Ready-
Drive [24] works on hybrid ATA drives with integrated
flash memory, which allow reads and writes even when
the HDD is spun down.

Recently, researchers have considered placing HDDs
and SSDs at the same level of the storage hierarchy. For
example, Combo Drive [25] is a heterogeneous storage
device in which sectors from the SSD and the HDD are
concatenated to form a continuous address range, where
data is placed based on heuristics. Since the storage ad-
dress space is divided among two devices, a failure in
the HDD can render the entire file system unusable. In
contrast, Griffin uses the HDD only as a cache allowing
it to expose an usable file system even in the event of an
HDD failure (albeit with some lost updates). Similarly,
Koltsidas et al. have proposed to split a database store

between the two media based on a set of on-line algo-
rithms [15]. Sun’s Hybrid Storage Pools consist of large
clusters of SSDs and HDDs to improve the performance
of data access on multi-core systems [4].

In contrast to the above mentioned works, we use the
HDD as a write cache to extend SSD lifetime. Although
using the SSD as a read cache may offer some benefit
in laptop and desktop scenarios, Narayanan et al. have
demonstrated that their benefit in the enterprise server
environment is questionable [22]. Moreover, any system
that forces all writes through a relatively small amount
of flash memory will wear through the available erase cy-
cles very quickly, greatly diminishing the utility of such a
scheme. Setups with the HDD and SSD arranged as sib-
lings may reduce erase cycles and provide low-latency
read access, but can incur seek latency on writes if the
hard disk is not structured as a log. Additionally, HDD
failure can result in data loss since it is a first-class parti-
tion and not a cache.
SLC + MLC: Recently, hybrid SSD devices with both
SLC and MLC memory have been introduced. For exam-
ple, Samsung has developed a hybrid memory chip that
contains both SLC and MLC flash memory blocks [27].
Alternatively, an MLC flash memory cell can be pro-
grammed either as a single-level or multi-level cell;
FlexFS utilizes this by partitioning the storage dynam-
ically into SLC and MLC regions according to the appli-
cation requirements [16].

Other architectures use SLC chips as a log for caching
writes to MLC [5, 12]. These studies emphasize the per-
formance gains that the SLC log provides but do not in-
vestigate the effect on system lifetime. As we described
in Section 7, a small SLC write cache will wear out faster
than the MLC device, and larger caches are expensive.
Disk + Disk: Hu et al. proposed an architecture called

Disk Caching Disk (DCD), where an HDD is used as a
log to convert the small random writes into large log ap-
pends. During idle times, the cached data is de-staged
from the log to the underlying primary disk [11, 23].
While DCD’s motivation is to improve performance, our
primary goal is to increase the SSD lifetime.

9 Conclusion

As new technologies are born, older technology might
take a new role in the process of system evolution. In
this paper, we show that hard disk drives, which have
been extensively used as a primary store, can be used
as a cache for MLC-based SSDs. Griffin’s design is
motivated by the workload and hardware characteristics.
After a careful evaluation of Griffin’s policies and per-
formance, we show that Griffin has the potential to im-
prove SSD lifetime significantly without sacrificing per-
formance.
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Abstract
We examine the write endurance of USB flash drives

using a range of approaches: chip-level measurements,
reverse engineering, timing analysis, whole-device en-
durance testing, and simulation. The focus of our inves-
tigation is not only measured endurance, but underlying
factors at the level of chips and algorithms—both typical
and ideal—which determine the endurance of a device.

Our chip-level measurements show endurance far in
excess of nominal values quoted by manufacturers, by
a factor of as much as 100. We reverse engineer
specifics of the Flash Translation Layers (FTLs) used
by several devices, and find a close correlation between
measured whole-device endurance and predictions from
reverse-engineered FTL parameters and measured chip
endurance values. We present methods based on anal-
ysis of operation latency which provide a non-intrusive
mechanism for determining FTL parameters. Finally we
present Monte Carlo simulation results giving numeri-
cal bounds on endurance achievable by any on-line algo-
rithm in the face of arbitrary or malicious access patterns.

1 Introduction

In recent years flash memory has entered widespread
use, in embedded media players, photography, portable
drives, and solid-state disks (SSDs) for traditional com-
puting storage. Flash has become the first competitor to
magnetic disk storage to gain significant commercial ac-
ceptance, with estimated shipments of 5 × 1019 bytes
in 2009 [10], or more than the amount of disk storage
shipped in 2005 [31].

Flash memory differs from disk in many characteris-
tics; however, one which has particular importance for
the design of storage systems is its limited write en-
durance. While disk drive reliability is mostly unaffected
by usage, bits in a flash chip will fail after a limited num-
ber of writes, typical quoted at 104 to 105 depending on

the specific device. When used with applications expect-
ing a disk-like storage interface, e.g. to implement a FAT
or other traditional file system, this results in over-use
of a small number of blocks and early failure. Almost
all flash devices on the market—USB drives, SD drives,
SSDs, and a number of others—thus implement internal
wear-leveling algorithms, which map application block
addresses to physical block addresses, and vary this map-
ping to spread writes uniformly across the device.

The endurance of a flash-based storage system such as
a USB drive or SSD is thus a function of both the parame-
ters of the chip itself, and the details of the wear-leveling
algorithm (or Flash Translation Layer, FTL) used. Since
measured endurance data is closely guarded by semi-
conductor manufacturers, and FTL details are typically
proprietary and hidden within the storage device, the
broader community has little insight into the endurance
characteristics of these systems. Even empirical testing
may be of limited utility without insight into which ac-
cess patterns represent worst-case behavior.

To investigate flash drive endurance, we make use of
an array of techniques: chip-level testing, reverse engi-
neering and timing analysis, whole device testing, and
analytic approaches. Intrusive tests include chip-level
testing—where the flash chip is removed from the drive
and tested without any wear-leveling—and reverse en-
gineering of FTL algorithms using logic analyzer prob-
ing. Analysis of operation timing and endurance testing
conducted on the entire flash drive provides additional
information; this is augmented by analysis and simula-
tion providing insight into achievable performance of the
wear-leveling algorithms used in conjunction with typi-
cal flash devices.

The remainder of the paper is structured as follows.
Section 2 presents the basic information about flash
memory technology, FTL algorithms, and related work.
Section 3 discusses our experimental results, includ-
ing chip-level testing (Section 3.1), details of reverse-
engineered FTLs (3.2), and device-level testing (3.3).
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Figure 1: Flash circuit structure. NAND flash is distin-
guished by the series connection of cells along the bit line,
while NOR flash (and most other memory technologies) ar-
range cells in parallel between two bit lines.

Section 4 presents a theoretical analysis of wear-leveling
algorithms, and we conclude in Section 5.

2 Background

NAND flash is a form of electrically erasable pro-
grammable read-only memory based on a particularly
space-efficient basic cell, optimized for mass storage ap-
plications. Unlike most memory technologies, NAND
flash is organized in pages of typically 2K or 4K bytes
which are read and written as a unit. Unlike block-
oriented disk drives, however, pages must be erased
in units of erase blocks comprising multiple pages—
typically 32 to 128—before being re-written.

Devices such as USB drives and SSDs implement a
re-writable block abstraction, using a Flash Translation
Layer to translate logical requests to physical read, pro-
gram, and erase operations. FTL algorithms aim to max-
imize endurance and speed, typically a trade-off due to
the extra operations needed for wear-leveling. In addi-
tion, an FTL must be implementable on the flash con-
troller; while SSDs may contain 32-bit processors and
megabytes of RAM, allowing sophisticated algorithms,
some of the USB drives analyzed below use 8-bit con-
trollers with as little as 5KB of RAM.

2.1 Physical Characteristics
We first describe in more detail the circuit and electri-
cal aspects of flash technology which are relevant to sys-
tem software performance; a deeper discussion of these
and other issues may be found in the survey by San-
vido et al [29]. The basic cell in a NAND flash is a
MOSFET transistor with a floating (i.e. oxide-isolated)
gate. Charge is tunnelled onto this gate during write op-
erations, and removed (via the same tunnelling mecha-
nism) during erasure. This stored charge causes changes
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Figure 2: Typical flash device architecture. Read and write
are both performed in two steps, consisting of the transfer of
data over the external bus to or from the data register, and the
internal transfer between the data register and the flash array.

in VT , the threshold or turn-on voltage of the cell tran-
sistor, which may then be sensed by the read circuitry.
NAND flash is distinguished from other flash technolo-
gies (e.g. NOR flash, E2PROM) by the tunnelling mech-
anism (Fowler-Nordheim or FN tunnelling) used for both
programming and erasure, and the series cell organiza-
tion shown in Figure 1(b).

Many of the more problematic characteristics of
NAND flash are due to this organization, which elim-
inates much of the decoding overhead found in other
memory technologies. In particular, in NAND flash the
only way to access an individual cell for either reading or
writing is through the other cells in its bit line. This adds
noise to the read process, and also requires care during
writing to ensure that adjacent cells in the string are not
disturbed. (In fact, stray voltage from writing and read-
ing may induce errors in other bits on the string, known
as program disturbs and read disturbs.) During erasure,
in contrast, all cells on the same bit string are erased.

Individual NAND cells store an analog voltage; in
practice this may be used to store one of two voltage lev-
els (Single-Level Cell or SLC technology) or between 4
and 16 voltage levels—encoding 2 to 4 bits—in what is
known as Multi-Level Cell (MLC) technology. These
cells are typically organized as shown in the block di-
agram in Figure 2. Cells are arranged in pages, typi-
cally containing 2K or 4K bytes plus a spare area of 64
to 256 bytes for system overhead. Between 16 and 128
pages make up an erase block, or block for short, which
are then grouped into a flash plane. Devices may con-
tain independent flash planes, allowing simultaneous op-
erations for higher performance. Finally, a static RAM
buffer holds data before writing or after reading, and data
is transferred to and from this buffer via an 8- or 16-bit
wide bus.
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2.2 Flash Translation Layer

As described above, NAND flash is typically used with a
flash translation layer implementing a disk-like interface
of addressable, re-writable 512-byte blocks, e.g. over
an interface such as SATA or SCSI-over-USB. The FTL
maps logical addresses received over this interface (Log-
ical Page Numbers or LPNs) to physical addresses in the
flash chip (Physical Page Numbers, PPNs) and manages
the details of erasure, wear-leveling, and garbage collec-
tion [2, 3, 17].

Mapping schemes: A flash translation layer could in
theory maintain a map with an entry for each 512-byte
logical page containing its corresponding location; the
overhead of doing so would be high, however, as the map
for a 1GB device would then require 2M entries, con-
suming about 8MB; maps for larger drives would scale
proportionally. FTL resource requirements are typically
reduced by two methods: zoning and larger-granularity
mapping.

Zoning refers to the division of the logical address
space into regions or zones, each of which is assigned its
own region of physical pages. In other words, rather than
using a single translation layer across the entire device,
multiple instances of the FTL are used, one per zone.
The map for the current zone is maintained in memory,
and when an operation refers to a different zone, the map
for that zone must be loaded from the flash device. This
approach performs well when there is a high degree of lo-
cality in access patterns; however it results in high over-
head for random operation. Nonetheless it is widely used
in small devices (e.g. USB drives) due to its reduced
memory requirements.

By mapping larger units, and in particular entire erase
blocks, it is possible to reduce the size of the mapping ta-
bles even further [8]. On a typical flash device (64-page
erase blocks, 2KB pages) this reduces the map for a 1GB
chip to 8K entries, or even fewer if divided into zones.
This reduction carries a cost in performance: to modify
a single 512-byte logical block, this block-mapped FTL
would need to copy an entire 128K block, for an over-
head of 256×.

Hybrid mapping schemes [19, 20, 21, 25] augment a
block map with a small number of reserved blocks (log or
update blocks) which are page mapped. This approach is
targeted to usage patterns that exhibit block-level tempo-
ral locality: the pages in the same logical block are likely
to be updated again in the near future. Therefore, a com-
pact fine-grained mapping policy for log blocks ensures
a more efficient space utilization in case of frequent up-
dates.

Garbage collection: Whenever units smaller than an
erase block are mapped, there can be stale data: data
which has been replaced by writes to the same logical

address (and stored in a different physical location) but
which has not yet been erased. In the general case re-
covering these pages efficiently is a difficult problem.
However in the limited case of hybrid FTLs, this process
consists of merging log blocks with blocks containing
stale data, and programming the result into one or more
free blocks. These operations are of the following types:
switch merges, partial merges, and full merge [13].

A switch merge occurs during sequential writing; the
log block contains a sequence of pages exactly replacing
an existing data block, and may replace it without any
further operation; the old block may then be erased. A
partial merge copies valid pages from a data block to
the log block, after which the two may be switched. A
full merge is needed when data in the log block is out of
order; valid pages from the log block and the associated
data block are copied together into a new free block, after
which the old data block and log block are both erased.

Wear-leveling: Many applications concentrate their
writes on a small region of storage, such as the file alloca-
tion table (FAT) in MSDOS-derived file systems. Naı̈ve
mechanisms might map these logical regions to similar-
sized regions of physical storage, resulting in prema-
ture device failure. To prevent this, wear-leveling algo-
rithms are used to ensure that writes are spread across
the entire device, regardless of application write behav-
ior; these algorithms [11] are classified as either dynamic
or static. Dynamic wear-leveling operates only on over-
written blocks, rotating writes between blocks on a free
list; thus if there are m blocks on the free list, repeated
writes to the same logical address will cause m + 1

physical blocks to be repeatedly programmed and erased.
Static wear-leveling spreads the wear over both static and
dynamic memory regions, by periodically swapping ac-
tive blocks from the free list with static randomly-chosen
blocks. This movement incurs additional overhead, but
increases overall endurance by spreading wear over the
entire device.

2.3 Related Work
There is a large body of existing experimental work
examining flash memory performance and endurance;
these studies may be broadly classified as either circuit-
oriented or system-oriented. Circuit-level studies have
examined the effect of program/erase stress on internal
electrical characteristics, often using custom-fabricated
devices to remove the internal control logic and allow
measurements of the effects of single program or erase
steps. A representative study is by Lee et al. at Sam-
sung [24], examining both program/erase cycling and hot
storage effects across a range of process technologies.
Similar studies include those by Park et al. [28] and Yang
et al. [32], both also at Samsung. The most recent work
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Device Size Cell Nominal Process
(bits) endurance

NAND128W3A2BN 128M SLC 105 90nm
HY27US08121A 512M SLC 105 90nm
MT29F2G08AAD 2G SLC 105 50nm
MT29F4G08AAC 4G SLC 105 72nm
NAND08GW3B2C 8G SLC 105 60nm
MT29F8G08MAAWC 8G MLC 104 72nm
29F16G08CANC1 16G SLC 105 50nm
MT29F32G08QAA 32G MLC 104 50nm

Table 1: Devices tested

in this area includes a workshop report of our results [9]
and an empirical characterization of flash memory car-
ried out by Grupp et at. [12], analyzing performance of
basic operations, power consumption, and reliability.

System-level studies have instead examined charac-
teristics of entire flash-based storage systems, such as
USB drives and SSDs. The most recent of these presents
uFLIP [7], a benchmark for such storage systems, with
measurements of a wide range of devices; this work
quantifies the degraded performance observed for ran-
dom writes in many such devices. Additional work in
this area includes [14],[27], and [1]

Ben-Aroyo and Toledo [5] have presented detailed
theoretical analyses of bounds on wear-leveling perfor-
mance; however for realistic flash devices (i.e. with erase
block size > 1 page) their results show the existence of a
bound but not its value.

3 Experimental Results

3.1 Chip-level Endurance
Chip-level endurance was tested across a range of de-
vices; more detailed results have been published in a pre-
vious workshop paper [9] and are summarized below.

Methodology: Flash chips were acquired both
through distributors and by purchasing and disassem-
bling mass-market devices. A programmable flash con-
troller was constructed using software control of general-
purpose I/O pins on a micro-controller to implement the
flash interface protocol for 8-bit devices. Devices tested
ranged from older 128Mbit (16MB) SLC devices to more
recent 16Gbit and 32Gbit MLC chips; a complete list of
devices tested may be seen in Table 1. Unless otherwise
specified, all tests were performed at 25◦ C.

Endurance: Limited write endurance is a key charac-
teristic of NAND flash—and all floating gate devices in
general—which is not present in competing memory and
storage technologies. As blocks are repeatedly erased
and programmed the oxide layer isolating the gate de-
grades [23], changing the cell response to a fixed pro-
gramming or erase step as shown in Figure 3. In prac-
tice this degradation is compensated for by adaptive pro-
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gramming and erase algorithms internal to the device,
which use multiple program/read or erase/read steps to
achieve the desired state. If a cell has degraded too much,
however, the program or erase operation will terminate
in an error; the external system must then consider the
block bad and remove it from use.

Program/erase endurance was tested by repeatedly
programming a single page with all zeroes (vs. the erased
state of all 1 bits), and then erasing the containing block;
this cycle was repeated until a program or erase opera-
tion terminated with an error status. Although nominal
device endurance ranges from 104 to 105 program/erase
cycles, in Figure 4 we see that the number of cycles until
failure was higher in almost every case, often by nearly
a factor of 100.

During endurance tests individual operation times
were measured exclusive of data transfer, to reduce de-
pendence on test setup; a representative trace is seen in
Figure 5. The increased erase times and decreased pro-
gram times appear to directly illustrate VT degradation
shown in Figure 3—as the cell ages it becomes easier to
program and harder to erase, requiring fewer iterations of
the internal write algorithm and more iterations for erase.

Additional Testing: Further investigation was per-
formed to determine whether the surprisingly high en-



USENIX Association  FAST ’10: 8th USENIX Conference on File and Storage Technologies 119

Mean Standard Min. and max
Endurance Deviation (vs. mean)

128mb 10.3 (×106) 0.003 +0.002 / -0.002
512mb 6.59 1.32 +2.09 / -1.82

2Gb 0.806 0.388 +0.660 / -0.324
4Gb 2.39 1.65 +2.89 / -1.02

8Gb SLC 0.827 0.248 +0.465 / -0.359
8Gb MLC* 0.783 0.198 +0.313 / -0.252

16Gb 0.614 0.078 +0.136 / -0.089
32Gb 0.793 0.164 +0.185 / -0.128

Table 2: Endurance in units of 10
6 write/erase cycles. The

single outlier for 8 Gb MLC has been dropped from these statis-
tics.
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Figure 5: Wear-related changes in latency. Program and
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durance of the devices tested is typical, or is instead due
to anomalies in the testing process. In particular, we
varied both program/erase behavior and environmental
conditions to determine their effects. Due to the high
variance of the measured endurance values, we have not
collected enough data to draw strong inferences, and so
report general trends instead of detailed results.

Usage patterns – The results reported above were mea-
sured by repeatedly programming the first page of a
block with all zeroes (the programmed state for SLC
flash) and then immediately erasing the entire block.
Several devices were tested by writing to all pages in a
block before erasing it; endurance appeared to decrease
with this pattern, but by no more than a factor of two.
Additional tests were performed with varying data pat-
terns, but no difference in endurance was detected.

Environmental conditions – The processes resulting in
flash failure are exacerbated by heat [32], although in-
ternal compensation is used to mitigate this effect [22].
The 16Gbit device was tested at 80◦ C, and no noticeable
difference in endurance was seen.

Conclusions: The high endurance values measured
were unexpected, and no doubt contribute to the mea-
sured performance of USB drives reported below, which

Device Size Chip Signature USB ID

Generic 512Mbit HY27US08121A 1976:6025
House 16Gbit 29F16G08CANC1 125F:0000

Memorex 4Gbit MF12G2BABA 12F7:1A23

Table 3: Investigated devices

Figure 6: USB Flash drive modified for logic analyzer prob-
ing.

achieve high endurance using very inefficient wear-
leveling algorithms. Additional experimentation is
needed to determine whether these results hold across
the most recent generation of devices, and whether flash
algorithms may be tailored to produce access patterns
which maximize endurance, rather than assuming it as a
constant. Finally, the increased erase time and decreased
programming time of aged cells bear implications for op-
timal flash device performance, as well as offering a pre-
dictive failure-detection mechanism.

3.2 FTL Investigation
Having examined performance of NAND flash itself, we
next turn to systems comprising both flash and FTL.
While work in the previous section covers a wide range
of flash technologies, we concentrate here on relatively
small mass-market USB drives due to the difficulties in-
herent in reverse-engineering and destructive testing of
more sophisticated devices.

Methodology: we reverse-engineered FTL opera-
tion in three different USB drives, as listed in Ta-
ble 3: Generic, an unbranded device based on the
Hynix HY27US08121A 512Mbit chip, House, a Mi-
croCenter branded 2GB device based on the Intel
29F16G08CANC1, and Memorex, a 512MB Memorex
“Mini TravelDrive” based on an unidentified part.

In Figure 6 we see one of the devices with probe wires
attached to the I/O bus on the flash chip itself. Reverse-
engineering was performed by issuing specific logical
operations from a Linux USB host (by issuing direct
I/O reads or writes to the corresponding block device)
and using an IO-3200 logic analyzer to capture resulting
transactions over the flash device bus. From this captured
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Generic House Memorex

Structure 16 zones 4 zones 4 zones
Zone size 256 physical blocks 2048 physical blocks 1024 physical blocks

Free blocks list size 6 physical blocks per zone 30-40 physical blocks per zone 4 physical blocks per zone
Mapping scheme Block-level Block-level / Hybrid Hybrid

Merge operations Partial merge Partial merge / Full merge Full merge
Garbage collection frequency At every data update At every data update Variable

Wear-leveling algorithm Dynamic Dynamic Static

Table 4: Characteristics of reverse-engineered devices

data we were then able to decode the flash-level opera-
tions (read, write, erase, copy) and physical addresses
corresponding to a particular logical read or write.

We characterize the flash devices based on the fol-
lowing parameters: zone organization (number of zones,
zone size, number of free blocks), mapping schemes,
merge operations, garbage collection frequency, and
wear-leveling algorithms. Investigation of these specific
attributes is motivated by their importance; they are fun-
damental in the design of any FTL [2, 3, 17, 19, 20,
21, 25], determining space requirements, i.e. the size of
the mapping tables to keep in RAM (zone organization,
mapping schemes), overhead/performance (merge oper-
ations, garbage collection frequency), device endurance
(wear-leveling algorithms). The results are summarized
in Table 4, and discussed in the next sections.

Zone organization: The flash devices are divided in
zones, which represent contiguous regions of flash mem-
ory, with disjoint logical-to-physical mappings: a logical
block pertaining to a zone can be mapped only in a phys-
ical block from the same zone. Since the zones function
independently from each other, when one of the zones
becomes unusable, other zones on the same device can
still be accessed. We report actual values of zone sizes
and free list sizes for the investigated devices in Table 4.

Mapping schemes: Block-mapped FTLs require
smaller mapping tables to be stored in RAM, compared
to page-mapped FTLs (Section 2.2). For this reason,
the block-level mapping scheme is more practical and
was identified in both Generic and multi-page updates of
House flash drives. For single-page updates, House uses
the simplified hybrid mapping scheme (which we will
describe next), similar to Ban’s NFTL [3]. The Memo-
rex flash drive uses hybrid mapping: the data blocks are
block-mapped and the log blocks are page-mapped.

Garbage collection: For the Generic drive, garbage
collection is handled immediately after each write, elim-
inating the overhead of managing stale data. For House
and Memorex, the hybrid mapping allows for several se-
quential updates to be placed in the same log block. De-
pending on specific writing patterns, garbage collection
can have a variable frequency. The number of sequential
updates that can be placed in a 64-page log block (before



























 

Figure 7: Generic device page update. Using block-level
mapping and a partial merge operation during garbage collec-
tion. LPN = Logical Page Number. New data is merged with
block A and an entire new block (B) is written.

a new free log block is allocated to hold updated pages of
the same logical block) ranges from 1 to 55 for Memorex
and 1 to 63 for House.

We illustrate how garbage collection works after being
triggered by a page update operation.
The Generic flash drive implements a simple page up-

date mechanism (Figure 7). When a page is overwritten,
a block is selected from the free block list, and the data
to be written is merged with the original data block and
written to this new block in a partial merge, resulting in
the erasure of the original data block.

The House drive allows multiple updates to occur be-
fore garbage collection, using an approach illustrated in
Figure 8. Flash is divided into two planes, even and odd
(blocks B-even and B-odd in the figure); one log block
can represent updates to a single block in the data area.
When a single page is written, meta-data is written to the
first page in the log block and the new data is written to
the second page; a total of 63 pages may be written to
the same block before the log must be merged. If a page
is written to another block in the plane, however, the log
must be merged immediately (via a full merge) and a new
log started.

We observe that the House flash drive implements an
optimized mechanism for multi-page updates, requiring
2 erasures rather than 4. This is done by eliminating the
intermediary storage step in log blocks B-even and B-
odd, and writing the updated pages directly to blocks C-
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Figure 8: House device single-page update. Using hybrid
mapping and a full merge operation during garbage collection.
LPN = Logical Page Number. LPN 4 is written to block B,
“shadowing” the old value in block A. On garbage collection,
LPN 4 from block B is merged with LPNs 0 and 2 from block
A and written to a new block.

even and C-odd.
The Memorex flash drive employs a complex garbage

collection mechanism, which is illustrated in Figure 9.
When one or more pages are updated in a block (B), a
merge is triggered if there is no active log block for block
B or the active log block is full, with the following oper-
ations being performed:

• The new data pages together with some settings infor-
mation are written in a free log block (Log B).

• A full merge operation occurs, between two blocks
(data block A and log block Log A) that were ac-
cessed 4 steps back. The result is written in a free
block (Merged A). Note that the merge operation may
be deferred until the log block is full.

• After merging, the two blocks (A and Log A) are
erased and added to the list of free blocks.

Wear-leveling aspects: From the reverse-engineered
devices, static wear-leveling was detected only in the
case of the Memorex flash drive, while both Generic and
House devices use dynamic wear-leveling. As observed
during the experiments, the Memorex flash drive is peri-
odically (after every 138th garbage collection operation)
moving data from one physical block containing rarely
updated data, into a physical block from the list of free
blocks. The block into which the static data has been
moved is taken out of the free list and replaced by the
rarely used block.

Conclusions: The three devices examined were found
to have flash translation layers ranging from simple
(Generic) to somewhat complex (Memorex). Our in-
vestigation provided detailed parameters of each FTL,
including zone organization, free list size, mapping











































 






















Figure 9: Memorex device page update. Using hybrid map-
ping and a full merge operation during garbage collection. LPN
= Logical Page Number. LPN 2 is written to the log block of
block B and the original LPN 2 marked invalid. If this requires
a new log block, an old log block (Log A) must be freed by
doing a merge with its corresponding data block.

scheme, and static vs. dynamic wear-leveling methods.
In combination with the chip-level endurance measure-
ments presented above, we will demonstrate in Section
3.4 below the use of these parameters to predict overall
device endurance.

3.3 Timing Analysis
Additional information on the internal operation of
a flash drive may be obtained by timing analysis—
measuring the latency of each of a series of requests
and detecting patterns in the results. This is possible be-
cause of the disparity in flash operation times, typically
20µs, 200-300µs, and 2-4ms for read, write and erase
respectively [9]. Selected patterns of writes can trigger
differing sequences of flash operations, incurring differ-
ent delays observable as changes in write latency. These
changes offer clues which can help infer the following
characteristics: (a) wear-leveling mechanism (static or
dynamic) and parameters, (b) garbage collection mecha-
nism, and (c) device end-of-life status.

Approach: Timing analysis uses sequences of writes
to addresses {A1, A2, . . . An} which are repeated to pro-
voke periodic behavior on the part of the device. The
most straightforward sequence is to repeatedly write the
same block; these writes completed in constant time for
the Generic device, while results for the House device are
seen in Figure 10. These results correspond to the FTL
algorithms observed in Section 3.2 above; the Generic
device performs the same block copy and erase for every
write, while the House device is able to write to Block B
(see Figure 8) 63 times before performing a merge oper-
ation and corresponding erase.

More complex flash translation layers require more
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Figure 10: House device write timing. Write address is con-
stant; peaks every 63 operations correspond to the merge oper-
ation (including erasure) described in Section 3.2.
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Figure 11: Memorex device garbage collection patterns.
Access pattern used is {A1×n, A2×n, . . .} for n = 55, 60, 64

writes/block.

complex sequences to characterize them. The hybrid
FTL used by the Memorex device maintains 4 log blocks,
and thus pauses infrequently with a sequence rotating
between 4 different blocks; however, it slows down for
every write when the input stream rotates between ad-
dresses in 5 distinct blocks. In Figure 11 we see two
patterns: a garbage collection after 55 writes to the same
block, and then another after switching to a new block.

Organization: In theory it should be possible to deter-
mine the zones on a device, as well as the size of the free
list in each zone, via timing analysis. Observing zones
should be straightforward, although it has not yet been
implemented; since each zone operates independently, a
series of writes to addresses in two zones should behave
like repeated writes to the same address. Determining
the size of the free list, m, may be more difficult; varia-
tions in erase time between blocks may produce patterns
which repeat with a period of m, but these variations may
be too small for reliable measurement.

Wear-leveling mechanism: Static wear-leveling is in-
dicated by combined occurrence of two types of peaks:
smaller, periodic peaks of regular write/erase operations,
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Figure 12: Memorex device static wear-leveling. Lower val-
ues represent normal writes and erasures, while peaks include
time to swap a static block with one from the free list. Peaks
have a regular frequency of one at every 138 write/erasure.
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Figure 13: House device end-of-life signature. Latency of
the final 5 × 10

4 writes before failure.

and higher, periodic, but less frequent peaks that suggest
additional internal management operations. In particu-
lar, the high peaks are likely to represent moving static
data into highly used physical blocks in order to uni-
formly distribute the wear. The correlation between the
high peaks and static wear-leveling was confirmed via
logic analyzer, as discussed in Section 3.2 and supported
by extremely high values of measured device-level en-
durance, as reported in Section 3.3.

For the Memorex flash drive, Figure 12 shows latency
for a series of sequential write operations in the case
where garbage collection is triggered at every write. The
majority of writes take approximately 45 ms, but high
peaks of 70 ms also appear every 138th write/erase op-
eration, indicating that other internal management oper-
ations are executed in addition to merging, data write
and garbage collection. The occurrence of high peaks
suggests that the device employs static wear-leveling by
copying static data into frequently used physical blocks.

Additional tests were performed with a fourth device,
House-2, branded the same as the House device but in
fact a substantially newer design. Timing patterns for
repeated access indicate the use of static wear-leveling,
unlike the original House device. We observed peaks of
15 ms representing write operations with garbage col-
lection, and higher regular peaks of 20 ms appearing at
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Device Parameters Predicted endurance Measured endurance
Generic m = 6, h = 10

7 mh 6 × 10
7

7.7 × 10
7, 10.3 × 10

7

House m = 30, k = 64, h = 10
6 between mh and mkh between 3 × 10

7 and 1.9 × 10
9

10.6 × 10
7

Memorex z = 1024, k = 64, h = 10
6(est.) zkh 6 × 10

10 N/A

Table 5: Predicted and measured endurance limits.

approximately every 8,000 writes. The 5 ms time differ-
ence from common writes to the highest peaks is likely
due to data copy operations implementing static wear-
leveling.

End-of-life signature: Write latency was measured
during endurance tests, and a distinctive signature was
seen in the operations leading up to device failure. This
may be seen in Figure 13, showing latency of the final
5 × 104 operations before failure of the House device.
First the 80ms peaks stop, possibly indicating the end of
some garbage collection operations due to a lack of free
pages. At 25000 operations before the end, all operations
slow to 40ms, possibly indicating an erasure for every
write operation; finally the device fails and returns an
error.

Conclusions: By analyzing write latency for vary-
ing patterns of operations we have been able to deter-
mine properties of the underlying flash translation algo-
rithm, which have been verified by reverse engineering.
Those properties include wear-leveling mechanism and
frequency, as well as number and organization of log
blocks. Additional details which should be possible to
observe via this mechanism include zone boundaries and
possibly free list size.

3.4 Device-level Endurance
By device-level endurance we denote the number of suc-
cessful writes at logical level before a write failure oc-
curs. Endurance was tested by repeated writes to a con-
stant address (and to 5 constant addresses in the case of
Memorex) until failure was observed. Testing was per-
formed on Linux 2.6.x using direct (unbuffered) writes
to the block devices.

Several failure behaviors were observed:

• silent: The write operation succeeds, but read verifies
that data was not written.

• unknown error: On multiple occasions, the test ap-
plication exited without any indication of error. In
many casses, further writes were possible.

• error: An I/O error is returned by the OS. This was
observed for the House flash drive; further write op-
erations to any page in a zone that had been worn out
failed, returning error.

• blocking: The write operation hangs indefinitely. This
was encountered for both Generic and House flash

drives, especially when testing was resumed after fail-
ure.

Endurance limits with dynamic wear-leveling: We
measured an endurance of approximately 106 × 106

writes for House; in two different experiments, Generic
sustained up to 103×106 writes and 77×106 writes, re-
spectively. As discussed in Section 3.2, the House flash
drive performs 4 block erasures for 1-page updates, while
the Generic flash drive performs only one block erasure.
However, the list of free blocks is about 5 times larger
for House (see Table 3), which may explain the higher
device-level endurance of the House flash drive.

Endurance limits with static wear-leveling: Wear-
ing out a device that employs static wear-leveling (e.g.
the Memorex and House-2 flash drives) takes consider-
ably longer time than wearing out one that employs dy-
namic wear-leveling (e.g. the Generic and House flash
drives). In the experiments conducted, the Memorex and
House-2 flash drives had not worn out before the paper
was submitted, reaching more than 37 × 106 writes and
26 × 108 writes, respectively.

Conclusions: The primary insight from these mea-
surements is that wear-leveling techniques lead to a
significant increase in the endurance of the whole de-
vice, compared to the endurance of the memory chip it-
self, with static wear-leveling providing much higher en-
durance than dynamic wear-leveling.

Table 5 presents a synthesis of predicted and measured
endurace limits for the devices studied. We use the fol-
lowing notation:

N = total number of erase blocks,
k = total number of pages in the erase block,
h = maximum number of program/erase cycles

of a block (i.e. the chip-level endurance),
z = number of erase blocks in a zone, and
m = number of free blocks in a zone.

Ideally, the device-level endurance is Nkh. In prac-
tice, based on the FTL implementation details presented
in Section 3.2 we expect device-level endurance limits
of mh for Generic, between mh and mkh for House,
and zkh for Memorex. In the following computations,
we use the program/erase endurance values, i.e. h, from
Figure 4, and m and z values reported in Table 4. For
Generic, mh = 6 × 107, which approaches the actual
measured values of 7.7×107 and 10.3×107. For House,
mh = 3 × 107 and mkh = 30 × 64 × 106 = 1.9 × 109,
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Figure 14: Unscheduled access vs. optimal scheduling for disk and flash. The requested access sequence contains both reads
(R) and writes (W). Addresses are rounded to track numbers (disk), or erase block numbers (flash), and “X” denotes either a seek
operation to change tracks (disk), or garbage collection to erase blocks (flash). We ignore the rotational delay of disks (caused by
searching for a specific sector of a track), which may produce additional overhead. Initial head position (disk) = track 35.

with the measured device-level endurance of 10.6 × 107

falling between these two limits. For Memorex, we do
not have chip-level endurance measurements, but we will
use h = 106 in our computations, since it is the pre-
dominant value for the tested devices. We estimate the
best-case limit of device-level endurance to be zkh =

1024 × 64 × 106 ≈ 6 × 1010 for Memorex, which is
about three orders of magnitude higher than for Generic
and House devices, demonstrating the major impact of
static wear-leveling.

3.5 Implications for Storage Systems

Space management: Space management policies for
flash devices are substantially different from those used
for disks, mainly due to the following reasons. Com-
pared to electromechanical devices, solid-state electronic
devices have no moving parts, and thus no mechanical
delays. With no seek latency, they feature fast random
access times and no read overhead. However, they ex-
hibit asymmetric write vs. read performance. Write op-
erations are much slower than reads, since flash mem-
ory blocks need to be erased before they can be rewrit-
ten. Write latency depends on the availability (or lack
thereof) of free, programmable blocks. Garbage collec-
tion is carried out to reclaim previously written blocks
which are no longer in use.

Disks address the seek overhead problem with
scheduling algorithms. One well-known method is the
elevator algorithm (also called SCAN), in which requests
are sorted by track number and serviced only in the cur-
rent direction of the disk arm. When the arm reaches the
edge of the disk, its direction reverses and the remaining
requests are serviced in the opposite order.

Since the latency of flash vs. disks has entirely differ-
ent causes, flash devices require a different method than

disks to address the latency problem. Request schedul-
ing algorithms for flash have not yet been implemented
in practice, leaving space for much improvement in this
area. Scheduling algorithms for flash need to minimize
garbage collection, and thus their design must be depen-
dent upon FTL implementation. FTLs are built to take
advantage of temporal locality; thus a significant per-
formance increase can be obtained by reordering data
streams to maximize this advantage. FTLs map succes-
sive updates to pages from the same data block together
in the same log block. When writes to the same block are
issued far apart from each other in time, however, new
log blocks must be allocated. Therefore, most benefit is
gained with a scheduling policy in which the same data
blocks are accessed successively. In addition, unlike for
disks, for flash devices there is no reason to reschedule
reads.

To illustrate the importance of scheduling for perfor-
mance as well as the conceptually different aspects of
disk vs. flash scheduling, we look at the following sim-
ple example (Figure 14).

Disk scheduling. Let us assume that the following re-
quests arrive: R 70, R 10, R 50, W 70, W 10, W 50, R
70, R 10, R 50, W 70, W 10, W 50, where R = read,
W = write, and the numbers represent tracks. Initially,
the head is positioned on track 35. We ignore the rota-
tional delay of searching for a sector on a track. Without
scheduling, the overhead (seek time) is 495. If the ele-
vator algorithm is used, the requests are processed in the
direction of the arm movement, which results in the fol-
lowing ordering: R 50, W 50, R 50, W 50, R 70, W 70, R
70, W 70, (arm movement changes direction), R 10, W
10, R 10, W 10. Also, the requests to the same track are
grouped together, to minimize seek time; however, data
integrity has to be preserved (reads/writes to the same
disk track must be processed in the requested order, since
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they might access the same address). This gives an over-
head of 95, which is 5x smaller with scheduling vs. no
scheduling.

Flash scheduling. Let us assume that the same se-
quence of requests arrives: R 70, R 10, R 50, W 70, W
10, W 50, R 70, R 10, R 50, W 70, W 10, W 50, where
R = read, W = write, and the numbers represent erase
blocks. Also assume that blocks are of size 3 pages, and
there are 3 free blocks, with one block empty at all times.
Without scheduling, 4 erasures are needed to accommo-
date the last 4 writes. An optimal scheduling gives the
following ordering of the requests: R 70, R 10, R 50,
W 70, R 70, W 70, W 10, R 10, W 10, W 50, R 50, W
50. We observe that there is no need to reschedule reads;
however, data integrity has to be preserved (reads/writes
to the same block must be processed in the requested or-
der, since they might access the same address). After
scheduling, the first two writes are mapped together to
the same free block, next two are also mapped together,
and so on. A single block erasure is necessary to free one
block and accommodate the last two writes. The garbage
collection overhead is 4x smaller with scheduling vs. no
scheduling.

Applicability: Although we have explored only a few
devices, some of the methods presented here (e.g. tim-
ing analysis) can be used to characterize other flash de-
vices as well. FTLs range in complexity across devices;
however, at low-end there are many similarities. Our re-
sults are likely to apply to a large class of devices that
use flash translation layers, including most removable
devices (SD, CompactFlash, etc.), and low-end SSDs.
For high-end devices, such as enterprise (e.g. the Intel
X25-E [16] or BiTMICRO Altima [6] series) or high-
end consumer (e.g. Intel X25-M [15]), we may expect to
find more complex algorithms operating with more free
space and buffering.

As an example, JMicron’s JMF602 flash con-
troller [18] has been used for many low-end SSDs with
8-16 flash chips; it contains 16K of onboard RAM, and
uses flash configurations with about 7% free space. Hav-
ing little free space or RAM for mapping tables, its
flash translation layer is expected to be similar in design
and performance to the hybrid FTL that we investigated
above.

At present, several flash devices including low-end
SSDs have a built-in controller that performs wear-
leveling and error correction. A disk file system in con-
junction with a FTL that emulates a block device is pre-
ferred for compatibility, and also because current flash
file systems still have implementation drawbacks (e.g.
JFFS2 has large memory consumption and implements
only write-through caching instead of write-back) [26].

Flash file systems could become more prevalent as the
capacity of flash memories increases. Operating directly

over raw flash chips, flash file systems present some ad-
vantages. They deal with long erase times in the back-
ground, while the device is idle, and use file pointers
(which are remapped when updated data is allocated to
a free block), thus eliminating the second level of indi-
rection needed by FTLs to maintain the mappings. They
also have to manage only one free space pool instead of
two, as required by FTL with disk file systems. In addi-
tion, unlike conventional file systems, flash file systems
do not need to handle seek latencies and file fragmenta-
tion; rather, a new and more suited scheduling algorithm
as described before can be implemented to increase per-
formance.

4 Analysis and Simulation

In the previous section we have examined the perfor-
mance of several real wear leveling algorithms under
close to worst-case conditions. To place these results
in perspective, we wish to determine the maximum the-
oretical performance which any such on-line algorithm
may achieve. Using terminology defined above, we as-
sume a device (or zone within a device) consisting of N
erase blocks, each block containing k separately writable
pages, with a limit of h program/erase cycles for each
erase block, and m free erase blocks. (i.e. the physical
size of the device is N erase blocks, while the logical
size is N − m blocks.)

Previous work by Ben-Aroya and Toledo [5] has
proved that in the typical case where k > 1, and with rea-
sonable bounds on m, upper bounds exist on the perfor-
mance of wear-leveling algorithms. Their results, how-
ever, offer little guidance for calculating these bounds.
We approach the problem from the bottom up, using
Monte Carlo simulation to examine achievable perfor-
mance in the case of uniform random writes to physi-
cal pages. We choose a uniform distribution because it
is both achievable (by means such as Ban’s randomized
wear leveling method [4]) and in the worst case unavoid-
able by any on-line algorithm, when faced with uniform
random writes across the logical address space. We claim
therefore that our numeric results represent a tight bound
on the performance of any on-line wear-leveling algo-
rithm in the face of arbitrary input.

We look for answers to the following questions:

• How efficiently can we perform static wear leveling?
We examine the case where k = 1, thus ignoring erase
block fragmentation, and ask whether there are on-line
algorithms which achieve near-ideal endurance in the
face of arbitrary input.

• How efficiently can we perform garbage collection?
For typical values of k, what are the conditions needed
for an on-line algorithm to achieve good performance
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Figure 15: Trivial device failure (N = 20, m = 4, h = 10).
Four blocks have reached their erase limit (10) after 100 total
writes, half the theoretical maximum of Nh or 200.

with arbitrary access patterns?

In doing this we use endurance degradation of an al-
gorithm, or relative decrease in performance, as a figure
of merit. We ignore our results on block-level lifetime,
and consider a device failed once m blocks have been
erased h times—at this point we assume the m blocks
have failed, thus leaving no free blocks for further writes.
In the perfect case, all blocks are erased the same num-
ber of times, and the drive endurance is Nkh + mS (or
approximately Nkh) page writes—i.e. the total amount
of data written is approximately h times the size of the
device. In the worst case we have seen in practice, m
blocks are repeatedly used, with a block erase and re-
program for each page written; the endurance in this case
is mh. The endurance degradation for an algorithm is the
ratio of ideal endurance to achieved endurance, or Nk

m
for

this simple algorithm.

4.1 Static Wear Leveling
As described in Section 2.2, static wear leveling refers to
the movement of data in order to distribute wear evenly
across the physical device, even in the face of highly non-
uniform writes to the logical device. For ease of analysis
we make two simplifications:

• Erase unit and program unit are of the same size, i.e.
k = 1. We examine k > 1 below, when looking at
garbage collection efficiency.

• Writes are uniformly distributed across physical
pages, as described above.

Letting X1, X2, . . . XN be the number of times that
pages 1 . . . N have been erased, we observe that at any
point each Xi is a random variable with mean w/N ,
where w is the total number of writes so far. If the vari-
ance of each Xi is high and m ≪ N , then it is likely that
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Figure 16: Wear-leveling performance. Endurance degrada-
tion (by simulation) for different numbers of erase blocks (N ),
block lifetime (h), and number of free blocks (m).

m of them will reach h well before w = Nh, where the
expected value of each Xi reaches h. This may be seen
in Figure 15, where in a trivial case (N = 20, m = 4,
h = 10) the free list has been exhausted after a total of
only Nh/2 writes.

In Figure 16 we see simulation results for a more real-
istic set of parameters. We note the following points:

• For h < 100 random variations are significant, giving
an endurance degradation of as much as 2 depending
on h and m.

• For h > 1000, uniform random distribution of writes
results in near-ideal wear leveling.

• N causes a modest degradation in endurance, for rea-
sonable values of N ; larger values degrade endurance
as they increase the odds that some m blocks will ex-
ceed the erase threshold.

• Larger values of m result in lower endurance degrada-
tion, as more blocks must fail to cause device failure.

For reasonable values of h, e.g. 104 or 105, these re-
sults indicate that randomized wear leveling is able to
provide near-optimal performance with very high prob-
ability. However the implementation of randomization
imposes its own overhead; in the worst case doubling the
number of writes to perform a random swap in addition
to every logical write. In practice a random block is typ-
ically selected every d writes and swapped for a block
from the free list, reducing the overhead to 1/d.

Although this reduces overhead, it also reduces the de-
gree of randomization introduced. In the worst case—
repeated writes to the same logical block—a page will
remain on the free list until it has been erased d times
before being swapped out. A page can thus only land
in the free list h/d times before wearing out, giving per-
formance equivalent to the case where the lifetime h′ is
h/d. As an example, consider the case where d = 200
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and h = 104; this will result in performance equivalent
to h = 50 in our analysis, possibly reducing worst-case
endurance by a factor of 2.

4.2 Garbage Collection
The results above assume an erase block size (k) of 1
page; in practice this value is substantially larger, in the
devices tested above ranging from 32 to 128 pages. As
a result, in the worst case m free pages may be scattered
across as many erase blocks, and thus k pages must be
erased (and k − 1 copied) in order to free a single page;
however depending on the number of free blocks, the ex-
pected performance may be higher.

Again, we assume writes are uniformly and randomly
distributed across Nk pages in a device. We assume that
the erase block with the highest number of stale pages
may be selected and reclaimed; thus in this case random
variations will help garbage collection performance, by
reducing the number of good pages in this block.

Garbage collection performance is strongly impacted
by the utilization factor, or ratio of logical size to phys-
ical size. The more free blocks available, the higher the
mean and maximum number of free pages per block and
the higher the garbage collection efficiency. In Figure 17
we see the degradation in relative endurance for several
different combinations of device size N (in erase blocks)
and erase block size k, plotted against the fraction of free
space in the device. We see that the worst-case impact of
garbage collection on endurance is far higher than that
of wear-leveling inefficiencies, with relative decreases in
endurance ranging from 3 to 5 at a typical utilization (for
low-end devices) of 93%.

Given non-uniform access patterns, such as typical file
system access, it is possible that different wear-leveling

strategies may result in better performance than the ran-
domized strategy analyzed above. However, we claim
that no on-line strategy can do better than randomized
wear-leveling in the face of uniformly random access
patterns, and that these results thus provide a bound on
worst-case performance of any on-line strategy.

For an ideal on-line wear-leveling algorithm, perfor-
mance is dominated by garbage collection, due to the
additional writes and erases incurred by compacting
partially-filled blocks in order to free up space for new
writes. Garbage collection performance, in turn, is en-
hanced by additional free space and degraded by large
erase block sizes. For example, with 20% free space and
small erase blocks (32 pages) it is possible to achieve an
endurance degradation of less than 1.5, while with 7%
free space and 128-page blocks endurance may be de-
graded by a factor of 5.1

5 Conclusions

As NAND flash becomes widely used in storage systems,
behavior of flash and flash-specific algorithms becomes
ever more important to the storage community. Write
endurance is one important aspect of this behavior, and
one on which perhaps the least information is available.
We have investigated write endurance on a small scale—
on USB drives and on flash chips themselves—due to
their accessibility; however the values we have measured
and approaches we have developed are applicable across
devices of all sizes.

Chip-level measurements of flash endurance presented
in this work show endurance values far in excess of
those quoted by manufacturers; if these are representa-
tive of most devices, the primary focus of flash-related
algorithms may be able to change from wear level-
ing to performance optimization. We have shown how
reverse-engineered details of flash translation algorithms
from actual devices in combination with chip-level mea-
surements may be used to predict device endurance,
with close correspondence between those predictions and
measured results. In addition, we have presented non-
intrusive timing-based methods for determining many of
these parameters. Finally, we have provided numeric
bounds on achievable wear-leveling performance given
typical device parameters.

Our results explain how simple devices such as flash
drives are able to achieve high endurance, in some cases
remaining functional after several months of continual
testing. In addition, analytic and simulation results high-

1This is a strong argument for the new SATA TRIM operator [30],
which allows the operating system to inform a storage device of free
blocks; these blocks may then be considered free space by the flash
translation layer, which would otherwise preserve their contents, never
to be used.
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light the importance of free space in flash performance,
providing strong support for mechanisms like the TRIM
command which allow free space sharing between file
systems and flash translation layers. Future work in
this area includes examination of higher-end devices, i.e.
SSDs, as well as pursuing the implications for flash trans-
lation algorithms of our analytical and simulation re-
sults.
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Abstract  
As a new generation of parallel supercomputers enables 
researchers to conduct scientific simulations of unprec-
edented scale and resolution, terabyte-scale simulation 
output has become increasingly commonplace.  Analy-
sis of such massive data sets is typically I/O-bound: 
many parallel analysis programs spend most of their 
execution time reading data from disk rather than per-
forming useful computation.  To overcome this I/O bot-
tleneck, we have developed a new data access method.  
Our main idea is to cache a copy of simulation output 
files on the local disks of an analysis cluster’s compute 
nodes, and to use a novel task-assignment protocol to 
co-locate data access with computation.  We have im-
plemented our methodology in a parallel disk cache 
system called Zazen.  By avoiding the overhead asso-
ciated with querying metadata servers and by reading 
data in parallel from local disks, Zazen is able to deliver 
a sustained read bandwidth of over 20 gigabytes per 
second on a commodity Linux cluster with 100 nodes, 
approaching the optimal aggregated I/O bandwidth at-
tainable on these nodes.  Compared with conventional 
NFS, PVFS2, and Hadoop/HDFS, respectively, Zazen is 
75, 18, and 6 times faster for accessing large (1-GB) 
files, and 25, 13, and 85 times faster for accessing small 
(2-MB) files.  We have deployed Zazen in conjunction 
with Anton—a special-purpose supercomputer that dra-
matically accelerates molecular dynamics (MD) simula-
tions—and have been able to accelerate the parallel 
analysis of terabyte-scale MD trajectories by about an 
order of magnitude. 

1 Introduction 
Today, thousands of massively parallel computers are 
deployed around the world.  The bountiful supply of 
computational power and the high-performance scientif-
ic simulations it has made possible, however, are not 
enough in themselves.  To make scientific discoveries, 
the output from simulations must still be analyzed. 

While simulation data are traditionally stored and 
accessed via parallel or network file systems, these sys-

tems have hardly kept up with the data deluge unleashed 
by faster supercomputers in the past decade [3, 28].  
With terabyte-scale data quickly becoming the norm in 
many disciplines of computational science, I/O has be-
come more critical a problem than ever. 

A considerable amount of effort has gone into the 
design and implementation of special-purpose storage 
and middleware systems aimed at improving the I/O 
performance during a simulation [4, 5, 20, 22, 23, 25, 
33].  By contrast, the I/O performance required in the 
course of analyzing the resulting data has received much 
less attention.  From the viewpoint of overall time to 
solution, however, it is necessary to measure not only 
the time required to execute a simulation, but also the 
time required to analyze and interpret the output data.  
The I/O bottleneck after a simulation is thus as much an 
impediment to scientific discovery through advanced 
computing as the one that occurs during the simulation. 

Our research aims to remove the analysis-time I/O 
impediment in a class of applications where the data 
output rate from a simulation is relatively low, yet the 
number of output files is relatively large.  In particular, 
we focus on overcoming the data access bottleneck en-
countered by parallel analysis programs that execute on 
hundreds to thousands of processor cores and process 
millions to billions of simulation output files.  Since the 
scale and complexity of this class of data-intensive 
analysis applications preclude the use of conventional 
storage systems, which have already struggled to handle 
less demanding I/O workloads, we introduce a new data 
access method designed to achieve a much higher level 
of performance. 

Our solution works as follows.  During a simulation, 
results are saved incrementally in a series of files.  We 
instruct the I/O node of a parallel supercomputer not 
only to write each output file to a parallel/network file 
server, but also to send the content of the file to some 
node of a separate cluster that is dedicated to post-
simulation data analysis.  We refer to such a cluster as 
an analysis cluster and its nodes as analysis nodes.  Our 
goal is to distribute the output files evenly among the 
analysis nodes.  Upon receiving the data from the I/O 
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node, an analysis node caches (i.e., stores) the content 
as a local copy of the file.  Each analysis node manages 
only the files it has cached locally.  No metadata, either 
centralized or distributed, are maintained to keep track 
of which node has cached which files.  When a simula-
tion is completed, its (many) output files are stored on 
the file server as well as distributed (more or less) even-
ly among all analysis nodes. 

At analysis time, each process of a parallel analysis 
program (assuming one process per analysis node) de-
termines which files have been cached locally, and uses 
this knowledge to participate in the execution of a dis-
tributed task-assignment protocol (in collaboration with 
processes of  the analysis program running on other 
analysis nodes).  The outcome of the protocol is an as-
signment (i.e., a partitioning) of the file I/O tasks, in 
such a way that each file of a simulation dataset will be 
read by one and only one process (for correctness), and 
that each process will be mostly responsible for reading 
the files that have been cached locally (for efficiency).  
After completing the protocol execution, all processes 
proceed in parallel without further communication to 
coordinate I/O.  (They may still communicate with one 
another for other purposes.)  To retrieve each assigned 
file, a process first attempts to read it from the local 
disks, and then in case of a local cache miss, fetches the 
file from the parallel/network file system on which the 
entire simulation output dataset is persistently stored. 

We have implemented our methodology in a parallel 
disk cache system called Zazen that has three compo-
nents: (1) a disk cache server that runs on every com-
pute node of an analysis cluster and manages locally 
cached data, (2) a client library that provides API func-
tions for operating the cache, and (3) a communication 
library that queries the cache and executes the task-
assignment protocol, referred to as the Zazen protocol. 

Experiments show that Zazen is scalable, efficient, 
and robust.  On a Linux cluster with 100 nodes, execut-
ing the Zazen protocol to assign I/O tasks for one billion 
files takes less than 15 seconds.  By avoiding the over-
head associated with querying metadata servers and by 
reading data in parallel from local disks, Zazen delivers 
a sustained read bandwidth of more than 20 gigabytes 
per second on 100 nodes when reading large (1-GB) 
files.  It is 75 times faster than NFS running on a high-
end enterprise storage server, and 18 and 6 times faster, 
respectively, than PVFS2 [8, 31] and Hadoop/HDFS 
[15] running on the same 100 nodes.  When reading 
small (2-MB) files, Zazen achieves a sustained read 
performance of about 8 gigabytes per second on 100 
nodes, outperforming NFS, PVFS2, and Hadoop/HDFS 
by a factor of 25, 13, and 85, respectively.  We emphas-
ize that despite its large performance advantage over 
network/parallel file systems, Zazen serves only as a 
cache system to improve parallel file read speed.  With-

out a slower but more reliable file system as backup, 
Zazen would not be able to handle cache misses.  Final-
ly, our experiments demonstrate that Zazen works even 
when up to 50% of the nodes have gone offline.  The 
only noticeable effect is a slowdown in execution time, 
which degrades gracefully, as predicted by our failure 
model. 

We have deployed Zazen in conjunction with Anton 
[38]—a special-purpose supercomputer developed at 
D. E. Shaw Research for molecular dynamics (MD) 
simulations—to support the parallel analysis of tera-
byte-scale MD trajectories.  Compared with the perfor-
mance of implementations that access data from a high-
end NFS server, the end-to-end execution time of a 
large number of parallel trajectory analysis programs 
that access data via Zazen has improved by about an 
order of magnitude. 

2 Background 
Scientific simulations seek numerical approximations of 
solutions to the partial differential, ordinary differential, 
algebraic, integral, or particle equations that govern the 
physical systems of interest.  The solutions, typically 
computed as displacements, pressures, temperatures, or 
other physical quantities associated with grid points, 
mesh nodes, or particles, represent the states of the sys-
tem being simulated and are stored to disk. 

Time-dependent simulations such as mantle convec-
tion, supernova explosion, seismic wave propagation, 
and bio-molecular motions output a series of solutions, 
each representing the state of the system at a particular 
simulated time.  We refer to these solutions as output 
frames or simply frames.  While the organization of 
frames on disk is application-dependent, we assume in 
this paper that all frames are of the same size and each 
is stored in a separate file. 

An important class of time-dependent simulations 
has the following characteristics.  First, they output a 
large number of small frames.  A millisecond-scale MD 
simulation, for example, may generate millions to bil-
lions of frames, each having a size less than a few me-
gabytes.  Second, the frames are write once read many.  
Once a frame is generated and stored to disk, it is usual-
ly read multiple times by data analysis programs.  A 
frame, for all practical purposes, is never modified un-
less deleted.  Third, unique integer sequence numbers 
can be used to distinguish the frames, which are gener-
ated in a temporal order as a simulation marches for-
ward in time.  Fourth, frames are amenable to parallel 
processing at analysis time.  For example, our recent 
work [46]  has demonstrated how to use the MapReduce 
programming model to access frames in an arbitrary 
order in the map phase and restore their temporal order 
in the reduce phase. 
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Figure 1: Simulation I/O infrastructure.  Parallel analysis 
programs traditionally read simulation output from a parallel 
or network file system. 

Traditionally, frames are stored and accessed via a 
parallel or network file system, as shown in Figure 1.  
At the bottom of the figure lies a parallel supercomputer 
that executes scientific simulations and outputs data 
through I/O nodes, which are specialized service nodes 
for tightly coupled parallel machines such as IBM’s 
BlueGene, Cray’s XT series, or Anton.  These nodes 
aggregate the data generated by the compute nodes 
within a supercomputer and store the results to the file 
system servers.  Two I/O nodes are shown in Figure 1 
for illustration purposes; the actual number of I/O nodes 
varies by system.  The top of Figure 1 shows an analysis 
cluster may or may not be co-located with a parallel 
supercomputer.  In the latter case, simulation data can 
be stored to file servers close to the analysis cluster—
either online, using techniques such as ADIO [12, 43] 
and PDIO [30, 40] or offline, using high-performance 
data transfer tools such as GridFTP [14].  An analysis 
cluster is typically much smaller in scale than a parallel 
supercomputer and has on the order of tens to hundreds 
of analysis compute nodes.  While an analysis cluster 
provides tremendous computational and memory re-
sources to parallel analysis programs, it also imposes 
intensive I/O workload to the underlying file servers, 
which, in most cases, cannot keep up.  

3 Solution Overview 
The local disks on the analysis nodes, shown in Figure 
1, are typically unused except for storing operating sys-
tems files and temporary user data.  While an individual 
analysis node may have much smaller disk space than 
file servers, the aggregated capacity of all local disks in 
an analysis cluster may be on par with or even exceed 
that of the file servers.  With such abundant and poten-
tially useful storage resources at our disposal, it is natu-
ral to ask how we can exploit these resources to solve 
the problem of reading a large number of frames in pa-
rallel. 

 

3.1 The Main Idea 
Our main idea is to cache a copy of each output frame in 
the local disks of arbitrary analysis nodes, and use a 
data location–aware task-assignment protocol to coordi-
nate the parallel read of the cached data at analysis time. 

Because simulation frames are write once read 
many, cache consistency is guaranteed.  Thus, at simula-
tion time, we arrange for the I/O nodes of a parallel su-
percomputer to push a copy of output frames to the local 
disks of the analysis nodes as the frames are generated 
and stored to a file server.  We cache each frame on one 
and only one node and place consecutive frames on dif-
ferent nodes for load balancing.  The assignment of 
frames to nodes can be arbitrary as long as the frames 
are spread across the analysis nodes more or less evenly.  
We choose a first machine randomly from a list of 
known analysis nodes and push frames to that machine 
and then its peers in a round-robin order.  When caching 
frames from a long-running simulation that lasts for 
days or weeks, some of the analysis nodes will inevita-
bly crash and become unavailable.  We detect and skip 
the crashed nodes and place the output frames on the 
surviving nodes.  Note that we do not use a metadata 
server to keep track of where frames are cached. 

When executing a parallel analysis program, we use 
a cluster resource manager such as SLURM [39, 49] to 
obtain as many analysis nodes as available.  We instruct 
each process to read frames directly from its local disk 
cache.  To coordinate the parallel read of the cached 
frames and to ensure that each frame is read by one and 
only one node, we execute a data location–aware task-
assignment protocol before performing any I/O.  The 
purpose of this protocol is to co-locate data access with 
computation.  Upon completion of the protocol execu-
tion, each process receives a list of integer sequence 
numbers that correspond to the frames it is responsible 
for reading.  Most, if not all, of the assigned frames are 
those that have been cached locally.  Those that are 
missing from the cache—for example, those that are 
cached on a crashed node or those that have been 
evicted—are fetched from the file servers and then 
cached in local disks. 

3.2 Applicability 
The proposed solution works only if the aggregated disk 
space of the dedicated analysis cluster is large enough to 
accommodate tens to hundreds of terabyte-scale simula-
tion output datasets, so that recently cached datasets are 
not evicted too quickly.  Considering the density and the 
price of today’s hard drives, we expect that it is both 
technologically and economically feasible to provision a 
medium-size cluster with hundreds of terabytes to a few 
petabytes of disk storage.  As an example, the cluster at 
Intel Research Pittsburgh, which is part of the  
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Figure 2: Simulation data organization.  Frames are 
stored to file servers as well as the analysis nodes. 

OpenCirrus consortium, is reported to have 150 nodes 
with over 400 TB of disk storage [18].  

Another prerequisite of our solution is that the data 
output rate from a simulation is relatively low.  In prac-
tice, this means that the data output rate must be lower 
than both the network bandwidth to and the disk band-
width on any analysis node.  If this is true, we can use 
multithreading techniques to overlap data caching with 
computation and avoid slowing down the execution of a 
simulation.  

Certain classes of simulations cannot take advantage 
of the proposed caching mechanism because of the re-
strictions imposed by these two prerequisites.  Never-
theless, many time-dependent simulations do satisfy 
both prerequisites and are amenable to simulation-time 
data caching.  

3.3 An Example 
We assume that an analysis cluster has only two 

nodes as shown in Figure 2.  We use the local disk parti-
tion mounted at /bodhi as the cache space.  We also 
assume that an MD simulation generates four frames 
named f0, f1, f2, and f3 in a directory /sim1/.  As 
the frames are generated by the simulation at certain 
intervals and pushed to an NFS server, they are also 
stored to nodes 1 and 2 in an alternating fashion, with 
f0 and f2 going to node 1, and f1 and f3 to node 
2.  When a node receives an output file, it prepends the 
local disk cache root, that is, /bodhi, to the full path 
name of the file, creates a cache file locally using the 
derived file name (e.g., /bodhi/sim1/f0), and 
writes the contents.  After the data is cached locally, a 
node records the sequence number of the frame—which 
is sent by an I/O node—in a sequence log file that is 
stored in the local directory along with the frames. 

Figure 2 shows the data organization on the NFS 
server and on the two analysis nodes.  The isosceles 
triangles represent datasets that have already been 
stored on the NFS server at directory /sim0/; the right 
triangles represent the portions of files that have been 
cached on nodes 0 and 1, respectively.  The seq file 
represents the sequence log file that is created and up-
dated independently on each node. 

When analyzing the dataset stored at /sim1, we 
open its associated sequence log file (i.e., 
/bodhi/sim1/seq) on each node in parallel, and 
retrieve the sequence numbers of the frames that have 
been cached locally.  We then construct a bitmap with 
four entries (equal to the number of frames to be ana-
lyzed) and set the bits for those that it has cached local-
ly.  On node 0, the first and third bits are set; on node 1, 
the second and fourth bits. 

We then exchange the bitmaps between the nodes.  
By examining the combined results, both nodes realize 
that that all requested frames have been cached some-

where in the analysis cluster.  Since node 0 has local 
access to f0 and f2, it signs up for reading these two 
frames—with the knowledge that the other node must 
have local access to the remaining two files.  Node 1 
makes a similar decision and signs up for f1 and f3.  
Both nodes then proceed in parallel and read the cached 
frames without further communication.  Because all 
requested frames have been cached on either node 0 or 
node 1, no read requests are sent to the NFS server. 

With only two nodes in this example, converting lo-
cal disks to a distributed cache might not appear to be 
worthwhile.  Nevertheless, when hundreds or more 
nodes are present, the effort pays off as it allows us to 
harness the vast storage capacities and I/O bandwidths 
distributed across many nodes. 

3.4 Implementation 
We have implemented our methodology in a parallel 
disk cache system called Zazen.  The literal meaning of 
Zazen is “enlightenment through seated meditation.”  
By a stretch of imagination, we use the term to describe 
the behavior of the analysis nodes in an anthropomor-
phic way:  Instead of consulting a master node for ad-
vice on what data to read, every node seeks its inner 
knowledge of what has been cached locally to help de-
cide its own action, thereby becoming “enlightened.” 

As shown in Figure 3, the Zazen system consists of 
three components:  

• The Bodhi library: a client library that provides 
API functions (open, write, read, query, and close) 
for I/O nodes of parallel supercomputers to push 
output frames to analysis nodes, and for parallel 
analysis programs to query and read data from lo-
cal disks. 

• The Bodhi server: a disk cache server that manag-
es the frames that have been cached on local disks 
and provides read service to local clients and write 
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Figure 3: Overview of the Zazen system.  The Bodhi 
library provides API functions for operating the local disk 
caches.  The Bodhi server manages the frames cached 
locally and services client requests.  The Zazen protocol 
coordinates parallel read of the cached data. 

service to remote clients. 

• The Zazen protocol: a data location–aware task-
assignment protocol for assigning frame read tasks 
to analysis nodes. 

We refer to the distributed local disks collectively as 
the Zazen cache and the hosting analysis cluster as the 
Zazen cluster.  The Zazen cluster supports two types of 
applications: writers and readers.  Writers are I/O 
processes running on the I/O nodes of a supercomputer.  
They only write output frames to the Zazen cache and 
never read them back.  Readers are parallel processes of 
an analysis program.  They run on the analysis nodes, 
execute the Zazen protocol, read data from local disk 
caches, and, in case of cache misses, have data fetched 
(by Bodhi servers) into the Zazen cache.  As shown in 
Figure 3, inter-processor communication takes place 
only at the application level and the Zazen protocol lev-
el.  The Bodhi library and server on different nodes do 
not communicate with one another directly as they do 
not share information with respect to which frames have 
been cached locally. 

When frames are stored in the Zazen cache, they are 
treated as either natives or aliens.  A native frame is one 
that is written to the Zazen cache by an I/O node that 
calls the Bodhi library write function.  An alien frame is 
one that is brought into the Zazen cache by a Bodhi 
server because of a local cache read miss; it is the by-
product of a call to the Bodhi library read function.  
Note that a frame can be a native on at most one node, 

but can be an alien on multiple nodes.  To distinguish 
the two types of cached frames, we maintain two se-
quence log files for each simulation dataset to keep 
track of the integer sequence numbers of the native and 
alien frames, respectively.  (The example of Section 3.2 
showed only the native sequence log files.) 

While the Bodhi library and server provide the ne-
cessary machinery for operating the Zazen cache, the 
intelligence of coordinating the parallel read of the 
cached data—the core of our innovation—lies in the 
Zazen protocol. 

4 The Zazen Protocol 
At first glance, it might appear that the coordination of 
the parallel read from the Zazen cache is unnecessary.  
Indeed, if no node would ever fail and cached data were 
never evicted, every node could simply consult its na-
tive sequence log file (associated with a particular data-
set) and read the frames it has cached locally.  Because 
an I/O node stores each output frame to one and only 
one node, neither duplicate reads nor cache read misses 
would occur. 

Unfortunately, the premise of this argument is rarely 
true in practice.  Analysis nodes do fail in various un-
predictable ways due to hardware, software, and human 
errors.  If a node crashes for some reason other than disk 
failures, the frames cached on that node become tempo-
rarily unavailable.  Assume that during the node’s down 
time, a parallel analysis code requests access to a dataset 
that has been partially cached on the failed node.  Fur-
thermore, assume that under the auspices of some 
oracle, the surviving analysis nodes are able to decide 
who should read which missing frames.  Then the miss-
ing frames are fetched from the file servers and—as an 
intended side effect—cached locally on the surviving 
nodes as aliens.  Assume that after the execution of the 
analysis, the failed node recovers and is back online.  
All of its locally cached frames once again become 
available.  If the previously accessed dataset is 
processed again, some of its frames are now cached 
twice: once on the recovered node (as natives) and once 
on some other nodes (as aliens).  More complex failure 
and recovery sequences may take place, which can lead 
to a single frame being cached multiple times or not 
cached at all. 

We devised the Zazen protocol to guarantee that re-
gardless how many (i.e., zero or more) copies of a frame 
have been cached, it is read by one and only one node.  
To achieve this goal, we enforce the following rules in 
order:  

• Rule (1): If a frame is cached as a native on some 
node, we use that node to read the frame. 

• Rule (2): If a frame is not cached as a native on any 
node and is cached as an alien once on some node, 
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we use that node to read the frame. 
• Rule (3): If a frame is missing from the cache, we 

choose an arbitrary node to read the frame and 
cache the file. 

We define a frame as missing if either the frame is not 
cached at all on any node or the frame is not cached as a 
native but is cached as an alien multiple times on differ-
ent nodes. 

The rationale behind the rules is as follows.  Each 
frame is cached as a native once and only once on one 
of the analysis nodes when the frame file is pushed into 
the Zazen cache by an I/O node.  If a native copy exists, 
it becomes an undisputed sole winner and knocks off 
other competitors who offer to provide an alien copy.  
Otherwise, a winner emerges only if it is the sole holder 
of an alien copy.  If multiple alien copies exist, all con-
tenders back off to avoid expensive distributed arbitra-
tion.  An arbitrary node is then chosen to service the 
frame. 

To coordinate the parallel read of cached data, all 
processes of a parallel analysis program must execute 
the Zazen protocol by calling an API function named 
zazen.  The input to the zazen function includes 
bodhi (a handle to the local cache), simdir (the 
base directory of a simulation dataset), begin (the 
sequence number of the first frame to be accessed), end 
(the sequence number of the last frame to be accessed), 
and stride (the stride between the frames to be ac-
cessed).  The output of the zazen function is an ab-
stract data type zazen_bitmap that contains the 
necessary information for each process to find out 
which frames of the dataset it should read.  Because the 
order of parallel accessing of frames is irrelevant, as 
explained in Section 2, each process consults the za-
zen_bitmap and calls the Bodhi library read func-
tion to read the frames it is responsible for processing, 
in parallel with other processes. 

The main techniques we used to implement the Za-
zen protocol are bitmaps and all-to-all reduction algo-
rithms [6, 11, 44].  The former provides a compact data 
structure for recording the presence or non-presence of 
frames, which may number in the billions.  The latter 
furnishes an efficient mechanism for performing inter-
processor collective communications.  While we could 
have implemented all-to-all reduction algorithms from 
scratch (with a fair amount of effort), we chose instead 
to use an MPI library [26] as it already provides an op-
timized implementation that scales on to tens of thou-
sands of nodes.  In what follows, we simplify the de-
scription of the Zazen protocol algorithm by assuming 
that only one process (of a parallel analysis program) 
runs on each node. 
1. Creation of local native bitmaps.  Each process calls 

the Bodhi library query function to obtain the se-
quence numbers of the frames that have been cached 

as native on the local node.  It creates an empty bit-
map, whose number of bits is equal to the total num-
ber of frames to be accessed.  Next, it sets the bits 
corresponding to the sequence numbers of the local-
ly cached natives and produces a partially filled bit-
map called a local native bitmap. 

2. Generating of global native bitmaps.  All the 
processes perform an all-to-all reduction that applies 
a bitwise-or operation on the local native bitmaps.  
On return, each node obtains an identical new bit-
map called a global native bitmap that represents all 
the frames that have been cached as natives some-
where. 

3. Identification of local native reads.  Each process 
checks if the global native bitmap is fully set.  If so, 
we have a perfect native cache hit ratio of 100%.  
The Zazen protocol is completed and every process 
proceeds to read the frames specified in its local na-
tive bitmap, knowing that the remaining frames are 
being read by other processes.  Otherwise, some 
frames are not cached as natives, though they may 
well exist on some nodes as aliens. 

4. Creation of local alien bitmaps.  Each process que-
ries its local Bodhi server for a second time to find 
the sequence numbers of the frames that are cached 
as aliens.  It creates a new empty bitmap that uses 
two bits—instead of just one bit for the case of local 
native bitmaps—for each frame.  The low-order 
(rightmost) bit is used in this step and the high-order 
(leftmost) bit will be used in the next step.  Initially, 
both bits are set to 0.  A process checks whether the 
sequence number of each of its locally cached aliens 
is already set in the global native bitmap.  If so, the 
process ignores the local alien copy to enforce Rule 
(1).  Otherwise, the process uses the alien copy’s se-
quence number as an index to locate the correspond-
ing frame entry in the new bitmap and sets the low-
order bit to one. 

5. Generation of global alien bitmaps.  All the 
processes perform a second round of all-to-all reduc-
tion to combine the contributions from local alien 
bitmaps.  Given a pair of input two-bit entries, we  
generate an output two-bit entry by applying a com-
mutative operator denoted as “∘” that works as  
follows: 

00 ∘ xx → xx, 10 ∘ xx → 10, and 01 ∘ 01 → 10 , 

 where x stands for either 0 or 1.  Note that an input 
two-bit entry can never be 11 and the high-order bit 
of the output is set to one only if both input bitmaps 
have their lower-order bits set (i.e., claiming to have 
cached the frame as an alien).  On return, each 
process receives an identical new bitmap called a 
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Figure 4: Fixed-problem-size scalability.  The execution 
time of the Zazen protocol for processing one billion frames 
grows only marginally as the number of analysis nodes 
increases from 1 to 100. 

 
Figure 5: Fixed-cluster-size scalability.  The execution 
time of the Zazen protocol on 100 nodes grows sub-linearly 
with the number of frames. 

global alien bitmap that records the frames that have 
been cached as aliens. 

6. Identification of local alien reads.  Each process 
performs a bitwise-and operation on its local alien 
bitmap and the global alien bitmap.  It identifies the 
offsets of the non-zero entries (which must be 01) of 
the result to enforce Rule (2).  Those entries 
represent the frames for which the process is the sole 
alien-copy holder.  Together, the identified local na-
tive and alien reads represent the frames a process 
voluntarily signs up to read. 

7. Adoption of residue frames.  Each process conducts 
a bitwise-or operation on the global native bitmap 
and the low-order bits of the global alien bitmap.  
The unset bits in the output bitmap are residue 
frames for which no process has signed up.  A frame 
may be a residue for one of the following reasons: 
(1) it has been cached on a crashed node, (2) it has 
been cached multiple times as an alien but not once 
as a native, or (3) it has been evicted from the cache.  
Regardless of the cause, the residues are treated by 
all processes as the elements of a single array.  Each 
process then executes a partitioning algorithm, in pa-
rallel without communication, to divide the array in-
to contiguous blocks and adopt the block that cor-
responds to its rank among all the processes. 
 
The Zazen protocol has two distinctive features.  

First, the data location information is obtained directly 
on each node—an embarrassingly parallel and scalable 
operation—rather than returned by a metadata server or 
servers.  Second, if a node crashes, the protocol still 
works.  The frames cached on the failed node are simply 
treated as cache misses.  

 

5 Performance Evaluation  
We have evaluated the scalability, efficiency, and ro-
bustness of Zazen on a commodity Linux cluster with 
100 nodes that are hosted in three racks.  The nodes are 
interconnected via a 1-gigabit Ethernet with full bisec-
tional bandwidth.  Each node runs CentOS 4.6 with a 

kernel version of 2.6.26 and has two Intel Xeon 2.33-
GHz quad-core processors, 16 GB physical memory, 
and four 500-GB 7200-RPM SATA disks.  We orga-
nized the local disks as a software RAID 0 (striped) 
partition and managed the RAID volume with an ext3 
file system.  The usable local disk cache space on each 
node is about 1.8 TB; so the total capacity of the Zazen 
cache is 180 TB.  All nodes have access to common 
NFS directories exported by a number of enterprise sto-
rage servers.  Evaluation programs were written in C 
unless otherwise specified. 

5.1 Scalability  
Because the Bodhi client and server are standalone 
components that can be deployed on as many nodes as 
available, they are inherently scalable.  Hence, the sca-
lability of the Zazen system, as a whole, is essentially 
determined by that of the Zazen protocol. 

In the following experiments, we measured how the 
execution time of the Zazen protocol scales as we in-
creased the cluster size and the problem size, respective-
ly.  No files were physically generated, stored to, or 
accessed from the Zazen cache.  To create local bitmaps 
without querying local Bodhi servers (since no files 
actually existed in this particular test) and to force the 
execution of the optional second round of all-to-all re-
duction (for generating global alien bitmaps), we mod-
ified the procedure outlined in Section 4 so that each 
process set a non-overlapping, contiguous sequence of 
n/p frames as natives, where n is the total number of 
frames and p is the number of analysis nodes.  The rest 
of the frames were treated as aliens.  The MPI library 
used in these experiments was Open MPI 1.3.2 [26]. 

Figure 4 shows the execution time of the Zazen pro-
tocol for assigning one billion frames as the number of 
analysis nodes increases from 1 to 100.  Each data point 
presents the average of three runs whose coefficient of 
variation (standard deviation over mean) is negligible.  
The execution time on one node is the time for manipu-
lating the bitmaps locally and does not include any 
communication overhead.  The dip of the curve in the 
four-node case may have been caused by the MPI run-
time choosing a different optimized MPI_Allreduce 
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Figure 4: Fixed-problem-size scalability.  The execution 
time of the Zazen protocol for processing one billion frames 
grows only marginally as the number of analysis nodes 
increases from 1 to 100. 

 
Figure 5: Fixed-cluster-size scalability.  The execution 
time of the Zazen protocol on 100 nodes grows sub-linearly 
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           (a) One Bodhi read daemon per application read process                     (b) One Bodhi read daemon per node 

Figure 6: Zazen cache read bandwidth on 100 nodes.  (a) Forking one read daemon for each application read process hurts 
the performance significantly, especially when the size of files in the dataset is large.  (b) We can eliminate the I/O contention by 
using a single Bodhi server read daemon per node to serialize the read requests. 

algorithm.1  As the number of nodes increases, the ex-
ecution time grows only marginally, up to 14.9 seconds 
on 100 nodes. 

The result is exactly as expected.  When performing 
all-to-all reduction involving large messages, MPI libra-
ries typically select a bandwidth-optimized ring algo-
rithm [44], which we would have implemented had we 
not used MPI.  The time required to execute the ring 
algorithm is 2(p − 1)α + 2n(1 − 1/p)β + n(1 − 1/p)γ, 
where p is the number of processes, n is the size of the 
vector (i.e., the bitmap), α is the latency per message, β 
is the transfer time per byte, and γ is the computation 
cost per byte for performing the reduction operation.  
The coefficient associated with the bandwidth term, 
2n(1 − 1/p), which is the dominant component for large 
messages, does not grow with the number of nodes (p). 

Figure 5 shows that on 100 nodes, the execution 
time of the Zazen protocol grows sub-linearly as we 
increase the number of frames from 1,000 to 
1,000,000,000.  The result is again in line with the theo-
retical cost model of the ring algorithm, where the 
bandwidth term is linear in n, the size of the bitmaps. 

To put the execution time of the Zazen protocol in 
perspective, let us assume that each frame of a simula-
tion is 1 MB and we have one billion frames.  The total 
size of such a dataset is one petabyte.  Spending less 
than 15 seconds on 100 nodes to coordinate the parallel 
read of a petabyte-scale dataset appears (at least today) 
to be a reasonable startup overhead. 

5.2 Efficiency  
To measure the efficiency of actually reading data from 
the Zazen cache, we started the Bodhi servers on the 
100 analysis nodes and populated the Zazen cache with 
four 1.6-TB test datasets, consisting of 1,600 1-GB files,  
6,400 256-MB files, 25,600 64-MB files, and 819,200 
2-MB files, respectively.  Each node stored 16 GB of 

                                                 
1 Based on the vector size and the number of processes, Open MPI 
makes a runtime decision with respect to which all-reduce algorithm 
to use.  The specifics are implementation dependent and are beyond 
the scope of this paper. 

data on its local disks.  The experiments were driven by 
an MPI program that executes the Zazen protocol and 
fetches the (whole) files in parallel from the local disks.  
No analysis was performed on the data and no cache 
misses occurred in these experiments. 

In what follows, we report the end-to-end execution 
time measured between two MPI_Barrier() func-
tion calls placed before and after all Zazen cache opera-
tions.  When reporting bandwidths, we compute them as 
the number of bytes read divided by the end-to-end ex-
ecution time of reading the data.  The numbers thus ob-
tained are lower than the sum of locally computed I/O 
bandwidths since the slowest node would always drag 
down the overall bandwidth.  Nevertheless, we choose 
to report the results in such an unfavorable way because 
it is a more realistic measurement of the actual I/O per-
formance experienced by many analysis programs. 

To ensure that the performance measurement was 
not aided in any way by the local file system buffer 
caches, we ran the experiments for reading the four da-
tasets in a round-robin order and dropped the page, in-
ode, and dentry caches from the Linux kernel before 
each individual experiment.  We executed each experi-
ment 5 times and computed the mean values.  Because 
the coefficients of variation are negligible, we do not 
show error bars in the figures. 

5.2.1 Effect of the Number of Bodhi Read 
Daemons  

In this test, we compared the performance of two 
implementations of the Bodhi server to understand the 
effect of the number of read daemons.  In the first im-
plementation, we forked a new Bodhi server read 
process for each application read process and measured 
the performance of reading the four datasets on 100 
nodes as shown in Figure 6(a).  The dramatic drop be-
tween 1 and 2 readers per node for the 1-GB, 256-MB, 
and 64-MB datasets indicated that when two or more 
processes simultaneously read large data files, the inter-
leaved I/O requests forced the disk sub-system to oper-
ate in a seek-bound mode, which significantly hurt the 
I/O performance.  The further performance drop asso-



USENIX Association  FAST ’10: 8th USENIX Conference on File and Storage Technologies 137

 

9 
 
 

ciated with reading the 1-GB dataset using eight readers 
(and thus eight Bodhi read processes) per node was 
caused by double buffering: once within the application 
and once within the Bodhi read daemon.  In total, 16 
GB of memory—the total amount of physical memory 
on each node—was used for buffering the 1 GB files.  
As a result, the program suffered from memory thrash-
ing and the performance plummeted.  The degradation 
in performance associated with the 2-MB dataset was 
not as obvious since reading small files was already 
seek-bound even when only there is a single read 
process. 

Based on this observation, we developed a second 
implementation of the Bodhi server and used a single 
Bodhi read daemon on each node to serialize all local 
client read requests.  As a result, only one read request 
would be outstanding at any time while the rest would 
be waiting in a FIFO queue maintained internally by the 
Bodhi read daemon.  Although serializing the parallel 
I/O requests may appear counterintuitive, Figure 6(b) 
shows that significantly better and more consistent per-
formance across the spectrum was achieved.  

5.2.2 Read-Only Performance  
To compare the performance of Zazen with that of 

other representative systems, we measured the read-only 
I/O performance on NFS, a common, general-purpose 
network file system; PVFS, a widely deployed high- 
performance parallel file system [8, 31]; and Ha-
doop/HDFS [15], a popular, location-aware parallel file 
system.  These experiments were set up as follows. 

NFS.  We used an enterprise NFS (v3.0) storage 
server with dual quad-core 2.8-GHz Opteron processors, 
16 GB of memory, 48 SATA disks that are organized in 
RAID 6 and managed by ZFS, and four 1-GigE connec-
tions to the core switch of the 100-node analysis cluster.  
The total capacity of the NFS server is 40 TB.  Antic-
ipating lower read bandwidth (based on our prior expe-
rience), we generated four smaller test datasets consist-
ing of 400 1-GB files, 400 256-MB files, 1,600 64-MB 
files, and 51,200 2-MB files, respectively, for the NFS 
experiments. 

We modified the test program so that each process 
reads an equal number of data files from the mounted 
NFS directories.  We ran the test program on 100 nodes 
and read the four datasets using 1, 2, and 4 cores per 
node, respectively.  Seeing that the performance 
dropped consistently and significantly as we increased 
the number of cores per node, we did not run experi-

ments using 8 cores per node.  Each experiment (i.e., 
reading a dataset using a particular number of cores per 
node) was executed three times, all of which generated 
similar results (with negligible coefficients of variation).  
The highest performance was always obtained when one 
core per node was used to read the datasets, that is, 
when running 100 processes on 100 nodes.  We report 
the best results from the one-core runs. 

PVFS2.  PVFS 2.8.1 was installed.  All 100 analysis 
nodes ran both the I/O (data) server and the metadata 
server.  The RAID 0 partitions on the analysis nodes 
were reformatted to provide the PVFS2 storage space.  
The PVFS2 Linux kernel interface was deployed and 
the PVFS2 volume was mounted locally on each node.  
The four datasets used to drive the evaluation of PVFS2 
were the same as those used in the Zazen experiments.  
Data files were striped across all nodes. 

The program used for driving the PVFS2 experi-
ments was the same as the one used for the NFS expe-
riments except that we pointed the data paths to the 
mounted PVFS2 directories.  The PVFS2 experiments 
were conducted in the same way as the NFS experi-
ments.  The best results for reading the 1-GB and 256-
MB datasets were attained with 2 cores per node, while 
the best results for reading the 64-MB and 2-MB data-
sets were obtained with 4 cores per node.  

Hadoop/HDFS.  Hadoop/HDFS release 0.19.1 was 
installed.  We used the 100 analysis nodes as slaves 
(i.e., DataNodes and TaskTrackers) to store HDFS files 
and to execute MapReduce tasks.  We also added three 
additional nodes to run the HDFS name node, the sec-
ondary name node, and the Hadoop MapReduce job 
tracker, respectively.  We wrote and configured a rack 
awareness script for Hadoop/HDFS to identify the loca-
tions of the nodes. 

The datasets we used to evaluate Hadoop/HDFS 
have the same characteristics as those for the Zazen and 
PVFS2 experiments.  To store the datasets in HDFS 
efficiently, we wrote an MPI program that was linked 
with HDFS’s C API library libhdfs.  Considering 
that simulation analysis programs would process each 
frame as a whole (as a binary blob), we set the HDFS 
block size to be the same as the file size and did not 
split frame files across the slave nodes.  Each file was 
replicated three times (the default setting) within HDFS.  
The data population program ran in parallel on 100 
nodes and stored the data files uniformly on the 100 
nodes. 
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                       (a) End-to-end read bandwidth comparison                                          (b) Time to read one terabyte data 

Figure 7: Comparison of read-only performance.  (a) Bars are grouped by the file size of the datasets, with the leftmost bar 
representing the performance of that of PVFS2, Hadoop/HDFS, and Zazen, respectively.  (b) The y axis is shown in log-scale.  

To read data efficiently from HDFS, we wrote a 
read-only Hadoop MapReduce program in Java.  We 
used the following techniques to eliminate or minimize 
the overhead: (1) defining a map() function that re-
turned immediately, so that no time would be spent in 
computation; (2) skipping the reduce phase, which was 
irrelevant for our experiments; (3) providing an unsplit-
table data input format to ensure that each frame file 
would be read as a whole on some node, and creating a 
binary record reader to read data in 64 MB chunks 
(when reading data files greater than or equal to 64 MB) 
so as to transfer data in bulk and avoid parsing 
overhead; (4) setting the output format to NULL type to 
avoid job output; (5) reusing the Java virtual machines 
for map task execution; and (6) setting the log file out-
put to a local disk path on each node.  In addition, we 
set the heap sizes for the name node and the job tracker 
to 8 GB and 15 GB, respectively, to allow maximum 
memory usage by Hadoop/HDFS. 

Hadoop provides a configuration parameter to con-
trol the maximum number of map tasks that can be ex-
ecuted simultaneously on each slave node.  We set this 
parameter to 1, 2, 4, 8, and 16, respectively, and ex-
ecuted the read-only MapReduce program to access the 
four test datasets.  All experiments, except for those that 
read the 2-MB datasets, were performed three times, 
yielding similar results each time.  We found that Ha-
doop had great difficulty in handling a large number of 
small files—a problem that had also been recognized by 
the Hadoop community [16].  The reading of the 2-MB 
dataset, which consisted of 819,200 files, failed multiple 
times when using a maximum of 1 or 2 map tasks per 
node, and took much longer than expected when 4, 8, 
and 16 map tasks per node were used.  Hence, each ex-
periment for reading the 2-MB dataset was performed 
only once.  Regardless of the frame file size, setting the 
parameter to 8 led to the best results, which we use in 
the following performance comparison. 

Figure 7(a) shows the read bandwidth delivered by 

the four systems.  The bars are grouped by the file size 
of the datasets.  Within each group, the leftmost bar 
represents the performance of NFS, followed by that of 
PVFS2, Hadoop/HDFS, and Zazen, respectively.  Fig-
ure 7(b) shows the equivalent time (in log-scale) of 
reading 1 terabyte data of different file sizes.  Zazen 
consistently outperforms other storage systems by a 
large margin across the range.  When reading large files 
(i.e., 1-GB), Zazen delivers more than 20 GB/s sus-
tained read bandwidth on the 100 nodes, outperforming 
NFS (on a single enterprise storage server) by a factor 
of 75, and PVFS2 and Hadoop/HDFS (running on the 
same 100 nodes) by factors of 18 and 6, respectively.  
When more seeks are required to read a large number of 
small (2-MB) files, Zazen achieves a sustained I/O 
bandwidth of about 8 GB/s, which is 25, 13, and 85 
times faster than NFS, PVFS2, and Hadoop/HDFS, re-
spectively.  As a reference, the optimal aggregated disk 
read bandwidth we measured on the 100 nodes is 
around 22.5 GB/s.  Zazen’s I/O efficiency (up to 90%) 
is the direct result of “embarrassingly parallel” I/O op-
erations that are enabled by the Zazen protocol. 

We emphasize that despite Zazen’s large perfor-
mance advantage over file systems, it is intended to be 
used only as a disk cache to accelerate disk reads—just 
as processor caches are used to accelerate main memory 
accesses.  Our results do not suggest that Zazen has the 
capability to replace the underlying file systems. 

5.2.3 Read Performance under Write Work-
load  
In this set of tests, we repeated the experiments of read-
ing the four 1.6-TB datasets from the Zazen cache, 
while also concurrently executing Zazen cache writers.  
In particular, we used 8 additional nodes to act as super-
computer I/O nodes that continuously write to the 100-
node Zazen cache at an aggregated rate of 1 GB/s. 

Figure 8 shows the Zazen read performance under 
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Figure 8: Zazen read performance under write work-
load. Writing data to the Zazen cache at a high rate 
(1 GB/s) does not affect the read performance in any signif-
icant way. 

 

Figure 9: End-to-end execution time (100 nodes).   Zazen 
enables the program to speed up as more cores per node are 
used. 

write workload.  The bars are grouped by the file size of 
the datasets being read.  Within each group, the leftmost 
bar represents the read bandwidth attained with no writ-
ers, followed by the bars representing the read band-
width attained while 1-GB, 256-MB, 64-MB, and 2-MB 
files are being written to the Zazen cache, respectively.  
The bars are normalized (divided) by the no-writer read 
bandwidth and shown as percentages. 

We can see from the figure that Zazen achieves a 
high level of read performance (more than 90% of that 
obtained in the absence of writers) when medium to 
large files (64 MB–1 GB) were being written to the 
cache.  Even in the most demanding case of writing 2-
MB files, Zazen still delivers a performance above 80% 
of that measured in the no-writer case.  These results 
demonstrate that actively pushing data into the Zazen 
cache does not significantly affect the read performance. 

5.3 End-to-End Performance 
We have deployed the 100-node Zazen cluster in con-
junction with Anton and have used the cluster to ex-
ecute hundreds of thousands of parallel analysis jobs.  In 
general, we are able to reduce the end-to-end execution 
time of a large number of analysis programs—not just 
the data access time—from several hours to 5–15 mi-
nutes. 

The sample application presented next is one of the 
most demanding in that it processes a large number 
(2.5 million) of small files (430-KB frames).  The pur-
pose of this analysis is to compute how long particular 
water molecules reside within a certain distance of a 
protein structure.  The analysis program, called water 
residence, is a parallel Python program consisting of a 
data-extraction phase and a time-series analysis phase.  
I/O read takes place in the first phase when the frames 
are fetched and analyzed one file at a time (without a 
particular ordering requirement). 

Figure 9 shows the performance of the sample pro-
gram executing on the 100-node Zazen cluster.  The 
three curves, from bottom up, represent the end-to-end 
execution time (in log-scale) when the program read 
data from (distributed) main memory, Zazen, and NFS, 
respectively.  To obtain the reference time of reading 
frames directly from the main memory, we ran the pro-
gram back-to-back three times without dropping the 
Linux cache in between so that the buffer cache of each 
of the 100 nodes is fully warmed.  We used the mea-
surement of the third run to represent the runtime for 
accessing data directly from main memory.  Recall that 
the total memory of the Zazen cluster is 1.6 TB, which 
is sufficient to accommodate the entire dataset (1 TB).  
When reading data from the Zazen cache, we dropped 
the Linux cache before each experiment to eliminate 
any memory caching effect.   

The memory curve represents the best possible scal-
ing of the sample program, because no disk I/O is in-
volved.  As we increase the number of processes on 
each node, the execution time improves proportionally, 
because the same amount of computational workload is 
now split among more processor cores.  The Zazen 
curve has a similar trend and closely follows the memo-
ry curve.  The NFS curve, however, stays more or less 
flat regardless of how many cores are used on each 
node, from which we can see that I/O read is the domi-
nant component of the total runtime, and that increasing 
the number of readers does not increase the effective 
I/O bandwidth.  When we run eight user processes on 
each node, Zazen is able to improve the execution time 
of the sample program by 10 times over that attained by 
accessing data directly from NFS.  

An attentive reader may recall from Figure 6(b) that 
increasing the number of application reader processes 
does not increase Zazen’s read bandwidth either.  Then 
why does the execution time when using the Zazen 
cache improve as we use more cores per node?  The 
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Figure 10: Performance under node failures.  Individual 
node failures do not cause the Zazen system to crash. 

reason is that the Zazen cache has reduced the I/O time 
to such an insignificant percentage of the application’s 
total runtime that the computation time has now become 
the dominant component.  Hence, doubling the number 
of cores per node not only halves the computation time, 
but also improves the overall execution time in a signif-
icant way.  Another way to interpret the result is that by 
using the Zazen cache, we have turned an I/O-bound 
analysis into a computation-bound problem that is more 
amenable to parallel acceleration using multiple cores. 

5.4 Robustness  
Zazen is robust in that individual node crashes do not 
cause systemic failures.  As explained in Section 4, the 
frame files cached on crashed nodes are simply treated 
as cache misses.  To identify and exclude crashed or 
faulty nodes, we use a cluster resource manager called 
SLURM [39, 49] to schedule jobs and allocate nodes. 

We assessed the effect of node failures on end-to-
end performance by re-running the water residence pro-
gram as follows.  Before each experiment, we first 
purged the Zazen cache and then populated the 100 
nodes with 1.25 million frame files uniformly.  Next, we 
randomly selected a specified percentage of nodes and 
shut down the Bodhi servers on those nodes.  Finally, 
we submitted the analysis job to SLURM, which de-
tected the faulty nodes and excluded them from job ex-
ecution. 

Figure 10 shows the execution time of the water res-
idence program along with the computed worst-case 
execution time as the percentage of failed nodes in-
creases from 10% to 50%.  The worst-case execution 
time can be shown to be T(1 + δ(B/b)), where T is the 
execution time without node failures, δ is the percentage 
of the Zazen nodes that  have failed, B is the aggregated 
I/O bandwidth of the Zazen cache without node failures, 
and b is the best read bandwidth of the underlying paral-
lel/network file system.  We measured, for this particu-
lar dataset, that B and b had values of 3.4 GB/s and 312 
MB/s, respectively.  Our results show that the actual 
execution time is indeed consistently below the com-

puted worst-case time and degrades gracefully in the 
face of node failures. 

6 Related Work  
The idea of using local disks to accelerate I/O for scien-
tific applications has been explored for over a decade.  
DPSS [45] is a parallel disk cache prototype designed to 
reduce I/O latency over the Grid.  FreeLoader [47] ag-
gregates the unused desktop disk space into a shared 
cache/scratch space to improve performance of single-
client applications.  Panache [1] uses GPFS [37] as a 
client-site disk cache and leverages the emerging paral-
lel NFS standard [29] to improve cross-WAN data 
access performance.  Zazen shares the philosophy of 
these systems but has a different goal: it aims to obtain 
the best possible aggregated read bandwidth from local 
cache nodes rather than reducing remote I/O latency.  

Zazen does not attempt to provide a location-
transparent view of the cached data to applications.  
Instead of confederating a set of distributed disks into a 
single, unified data store—as do the distributed/parallel 
disk cache systems and cluster file systems such as 
PVFS [8], Lustre [21], and GFS [13]—Zazen converts 
distributed disks into a collection of independently ma-
naged caches that are accessed in parallel by a large 
number of cooperative application processes. 

While existing works such as Active Data Reposito-
ry [19] uses spatial index structures (e.g., R-trees) to 
select a subset of a multidimensional dataset and thus 
effectively reduces  I/O workload and enables interac-
tive visualization, Zazen targets a simple data access 
pattern of one-frame-at-a-time and strives to improve 
the I/O performance of batch analysis. 

Peer-to-peer (P2P) storage systems, such as PAST 
[34], CFS [9], Ivy [24], Pond [32], and Kosha [7], also 
do not use centralized or dedicated servers to keep track 
of distributed data.  They employ a scalable technique 
called a distributed hash table [2] to route lookup re-
quests through an overlay network to a peer where the 
data are stored.  These systems differ from Zazen in 
three essential ways.  First, P2P systems target com-
pletely decentralized and largely unrelated machines, 
whereas Zazen attempts to harness the power of tightly 
coupled cluster nodes.  Second, while P2P systems use 
distributed coordination to provide high availability, 
Zazen relies on global coordination to achieve consen-
sus and thus high performance.  Third, P2P systems, as 
the name suggests, send and receive data over the net-
work among peers.  In contrast, Zazen accesses data in 
situ whenever possible; data traverse the network only 
when a cache miss occurs. 

Although similar in spirit to GFS/MapReduce [10, 
13], Hadoop/HDFS [15], Gfarm [41, 42], and Ta-
shi [18], all of which seek data location information 
from metadata servers to accelerate parallel processing 
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of massive data, Zazen employs an unorthodox ap-
proach to identify the whereabouts of the stored data, 
and thus avoids the potential performance and scalabili-
ty bottleneck and the single point of failure associated 
with metadata servers. 

At the implementation level, Zazen caches whole 
files like AFS [17, 35] and Coda [36], though book-
keeping in Zazen is much simpler as simulation output 
files are immutable and do not require leases and call-
backs to maintain consistency.  The use of bitmaps in 
the Zazen protocol bears resemblance to the version 
vector technique [27] used in the LOCUS system [48].  
While the latter associated a version vector with each 
copy of a file to detect and resolve conflicts among dis-
tributed replicas, Zazen uses a more compact represen-
tation to arbitrate who should read which frame files.  

7 Summary  
As parallel scientific supercomputing enters a new era 
of scale and performance, the pressure on post-
simulation data analysis has mounted to such a point 
that a new class of hardware/software systems has been 
called for to tackle the unprecedented data problems [3].  
The Zazen system presented in this paper is the storage 
subsystem underlying a large analysis framework that 
we have been developing. 

With the intention to deploy Zazen to cache millions 
to billions of frame files and execute on hundreds to 
thousands of processor cores, we conceived a new ap-
proach by exploiting the characteristics of a particular 
class of time-dependent simulation datasets.  The out-
come was an implementation that delivered an order-of-
magnitude end-to-end speedup for a large number of 
parallel trajectory analysis programs. 

While our work was motivated by the need to acce-
lerate parallel analysis programs that operate on very 
long trajectories consisting of relatively small frames, 
we envision that the method, techniques, and algorithms 
described here can be adapted to support other kinds of 
data-intensive parallel applications.  In particular, if the 
data objects of an application can be interpreted as hav-
ing a total ordering of some sort (e.g. in the temporal or 
spatial domain), then unique sequence numbers can be 
assigned to identify the data objects.  These datasets 
would appear no different from time-dependent scientif-
ic simulation datasets and thus would be amenable to 
I/O acceleration via Zazen.   
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Abstract

Journaling is a widely used technique to increase file sys-
tem robustness against metadata and/or data corruptions.
While the overhead of journaling can be masked by the page
cache for small-scale, local file systems, we found that Lus-
tre’s use of journaling for the object store significantly im-
pacted the overall performance of our large-scale center-
wide parallel file system. By requiring that each write re-
quest wait for a journal transaction to commit, Lustre in-
troduced serialization to the client request stream and im-
posed additional latency due to disk head movement (seeks)
for each request.

In this paper, we present the challenges we faced while
deploying a very large scale production storage system.
Our work provides a head-to-head comparison of two sig-
nificantly different approaches to increasing the overall effi-
ciency of the Lustre file system. First, we present a hardware
solution using external journaling devices to eliminate the
latencies incurred by the extra disk head seeks due to jour-
naling. Second, we introduce a software-based optimization
to remove the synchronous commit for each write request,
side-stepping additional latency and amortizing the journal
seeks across a much larger number of requests.

Both solutions have been implemented and experimen-
tally tested on our Spider storage system, a very large scale
Lustre deployment. Our tests show both methods consid-
erably improve the write performance, in some cases up
to 93%. Testing with a real-world scientific application
showed a 37% decrease in the number journal updates,
each with an associated seek – which translated into an av-
erage I/O bandwidth improvement of 56.3%.

1 Introduction

Large-scale HPC systems target a balance of file I/O per-
formance with computational capability. Traditionally, the
standard was 2 bytes per second of I/O bandwidth for each
1,000 FLOPs of computational capacity [18]. Maintain-
ing that balance for a 1 Petaflops (PFLOPs) supercomputer
would require the deployment a storage subsystem capa-
ble of delivering 2 TB/sec of I/O bandwidth at a minimum.
Building such a system with current or near-term storage
technology would require on the order of 100,000 magnetic
disks. This would be cost prohibitive not only due to the
raw material costs of the disks themselves, but also to the
magnitude of the design, installation, and ongoing manage-
ment and electrical costs for the entire system, including
the RAID controllers, network links, and switches. At this
scale, reliability metrics for each component would virtu-
ally guarantee that such a system would continuously oper-
ate in a degraded mode due to ongoing simultaneous recon-
struction operations [22].

The National Center for Computational Sciences
(NCCS) at Oak Ridge National Laboratory (ORNL) hosts
the world’s fastest supercomputer, Jaguar [8] with over 300
TB of total systemmemory. Rather than rely on a traditional
I/O performance metric such as 2 byte/sec of I/O through-
put for each 1000 FLOP of computational capacity a sur-
vey of application requirements was conducted prior to the
design of the parallel I/O environment for Jaguar. This re-
sulted in a requirement of delivered bandwidth of over 166
GB/sec based on the ability to checkpoint 20% of total sys-
tem memory, once per hour, using no more than 10% of
total compute time. Based on application I/O profiles and
available resources, the Jaguar upgrade targeted 240 GB/s
of storage bandwidth. Achieving this target on Jaguar has
required a careful attention to detail and optimization of the
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system at multiple levels, including the storage hardware,
network topology, OS, I/O middleware, and application I/O
architecture.

There are many studies on user-level file system perfor-
mance of different Cray XT platforms and their respective
storage subsystems. These provide important information
for scientific application developers and system engineers
such as peak system throughput and the impact of Lustre
file striping patterns [33, 1, 32]. However – to the best of
our knowledge – there has been no work done to analyze
the efficiency of the object storage system’s journaling and
its impact of overall I/O throughput in a large-scale parallel
file system such as Lustre.

Journaling is widely used by modern file systems to in-
crease file system robustness against metadata corruptions
and to minimize file system recovery times after a system
crash. Aside from journaling, there are several other tech-
niques for preventing metadata corruption. Soft updates
handle the metadata update problem by guaranteeing that
blocks are written to disk in their required order without
using synchronous disk I/O [10, 23]. Vendors such as Net-
work Appliance [3], have addressed the issue with a hard-
ware assisted approach (non-volatile RAM) resulting in per-
formance superior to both journaling and soft updates at
the expense of extra hardware. NFS version 3 [20] intro-
duced asynchronous writes to overcome the bottleneck of
synchronous writes. The server is permitted to reply to the
client before the data is on stable storage, which is simi-
lar to our Lustre asynchronous solution. The Log-based file
system [17] took a departure from the conventional update-
in-place approach by writing modified data and metadata in
a log. More recently, ZFS [13] has been coupled with flash-
based devices for intent logging so that synchronous writes
are directed to these log devices with very low latency, im-
proving overall performance.

While the overhead of journaling can be masked by us-
ing the page cache for local file systems, our experiments
show that on a large-scale parallel Lustre file system it can
substantially degrade overall performance.

In this paper, we present our experiences and the chal-
lenges we faced towards deploying a very large scale pro-
duction storage system. Our findings suggest that sub-
optimal object storage file system journaling performance
significantly hurts the overall parallel file system perfor-
mance. Our work provides a head-to-head comparison of
two significantly different approaches to increasing overall
efficiency of the Lustre file system. First, we present a hard-
ware solution using external journaling devices to eliminate
the latencies incurred by the extra disk head seeks for the
journal traffic. Second, we introduce a software-based opti-
mization to remove the synchronous commit for each write
request, side-stepping additional latency and amortizing the
journal seeks across a much larger number of requests.

Major contributions of our work include measurements
and performance characterization of a very large storage
system unique in its scale; The identification and elimina-
tion of serial bottlenecks in a large-scale parallel system; A
cost-effective and novel solution to file system journaling
overheads in a large scale system.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces Jaguar and its large-scale parallel I/O sub-
system, while Section 3 provides a quick overview of the
Lustre parallel file system and presents our initial findings
on the performance problems Lustre file system journaling.
Section 4 introduces our hardware solution to the problem
and Section 5 presents the software solution. Section 6 sum-
marizes and provides a discussion on results of our hard-
ware and software solutions and presents results of real sci-
ence application using our software-based solution. Sec-
tion 7 presents our conclusions.

2 System Architecture

Jaguar is the main simulation platform deployed at
ORNL. Jaguar entered service in 2005 and has undergone
several upgrades and additions since that time. Detailed de-
scriptions and performance evaluations of earlier Jaguar it-
erations can be found in the literature [1].

2.1 Overview of Jaguar

In late 2008, Jaguar was expanded with the addition of a
1.4 PFLOPs Cray XT5 in addition to the existing Cray XT4
segment1. Resulting in a system with over 181,000 pro-
cessing cores connected internally via Cray’s SeaStar2+ [4]
network. The XT4 and XT5 segments of Jaguar are con-
nected via a DDR InfiniBand network that also provides
a link to our center-wide file system, Spider. More infor-
mation about the Cray XT5 architecture and Jaguar can be
found in [5, 19].

Jaguar has 200 Cray XT5 cabinets. Each cabinet has
24 compute blades. Each blade has 4 compute nodes and
each compute node has two AMD Opteron 2356 Barcelona
quad-core processors. Figure 1 shows the high-level Cray
XT5 node architecture. The configuration tested, has 16
GB of DDR2-800 MHz memory per compute node (2
GB per core), for a total of 300 TB of system memory.
Each processor is linked with dual HyperTransport connec-
tions. The HyperTransport interface enables direct high-
bandwidth connections between the processor, memory and
the SeaStar2+ chip. The result is a dual-socket, eight-core
node with a peak processing performance of 73.6 GFLOPS.

1A more recent Jaguar XT5 upgrade swapped the quad-core AMD
Opteron 2356 CPUs (Barcelona) with hex-core AMD Opteron 2435 CPUs
(Istanbul), increasing the installed peak performance of Jaguar XT5 to 2.33
PFLOP and total number of cores to 224,256.
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The XT5 segment has 214 service and I/O nodes, of which
192 provide connectivity to the Spider center-wide file sys-
tem with 240 GB/s of demonstrated file system bandwidth
over the scalable I/O network (SION). SION is deployed as
a multi-stage InfiniBand network [25], and provides a back-
plane for the integration of multiple NCCS systems such as
Jaguar (the simulation and analysis platform), Spider (the
NCCS-wide Lustre file system), Smoky (the development
platform), and various other compute resources. SION al-
lows capabilities such as streaming data from the simulation
platforms to the visualization center at extremely high rates.

Figure 1. Cray XT5 node (courtesy of Cray)

2.2 Spider I/O subsystem

The Spider I/O subsystem consists of Data Direct Net-
works’ (DDN) S2A9900 storage devices interconnected via
SION. A pair of S2A9900 RAID controllers is called a cou-
plet. Each controller in a couplet works as an active-active
fail-over unit. There are 48 DDN S2A9900 couplets [6] in
the Spider I/O subsystem. Each couplet is configured with
five ultra-high density 4U, 60-bay disk drive enclosures (56
drives populated), giving a total of 280 1TB hard drives per
S2A9900. The system as whole has 13,440 TB or over 10.7
PB of formatted capacity. Fig. 2 illustrates the internal ar-
chitecture of a DDN S2A9900 couplet. Two parity drives
are dedicated in the case of an 8+2 parity group or RAID 6.
A parity group is also known as a Tier.

Spider, the center-wide Lustre [28] file system, is built
upon this I/O subsystem. Spider is the world’s fastest
and largest production Lustre file system and is one of the
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Figure 2. Architecture of a S2A9900 couplet

world’s largest POSIX-compliant file systems. It is de-
signed to work with both Jaguar and other computing re-
sources such as the visualization and end-to-end analysis
clusters. Spider has 192 Dell PowerEdge 1950 servers [7]
configured as Lustre servers presenting a global file system
name space. Each server has 16 GB of memory and dual
socket, quad core Intel Xeon E5410 CPUs running at 2.3
GHz. Each server is connected to SION and the DDN ar-
rays via independent 4x DDR InfiniBand links. In aggre-
gate, Spider delivers up to 240 GB/s of file system level
throughput and provides 10.7 PB of formatted disk capac-
ity to it users. Fig. 3 shows the overall Spider architecture.
More details on Spider can be found in [26].

3 Lustre and file system journaling

Lustre is an open-source distributed parallel file system
developed and maintained by Sun Microsystems and li-
censed under the GNU General Public License (GPL). Due
to the extremely scalable architecture of Lustre, deploy-
ments are popular in both scientific supercomputing and in-
dustry. As of June 2009, 70% of the Top 10 systems, 70%
of the Top 20 and 62% of the Top 50 fastest supercomput-
ers systems in the world used Lustre for high-performance
scratch space [9], including Jaguar2.

3.1 Lustre parallel file system

Lustre is an object-based file system and is composed
of three components: Metadata storage, object storage, and
clients. There is a single metadata target (MDT) per file sys-
tem. A metadata server (MDS) is responsible for managing
one or more MDTs. Each MDT stores file metadata, such
as file names, directory structures, and access permissions.
Each object storage server (OSS) manages one or more ob-
ject storage targets (OSTs) and OSTs store file data objects.

2As of November 2009, 60% of the Top 10 fastest supercomputers sys-
tems in the world used Lustre file system for high-performance scratch
space, including Jaguar.
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Figure 3. Overall Spider architecture

For file data read/write access, the MDS is not on the critical
path, as clients send requests directly to the OSSes. Lustre
uses block devices for file data and metadata storage and
each block device can only be managed by one Lustre ser-
vice (such as an MDT or an OST). The total data capacity of
a Lustre file system is the sum of all individual OST capaci-
ties. Lustre clients concurrently access and use data through
the standard POSIX I/O system calls. More details on the
inner workings of Lustre can be found in [31].

Currently, Lustre version 1.6 employs a heavily patched
and enhanced version of the Linux ext3 file system, known
as ldiskfs, as the back-end local file system for the MDT and
all OSTs. Among the enhancements, improvements over
the regular ext3 file system journaling are of particular in-
terest for this paper and will be covered in the next sections.

3.2 File system journaling in Lustre

A journaling file system, such as ext3, keeps a log of
metadata and/or file data updates and changes so that in
case of a system crash, file system consistency can be re-
stored quickly and easily [30]. The file system can journal
only the metadata updates or both metadata and data up-
dates, depending on the implementation. The design choice
is to balance file system consistency requirements against
performance penalties due to extra journaling write oper-

ations and delays. In Linux ext3, there are three differ-
ent modes of journaling: write-back mode, ordered mode,
and data journaling mode. In write-back mode, updated
metadata blocks are written to the journal device while file
data blocks are written directly to the block device. When
the transaction is committed, journaled metadata blocks are
flushed to the block device without any ordering between
the two events. Write-back mode thus provides metadata
consistency but does not provide any file data consistency.
In ordered mode, file data is guaranteed to be written to their
fixed locations on disk before committing the metadata up-
dates to the journal. This ordering protects the metadata and
prevents stale data from appearing in a file in the event of
a crash. Data journaling mode journals both the metadata
and the file data. More details on ext3 journaling modes and
their performance characteristics can be found in [21].

RUNNING

CLOSED COMMITTED

The running transaction is marked as 

CLOSED in memory by Journaling 

Block Device (JBD) Layer

File data is ushed 

from memory to 

disk

The le data must be 

ushed to disk prior

to committing the 

transaction

Updated metadata 

blocks ushed to 

disk
Updated metadata 

blocks are written from 

memory to journaling 

device

Figure 4. Flow diagram for the ordered mode
journaling.

Although in the latest Linux kernels the default journal-
ing mode for ext3 file system is a build-time kernel configu-
ration switch (between ordered mode andwrite-back mode),
ordered mode is the default journaling mode for the ldiskfs
file system used as the object store in Lustre.

Journaling in ext3 is organized such that at any given
time there are two transactions in memory (not written to
the journaling device yet): the currently running transac-
tion and the currently closed transaction (that is being com-
mitted to the disk). The currently running transaction is
open and accepting new threads to join in and has all its
data still in memory. The currently closed transaction is not
accepting any new threads to join in and has started flushing
its updated metadata blocks from memory to the journaling
device. After the flush operation is complete and all trans-
actions are on stable storage, the transaction state will be
changed to “committed.” The currently running transaction
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can not be closed and committed until the closed transaction
fully commits to the journaling device, which for slow disk
subsystems can be a point of serialization. Also, even when
the disk subsystem is relatively fast, there is another poten-
tial point of serialization due to the size of the journaling
device. The largest transaction size that can be journaled is
limited to 25% of the size of the journal. When a transac-
tion reaches the limit, it is locked and will not accept any
new threads or data.

The following list summarizes the steps taken by ldiskfs
for a Lustre file update in the default ordered journaling
mode. The sequence of events is triggered by a Lustre client
sending a write request to an OST.

1. Server gets the destination object id and offset for this
write operation.

2. Server allocates necessary number of pages in mem-
ory and fetches the data from the remote client into
the these pages via an Remote Memory Access (RMA)
GET operation.

3. Server opens a transaction on its back-end file system.

4. Server updates file metadata in memory, allocates
blocks and extends the file size.

5. Server closes transaction handle and obtains a wait
handle, but does not commit to journaling device.

6. Server writes pages with file data to disk syn-
chronously.

7. After current running transaction is closed, server
flushes updated metadata blocks to the journal device
and then marks the transaction as committed.

8. Once transaction is committed, server can send a reply
to client that the operation was completed successfully
and client marks the request as completed.

Also, the updated metadata blocks, which have been
committed to journal device by now will be written to
disk, without particular ordering requirement. Fig. 4
shows the generic outline of ordered mode journaling.

There is a minor difference between how this sequence
of events happen on an ext3 file system and the Lustre ld-
iskfs file system. In an ext3 file system the sequence of steps
6 and 7 are strictly preserved. However, in Lustre ldiskfs,
the metadata commit can happen before all data from Step
6 is on disk, Step 7 (flushing of updated metadata blocks to
the journaling device) can partially happen before Step 6.

Although Step 5 minimizes the time a transaction is kept
open, the above sequence of events may be sub-optimal. For
example:

• An extra disk head seek is needed for the journal trans-
action commit after flushing file data on a different sec-
tor of the disk if the journaling device is located on the
same device as the block file data.

• The write I/O operation for a new thread is blocked on
the currently closed transaction which is committing
on Step 7.

• The new running journal transaction has to wait for the
previous transaction to be closed.

• New I/O RPCs are not formed until the completion
replies of the previous RPCs have been received by the
client creating yet another point of serialization.

The ldiskfs file system by default performs journaling in
ordered mode by first writing the data blocks to disk fol-
lowed by metadata blocks to the journal. The journal is
then written to disk and marked as committed. In the worst
case, such as appending to a file, this can result in one 16
KB write (on average – for bitmap, inode block map, inode,
and super block data) and another 4 KB write for the jour-
nal commit record for every 1 MB write. These extra small
writes cause at least two extra disk head seeks. Due to the
poor IOP performance of SATA disks, these additional head
seeks and small writes can substantially degrade the aggre-
gate block I/O performance.

A potential optimization (and perhaps the most obvi-
ous one) for ordered mode to improve the journaling effi-
ciency is to minimize the extra disk head seeks. This can be
achieved by either a software or hardware optimization (or
both). Section 4 describes our hardware based optimization
while Section 5 discusses our software based optimization.

Using journaling methods other than ordered mode (or
no journaling at all) in the ldiskfs file system is not con-
sidered in this study, as the OST handler waits for the data
writes to hit the disk before returning, and only the metadata
is updated in an asynchronous manner. Therefore, write-
back mode would not help in our case – Lustre would not
use the write-back functionality. Data journaling mode pro-
vides increased consistency and satisfies the Lustre require-
ments, but we would expect it to result in a reduction of
performance from our pre-optimization baseline due to dou-
bling the amount of bulk data written. Of course, running
without any journaling is a possibility for obtaining better
performance, but the cost of possible file system inconsis-
tencies in a production environment is a price that we could
ill afford.

To better understand the performance characteristics of
each implementation we have performed a series of tests
to obtain a baseline performance of our configuration. In
order to obtain this baseline on the DDN S2A9900, the
XDD benchmark [11] utility was used. XDD allows mul-
tiple clients to exercise a parallel write or read operation
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synchronously. XDD can be run in sequential or random
read or write mode. Our baseline tests focused on aggre-
gate performance for sequential read or write workloads.
Performance results using XDD from 4 hosts connected to
the DDN via DDR IB are summarized in Fig. 1. The re-
sults presented are a summary of our testing and show per-
formance of sequential read, sequential write, random read,
and random write using 1MB transfers. These tests were
run using a single host for the single LUN tests, and 4 hosts
each with 7 LUNs for the 28 LUN test. Performance results
presented are the best of 5 runs in each configuration.

Table 1. XDD baseline performance

After establishing a baseline of performance using XDD,
we examined Lustre level performance using the IOR
benchmark [24]. Testing was conducted using 4 OSSs
each with 7 OSTs on the DDN S2A9900. Our initial re-
sults showed very poor write performance of only 1,398.99
MB/sec using 28 clients where each client was writing to
different OST. Lustre level write performance was a mere
24.9% of our baseline performance metric of XDD sequen-
tial writes with a 1MB transfer size. Profiling the I/O stream
of the IOR benchmark using the DDN S2A9900 utilities
revealed a large number of 4 KB writes in addition to the
expected 1 MB writes. These small writes were traced to
ldiskfs journal updates.

4 The Hardware Solution

To separate small-sized metadata journal updates from
larger (1 MB) block I/O requests and thus enhance our ag-
gregate block I/O performance, we evaluated two hardware-
based solutions. Our first option was to use SAS drives as
external journal devices. SAS drives are proven to have
higher IOP performance compared to SATA drives. For
this purpose we used two tiers of SAS drives in a DDN
S2A9900, and each tier was split into 14 LUNs. Our sec-
ond option was to use an external solid state device as the
external journaling device. Although the best solution is to
provide a separate disk for journaling for each file block de-
vice (or even a tier of disks as a single journaling device for
each file block device tier), this is highly cost prohibitive at
the scale of Spider.

Unlike rotating magnetic disks, solid state disks (SSD)
have a negligible seek penalty. This makes SSDs an attrac-

tive solution for latency-sensitive storage workloads. SSDs
can be flash memory based or DRAM or SRAM based.
Furthermore, in recent years, solid state disks have be-
come much more reasonable in terms of cost per GB [14].
The nearly zero seek latency of SSDs make them a logical
choice to alleviate our Lustre journaling performance bot-
tleneck.

We have evaluated Texas Memory Systems’ RamSan-
400 device [29] (on loan from the ViON Corp.) to assess
the efficiency of an SSD based Lustre journaling solution
for the Spider parallel file system. The RamSan is a 3U
rackable solution and has been optimized for high transac-
tional aggregate performance (400,000 small I/O operations
per second). The RamSan-400 is a non-volatile SSD with
backup hard drives configured as a RAID-3 set. The front
end non-volatile solid state disks are a proprietary imple-
mentation of Texas Memory Systems’ using highly redun-
dant DDR RAM chips. The RamSan-400’s block I/O per-
formance is advertised by the vendor at an aggregate of 3
GB/sec. It is equipped with four 4x DDR InfiniBand host
ports and supports the SCSI RDMA protocol (SRP).

For our testing purposes, we have connected the Ram-
San device to our SION network via four 4x DDR IB links
directly to the Core 1 switch. This configuration allowed
the Lustre servers (MDS and OSSes) to have direct connec-
tions to the LUNs on the RamSan device. We configured 28
LUNs (one for each Lustre OST, 7 per each IB host port) on
the RamSan device. Fig. 5 presents our experiment layout.

Each LUN on the RamSan was formatted as an exter-
nal ldiskfs journal device and we established a one-to-one
mapping between the external journal devices and the 28
OST block devices on one DDN S2A9900 RAID controller.
The obdfilter-survey benchmark [27] was used for testing
both the SAS disk-based and the RamSan-based solutions.
Obdfilter-survey is part of the Lustre I/O kit and it allows
one to exercise the underlying Lustre file system with se-
quential I/O with varying numbers of threads and objects
(files). Obdfilter can be used to characterize the perfor-
mance of the Lustre network, individual OSTs, and the
striped file system performance (including multiple OSTs
and the Lustre network components). For more details on
obdfilter readers are encouraged to read the Lustre User
Manual [28]. Fig. 6 presents our results for these tests.

For comparative analysis, we ran the same obdfilter-
survey benchmark on three different target configurations.
The first target had external journals on a tier of SAS drives
in the DDN S2A900, the second target had external jour-
nals on the RamSan-400 device, and third target had inter-
nal journals on a tier of SATA drives on our DDN S2A900.
We varied the number of threads for each target while mea-
suring the observed block I/O bandwidth. Both solutions
with external journals provided good performance improve-
ments. Internal journals on the SATA drives performed the
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Jaguar XT5

partition
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48 DDN S2A 9900
Couplets
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Figure 5. Layout for Lustre external jour-
naling experiment with a RamSan-400 solid
state device. The RamSan-400 was con-
nected to the SION network via 4 DDR links
and each link exported 7 LUNs.

worst for almost all cases. External journals on a tier of SAS
disks showed a gradual performance decrease for more than
256 I/O threads. External journals on the RamSan-400 de-
vice gave the best performance for all cases and this solution
provided sustained performance with an increasing number
of I/O threads. Overall, RamSan-based external journals
achieved 3,292.6 MB/sec or 58.7% of our raw baseline per-
formance. The performance dip for the RamSan-400 device
at 16 threads was unexpected and is believed to be caused by
queue starvation as a result of memory fragmentation push-
ing the SCSI commands beyond the scatter-gather limit.
Unfortunately, we were unable to fully investigate this data
point prior to losing access to the test platform and it should
be noted that the 16 threads data point is outside of our nor-
mal operational envelope.
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Lustre journaling and SATA disk internal jour-
naling performances.

5 The Software Solution

As explained in Section3.2, Lustre’s use of journals guar-
antees that when a client receives an RPC reply for a write
request, the data is on stable storage and would survive a
server crash. Although this implementation ensures data re-
liability, it serializes concurrent client write requests, as the
currently running transaction cannot be closed and commit-
ted until the prior transaction fully commits to disk. With
multiple RPCs in flight from the same client the overall op-
eration flow would appear as if several concurrent write I/O
RPCs arrive at the OST at the same time. In this case the
serialization in the algorithm still exists, but with more re-
quests coming in from different sources, the OST pipeline is
more efficiently utilized. The OST will start its processing
and then all these requests will block on waiting for their
commits. Then, after each commit, replies for respective
completed operations will be sent to the requesting client
and then the client will send its next chunk of I/O requests.
This algorithm works reasonably well from the aggregate
bandwidth point of view as long as there are multiple writ-
ers that can keep the data flowing at all times. If there is
only one client requesting service from a particular OST the
inherent serialization in this algorithm is more pronounced;
waiting for each transaction to commit introduces signifi-
cant delay.

An obvious solution to this problem would be to send
replies to clients immediately after the file data portion
of a RPC is committed to disk. We have named this al-
gorithm “asynchronous journal commits” and have imple-
mented and tested this on our configuration.

7
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Lustre’s existing mechanism for metadata transactions
allows it to send replies to clients about operation comple-
tion without waiting for data to be safe on disk. Every RPC
reply from a server has a special field indicating the “id of
the last transaction on stable storage” from that particular
server’s point of view. The client uses this information to
keep a list of completed, but not committed operations, so
that in case of a server crash these operations could be resent
(replayed) to the server once the server resumes operations.

Our implementation extended this concept to write I/O
RPCs on OSTs. In our implementation, dirty and flushed
data pages are pinned in the client memory once they are
submitted to the network. The client releases these pages
only after it receives a confirmation from the OST indicat-
ing that the data was committed to stable storage.

In order to avoid using up all client memory with pinned
data pages waiting for a confirmation for extended periods
of time, upon receiving a reply with an uncommitted trans-
action id, a special “ping” RPC is scheduled on the client 7
seconds into the future (ext3 flushes transactions to disk ev-
ery 5 seconds). This “ping” RPC is pushed further in time
if there are other RPCs scheduled by the client. This ap-
proach limits the impact to the client’s memory footprint
by bounding the time that uncommitted pages can remain
outstanding. While the “ping” RPC is similar in nature to
NFSv3’s commit operation, Lustre optimizes this away in
many cases by piggy-backing commit information on other
RPCs destined for the same client-server pair.

The “asynchronous journal commits” algorithm results
in a new set of steps taken by an OST processing a file up-
date in the ordered journaling mode as detailed below. The
following sequence of events is triggered by a Lustre client
sending a write I/O request to an OST.

1. Server gets the destination object id and offset for this
write operation.

2. Server allocates the necessary number of pages in
memory and fetched the data from remote client into
the pages via an RMA GET operation.

3. Server opens a transaction on the back-end file system.

4. Server updates file metadata, allocates blocks and ex-
tends the file size.

5. Server closes the transaction handle (not the JBD
transaction) and if the RPC does NOT have the “async”
flag set, then it obtains the wait handle.

6. Server writes pages with file data to disk syn-
chronously.

7. If the “async” flag is set in the RPC, then Server com-
pletes the operation asynchronously.

7a Server sends a reply to client.

7b JBD then flushes the updated metadata blocks
to the journaling device and writes the commit
record.

8. If the “async” flag is NOT set in the RPC, then Server
completes the operation synchronously.

8a JBD flushes transaction closed in Step 5.

8b Server sends a reply to the client that the operation
was completed successfully.

The obdfilter benchmark was used for testing the asyn-
chronous journal commit performance. Fig. 7 presents our
results. The ldiskfs journal devices were created inter-
nally as part of each OST’s block device. A single DDN
S2A9900 couplet was used for this test. This approach re-
sulted in dramatically fewer 4 KB updates (and associated
head seeks) which substantially improved the aggregate per-
formance to over 5,222.95MB/s or 93% of our baseline per-
formance. The dip at 16 threads is believed to be caused by
the same mechanism as explained in the previous section
and is outside of normal operational window.
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6 Results and Discussion

A comparative analysis of the hardware-based and
software-based journaling methods is presented in Fig. 8.
Please note that, the data presented in this figure is based
on the data provided in figures 6 and 7. As can be seen,
the software-based asynchronous journaling method clearly
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outperforms the hardware-based solutions, providing vir-
tually full baseline performance from the DDN S2A9900
couplet. One potential reason for the software-based so-
lution outperforming the RamSan-based external journals
may be the elimination of a network round-trip latency for
each journal update operation as the journal resides on an
SRP target separate from that of the block device in this
configuration. Also, the performance of external journals
on solid-state disks suggests that there may be other perfor-
mance issues in the external journal code path which is en-
couraged by the lack of a performance improvement when
asynchronous commits are used in combination with the
RamSan-based external journal. The performance dip at 16
threads, present in both external journal and asynchronous
journal methods, requires additional analysis.
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with hardware- and software-based journal-
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The software-based asynchronous journaling method
provides the best performance of the presented solutions,
and does so at minimal cost. Therefore, we deployed this
solution on Spider. We then analyzed the performance of
Spider with the asynchronous journaling method on a real
scientific application. For this purpose we used the Gy-
rokinetic Toroidal Code (GTC) application [15]. GTC is
the most I/O intensive code running at scale (at the time
of writing, the largest scale runs were at 120,000 cores on
Jaguar) and is a 3D gyrokinetic Particle-In-Cell (PIC) code
with toroidal geometry. It was developed at the Prince-
ton Plasma Physics Laboratory (PPPL) and was designed to
study turbulent transport of particles and energy in burning
plasma. GTC is part of the US Department of Energy’s Sci-
entific Discovery through Advanced Computing (SciDAC)
program. GTC is coded in standard Fortran 90/95 and MPI.

We used a version of GTC that has been modified to use
the Adaptable IO System (ADIOS) I/O middleware [16]
rather than standard Fortran I/O directives. ADIOS is de-
veloped by Georgia Tech and ORNL to manage I/O with
a simple API and a supplemental, external configuration
file. ADIOS has been implemented in several scientific
production codes, including GTC. Earlier GTC tests with
ADIOS on Jaguar XT4 showed increased scalability and
higher performance when compared to the GTC runs with
Fortran I/O. On the Jaguar XT4 segment, GTC with ADIOS
achieved 75% of the maximum I/O performance measured
with IOR [12].

Fig. 9 shows the GTC run times for 64 and 1,344 cores
on Jaguar with and without asynchronous journals on Lustre
file system. Both runs were configured with the same prob-
lem, and the difference in runtime can be attributed to the
compute load of each core. During these runs, the observed
I/O bandwidth by the application was increased by 56.3%
on average and 64.8% when considering only the median
values.

Translating the I/O bandwidth improvements to shorter
runtimes will depend heavily on the I/O profile of the ap-
plication and domain problem being investigated. In the 64
core case for GTC, the cores have a much larger compute
load, and the percentage of runtime spent performing I/O
drops from 6% to 2.6%when turning asynchronous journals
on, with a 3.3% reduction in overall runtime. The 1,344
core test has much lighter compute load, and the runtime
is dominated by I/O time – 70% of the runtime is I/O with
synchronous journals, and 36%with asynchronous journals.
This is reflected in the 49.5% reduction in overall runtime.

Figure 9. GTC run times for 64 and 1,344
cores on Jaguar with and without asyn-
chronous journals.

Fig. 10 shows the histogram of I/O requests observed by
the DDN S2A9900 during our GTC runs as a percent of to-
tal I/O requests observed. In this figure, “Async Journals”
represents I/O requests observed when the asynchronous

9
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journals were turned on and “Sync Journals” represents
when asynchronous journals were turned off. Omitted re-
quest sizes from the graph account for less than 2.3% of the
total I/O requests for the asynchronous journaling method
and 0.76% for the synchronous journaling method. Asyn-
chronous journaling clearly decreased the number of small
I/O requests (0 to 127 KB) from 64% to 26.5%. This re-
duction minimized the disk head seeks, removed the seri-
alization, and increased the overall disk I/O performance.
Fig. 11 shows the same I/O request size histogram for 0
to 127 KB sized I/O requests as a percent of total I/O re-
quests observed. Also in this figure “Async Journals” rep-
resents I/O requests observed when the asynchronous jour-
nals were turned on and “Sync Journals” represents when
asynchronous journals were turned off. It can be seen that
the asynchronous journaling method reduces the number of
small I/O requests (0 to 128 KB) sent to the DDN controller
(by delaying and aggregating the small journal commit re-
quests into relatively larger but still small I/O requests, as
explained in the previous section).

Figure 10. I/O request size histogram ob-
served by the DDN S2A9900 controllers dur-
ing the GTC runs.

Overall, our findings were motivated by the relatively
modest IOPS performance (when compared to the band-
width performance) of our DDN S2A9900 hardware. The
DDN S2A9900 architecture uses “synchronous heads,” or
a variant of RAID3 that provides dual-failure redundancy.
For a given LUN with 10 disks, a seek on the LUN requires
a seek by all devices in the LUN. This approach provides
highly optimized large I/O bandwidth, but it is not very ef-
ficient for small I/O. More traditional RAID5 and RAID6
implementations may not see the same speedup as the DDN
hardware with our approach, as the stripes containing ac-
tive journal data will likely remain resident in the controller

Figure 11. I/O request size histogram for 0
to 127 KB requests observed by the DDN
S2A9900 controllers during the GTC runs.

cache, minimizing the need to do “read-modify-write” cy-
cles to commit the journal records. Still, there will be head
movement for those writes, which will incur a seek-penalty
for the drive the stripe chunk that holds that portion of the
journal. This will have an affect on the aggregate bandwidth
of the RAID array. Some preliminary testing conducted
by Sun Microsystems using their own RAID hardware has
shown improved performance, but the details of that test-
ing is not currently public. We did not have the chance to
test our approach on non-DDN hardware, and are unable to
further qualify the impact of our solution on other RAID
controllers at this time.

Our approach removed the bottleneck out of the criti-
cal write path by providing an asynchronous write/commit
mechanism for the Lustre file system. This solution has
been previously proposed by NFSv3 and others, and we
were able to implement it in an efficient manner to boost
our write performance in a very large scale production stor-
age deployment. Our approach comes with a temporary in-
crease in memory consumption on clients, which we believe
is a fair price for the performance increases. Our changes
are restricted to how Lustre uses the journal, and not the
operation of the journal itself. Specifically, we do not wait
for the journal commit prior to allowing the client to send
more data. As we have not told the client that the data is sta-
ble, it will retain it in the event the OSS (OST) dies and the
client needs to replay its I/O requests. The guarantees about
file system consistency at the local OST remain unchanged.
Also, our limited tests with manually injected power fail-
ures on the server side with active write/modify I/O client
RPCs in flight provided consistent data on the file system,
provided the clients successfully completed recovery.
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7 Conclusions

Initial IOR testing with Spider’s DDN S2A9900s and
SATA drives on Jaguar showed that Lustre level write per-
formance was 24.9% of the baseline performance with a 1
MB transfer size. Profiling the I/O stream using the DDN
utilities revealed a large number of 4 KB writes in addi-
tion to the expected 1 MB writes. These small writes were
traced to ldiskfs journal updates. This information allowed
us to identify bottlenecks in the way Lustre was using the
journal – each batch of write requests blocked on the com-
mit of a journal transaction, which added serialization to the
request stream and incurred the latency of a disk head seek
for each write.

We developed and implemented both a hardware based
solution as well as a software solution to these issues. We
used external journals on solid state devices to eliminate
head seeks for the journal, which allowed us to achieve
3,292.6 MB/sec or 58.7% of our baseline performance per
DDN S2A9900. By removing the requirement for a syn-
chronous journal commit for each batch of writes, we ob-
served dramatically fewer 4 KB journal updates (up to 37%)
and associated head seeks. This substantially improved our
block I/O performance to over 5,222.95MB/s or 93% of our
baseline performance per DDN S2A9900 couplet.

Tests with a real-world scientific application such as
GTC have shown an average I/O bandwidth improvement
of 56.3%. Overall, asynchronous journaling has proven to
be a highly efficient solution to our performance problem in
terms of performance as well as cost-effectiveness.

Our approach removed a bottleneck from the critical
write path by providing an asynchronous write/commit
mechanism for the Lustre file system. This solution has
been previously proposed for NFSv3 and other file systems,
and we were able to implement it in an efficient manner
to significantly boost our write performance in a very large
scale production storage deployment.

Our current understanding and testing show that our ap-
proach does not change the guarantees of file system consis-
tency at the local OST level, as the modifications only affect
how Lustre uses the journal, and not the operation of the
journal itself. However, this approach comes with a tempo-
rary increase of memory consumption on clients while wait-
ing for the server to commit the transactions. We find this a
fair exchange for the substantial performance enhancement
it provides on our very large scale production parallel file
system.

Our approach and findings are likely not specific to our
DDN hardware, and are of interest to developers and large-
scale HPC vendors and integrators in our community. Fu-
ture work will include verifying broad applicability as test
hardware becomes available. Other potential future work
includes an analysis of how other scalable parallel file sys-

tems, such as IBM’s GPFS, approach the synchronous write
performance penalties.
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Abstract

Cloud computing promises large-scale and seamless ac-

cess to vast quantities of data across the globe. Appli-

cations will demand the reliability, consistency, and per-

formance of a traditional cluster file system regardless

of the physical distance between data centers.

Panache is a scalable, high-performance, clustered file

system cache for parallel data-intensive applications that

require wide area file access. Panache is the first file

system cache to exploit parallelism in every aspect of

its design—parallel applications can access and update

the cache from multiple nodes while data and metadata

is pulled into and pushed out of the cache in parallel.

Data is cached and updated using pNFS, which performs

parallel I/O between clients and servers, eliminating the

single-server bottleneck of vanilla client-server file ac-

cess protocols. Furthermore, Panache shields applica-

tions from fluctuating WAN latencies and outages and

is easy to deploy as it relies on open standards for high-

performance file serving and does not require any propri-

etary hardware or software to be installed at the remote

cluster.

In this paper, we present the overall design and imple-

mentation of Panache and evaluate its key features with

multiple workloads across local and wide area networks.

1 Introduction

Next generation data centers, global enterprises, and

distributed cloud storage all require sharing of massive

amounts of file data in a consistent, efficient, and re-

liable manner across a wide-area network. The two

emerging trends of offloading data to a distributed stor-

age cloud and using the MapReduce [11] framework

for building highly parallel data-intensive applications,

have highlighted the need for an extremely scalable in-

frastructure for moving, storing, and accessing mas-

sive amounts of data across geographically distributed

sites. While large cluster file systems, e.g., GPFS [26],

Lustre [3], PanFS [29] and Internet-scale file systems,

e.g., GFS [14], HDFS [6] can scale in capacity and ac-

cess bandwidth to support a large number of clients and

petabytes of data, they cannot mask the latency and fluc-

tuating performance of accessing data across a WAN.

Traditionally, NFS (for Unix) and CIFS (for Win-

dows) have been the protocols of choice for remote file

serving. Originally designed for local area access, both

are rather “chatty” and therefore unsuited for wide-area

access. NFSv4 has numerous optimizations for wide-

area use, but its scalability continues to suffer from

the ”single server” design. NFSv4.1, which includes

pNFS, improves I/O performance by enabling parallel

data transfers between clients and servers. Unfortu-

nately, while NFSv4 and pNFS can improve network and

I/O performance, they cannot completely mask WAN la-

tencies nor operate during intermittent network outages.

As “storage cloud” architectures evolve from a single

high bandwidth data-center towards a larger multi-tiered

storage delivery architecture, e.g., Nirvanix SDN [7],

file data needs to be efficiently moved across loca-

tions and be accessible using standard file system APIs.

Moreover, for data-intensive applications to function

seamlessly in “compute clouds”, the data needs to be

cached closer to or at the site of the computation. Con-

sider a typical multi-site compute cloud architecture that

presents a virtualized environment to customer applica-

tions running at multiple sites within the cloud. Applica-

tions run inside a virtual machine (VM) and access data

from a virtual LUN, which is typically stored as a file,

e.g., VMware’s .vmdk file, in one of the data centers.

Today, whenever a new virtual machine is configured,

migrated, or restarted on failure, the OS image and its

virtual LUN (greater than 80 GB of data) must be trans-

ferred between sites causing long delays before the ap-

plication is ready to be online. A better solution would

store all files at a central core site and then dynamically

cache the OS image and its virtual LUN at an edge site

closer to the physical machine. The machine hosting the

VMs (e.g., the ESX server) would connect to the edge

site to access the virtual LUNs over NFS while the data

would move transparently between the core and edge

sites on demand. This enormously simplifies both the

time and complexity of configuring new VMs and dy-

namically moving them across a WAN.

Research efforts on caching file system data have

mostly been limited to improving the performance of

a single client machine [18, 25, 22]. Moreover, most

available solutions are NFS client based caches [15, 18]
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and cannot function as a standalone file system (with-

out network connectivity) that can be used by a POSIX-

dependent application. What is needed is the ability

to pull and push data in parallel, across a wide-area

network, store it in a scalable underlying infrastructure

while guaranteeing file system consistency semantics.

In this paper we describe Panache, a read-write, multi-

node file system cache built for scalability and perfor-

mance. The distributed and parallel nature of the sys-

tem completely changes the design space and requires

re-architecting the entire stack to eliminate bottlenecks.

The key contribution of Panache is a fully parallelizable

design that allows every aspect of the file system cache

to operate in parallel. These include:

• parallel ingest wherein, on a miss, multiple files

and multiple chunks of a file are pulled into the

cache in parallel from multiple nodes,

• parallel access wherein a cached file is accessible

immediately from all the nodes of the cache,

• parallel update where all nodes of the cache can

write and queue, for remote execution, updates to

the same file in parallel or update the data and meta-

data of multiple files in parallel,

• parallel delayed data write-back wherein the writ-

ten file data is asynchronously flushed in parallel

from multiple nodes of the cache to the remote clus-

ter, and

• parallel delayed metadata write-back where all

metadata updates (file creates, removes etc.) can

be made from any node of the cache and asyn-

chronously flushed back in parallel from multiple

nodes of the cache. The multi-node flush preserves

the order in which dependent operations occurred

to maintain correctness.

There is, by design, no single metadata server and no

single network end point to limit scalability as is the

case in typical NAS systems. In addition, all data and

metadata updates made to the cache are asynchronous.

This is essential to support WAN latencies and outages

as high performance applications cannot function if ev-

ery update operation requires a WAN round-trip (with

latencies running from 30ms to more than 200ms).

While the focus in this paper is on the parallel as-

pects of the design, Panache is a fully functioning

POSIX-compliant caching file system with additional

features including disconnected operations, persistence

across failures, and consistency management, that are

all needed for a commercial deployment. Panache also

borrows from Coda [25] the basic premise of conflict

handling and conflict resolution when supporting dis-

connected mode operations and manages them in a clus-

tered setting. However, these are beyond the scope of

this paper. In this paper, we present the overall design

and implementation of Panache and evaluate its key fea-

tures with multiple workloads across local and wide area

networks.

The rest of the paper is organized as follows. In

the next two sections we provide a brief background

of pNFS and GPFS, the two essential components of

Panache. Section 4 provides an overview of the Panache

architecture. The details of how synchronous and asyn-

chronous operations are handled are described in Sec-

tion 5 and Section 6. Section 7 presents the evaluation

of Panache using different workloads. Finally, Section 8

discusses the related work and Section 9 presents our

conclusions.

2 Background

In order to better understand the design of Panache let

us review its two basic components: GPFS, the paral-

lel cluster file system used to store the cached data, and

pNFS, the nascent industry-standard protocol for trans-

ferring data between the cache and the remote site.

GPFS: General Parallel File System [26] is IBM’s

high-performance shared-disk cluster file system. GPFS

achieves its extreme scalability through a shared-disk ar-

chitecture. Files are wide-striped across all disks in the

file system where the number of disks can range from

tens to several thousand disks in the largest GPFS instal-

lations. In addition to balancing the load on the disks,

striping achieves the full throughput that the disk sub-

system is capable of by reading and writing data blocks

in parallel.

The switching fabric that connects file system nodes

to disks may consist of a storage area network (SAN),

e.g., Fibre Channel, iSCSI, or, a general-purpose net-

work by using I/O server nodes. GPFS uses distributed

locking to synchronize access to shared disks where all

nodes share responsibility for data and metadata consis-

tency. GPFS distributed locking protocols ensure file

system consistency is maintained regardless of the num-

ber of nodes simultaneously reading from and writing

to the file system, while at the same time allowing the

parallelism necessary to achieve maximum throughput.

pNFS: The pNFS protocol, now an integral part of

NFSv4.1, enables clients for direct and parallel access

to storage while preserving operating system, hardware

platform, and file system independence [16]. pNFS

clients and servers are responsible for control and file

management operations, but delegate I/O functionality

to a storage-specific layout driver on the client.

To perform direct and parallel I/O, a pNFS client first

requests layout information from a pNFS server. A lay-

out contains the information required to access any byte

of a file. The layout driver uses the information to trans-

late I/O requests from the pNFS client into I/O requests
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(b) pNFS Writes

Figure 1: pNFS Read and Write performance. pNFS performance scales with available hardware and network bandwidth

while NFSv4 performance remains constant due to the single server bottleneck.

directed to the data servers. For example, the NFSv4.1

file-based storage protocol stripes files across NFSv4.1

data servers, with only READ, WRITE, COMMIT, and

session operations sent on the data path. The pNFS

metadata server can generate layout information itself

or request assistance from the underlying file system.

3 pNFS for Scalable Data Transfers

Panache leverages pNFS to increase the scalability and

performance of data transfers between the cache and re-

mote site. This section describes how pNFS performs in

comparison to vanilla NFSv4.

NFS and CIFS have become the de-facto file serv-

ing protocols and follow the traditional multiple client–

single server model. With the single-server design,

which binds one network endpoint to all files in a file

system, the back-end cluster file system is exported by a

single NFS server or multiple independent NFS servers.

In contrast, pNFS removes the single server bot-

tleneck by using the storage protocol of the underly-

ing cluster file system to distribute I/O across the bi-

sectional bandwidth of the storage network between

clients and data servers. In combination, the elimination

of the single server bottleneck and direct storage access

by clients yields superior remote file access performance

and scalability [16].

Figure 2 displays the pNFS-GPFS architecture. The

nodes in the cluster exporting data for pNFS access are

divided into (possibly overlapping) groups of state and

data servers. pNFS client metadata requests are par-

titioned among the available state servers while I/O is

distributed across all of the data servers. The pNFS

client requests the data layout from the state server us-

ing a LAYOUTGET operation. It then accesses data

in parallel by using the layout information to send

NFSv4 READ and WRITE operations to the correct data

servers. For writes, once the I/O is complete, the client

Figure 2: pNFS-GPFS Architecture. Servers are divided

into (possibly overlapping) groups of state and data servers.

pNFS/NFSv4.1 clients use the state servers for metadata oper-

ations and use the file-based layout to perform parallel I/O to

the data servers.

sends an NFSv4 COMMIT operation to the state server.

This single COMMIT operation flushes data to stable

storage on every data server. The underlying cluster file

system management protocol maintains the freshness of

NFSv4 state information among servers.

To demonstrate the effectiveness of pNFS for scalable

file access, Figures 1(a) and 1(b) compare the aggregate

I/O performance of pNFS and standard NFSv4 export-

ing a seven server GPFS file system. GPFS returns a

file layout to the pNFS client that stripes files across all

data servers using a round-robin order and continually

alternates the first data server of the stripe. Experiments

use the IOR micro-benchmark [2] to increase the number

of clients accessing individual large files. As the num-

ber of NFSv4 clients accessing a single NFSv4 server is

increased, performance remains constant. On the other

hand, pNFS can better utilize the available bandwidth.

With reads, pNFS clients completely saturate the local

network bandwidth. Write throughput ascends to 3.8x

of standard NFSv4 performance with five clients before

reaching the limitations of the storage controller.
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(a) Node Block Diagram (b) Cache Cluster Architecture

Figure 3: Panache Caching Architecture. (a) Block diagram of an application and gateway node. On tje gateway node, Panache

communicates with the pNFS client kernel module through the VFS layer. The application and gateway nodes communicate via

custom RPCs through the user-space daemon. (b) The cache cluster architecture. The gateway nodes of the cache cluster act as

pNFS/NFS clients to access the data from the remote cluster. The application nodes access data from the cache cluster.

4 Panache Architecture Overview

The design of the Panache architecture is guided by the

following performance and operational requirements:

• Data and metadata read performance, on a cache

hit, matches that of a cluster file system. Thus,

reads should be limited only by the aggregate disk

bandwidth of the local cache site and not by the

WAN.

• Read performance, on a cache miss, is limited only

by the network bandwidth between the sites.

• Data and metadata update performance matches

that of a cluster file system update.

• The cache can operate as a standalone fileserver (in

the presence of intermittent or no network connec-

tivity), ensuring that applications continue to see a

POSIX compliant file system.

Panache is implemented as a multi-node caching

layer, integrated within the GPFS, that can persistently

and consistently cache data and metadata from a remote

cluster. Every node in the Panache cache cluster has di-

rect access to cached data and metadata. Thus, once data

is cached, applications running on the Panache cluster

achieve the same performance as if they were running

directly on the remote cluster. If the data is not in the

cache, Panache acts as a caching proxy to fetch the data

in parallel both by using a parallel read across multiple

cache cluster nodes to drive the ingest, and from mul-

tiple remote cluster nodes using pNFS. Panache allows

updates to be made to the cache cluster at local cluster

performance by asynchronously pushing all updates of

data and metadata to the remote cluster.

More importantly, Panache, compared to other single-

node file caching solutions, can function both as a stand-

alone clustered file system and as a clustered caching

proxy. Thus applications can run on the cache cluster

using POSIX semantics and access, update, and traverse

the directory tree even when the remote cluster is of-

fline. As the cache mimics the same namespace as the

remote cluster, browsing through the cache cluster (say

with ls -R) shows the same listing of directories and files,

as well as most of their remote attributes. Furthermore,

NFS/pNFS clients can access the cache and see the same

view of the data (as defined by NFS consistency seman-

tics) as NFS clients accessing the data directly from the

remote cluster. In essence, both in terms of consistency

and performance, applications can operate as if the WAN

did not exist.

Figure 3(b) shows the schematic of the Panache ar-

chitecture with the cache cluster and the remote cluster.

The remote cluster can be any file system or NAS filer

exporting data over NFS/pNFS. Panache can operate on

a multi-node cluster (henceforth called the cache cluster)

where all nodes need not be identical in terms of hard-

ware, OS, or support for remote network connectivity.

Only a set of designated nodes, called Gateway nodes,

need to have the hardware and software support for re-

mote access. These nodes internally act as NFS/pNFS

client proxies to fetch the data in parallel from the re-

mote cluster. The remaining nodes of the cluster, called

Application nodes, service the application data requests

from the Panache cluster. The split between application

and gateway nodes is conceptual and any node in the

cache cluster can function both as a gateway node or a

application node based on its configuration. The gate-
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way nodes can be viewed as the edge of the cache clus-

ter that can communicate with the remote cluster while

the application nodes interface with the application. Fig-

ure 3(a) illustrates the internal components of a Panache

node. Gateway nodes communicate with the pNFS ker-

nel module via the VFS layer, which in turn communi-

cates with the remote cluster. Gateway and application

nodes communicate with each other via 26 different in-

ternal RPC requests from the user space daemon.

When an application request cannot be satisfied by the

cache, due to a cache miss or to invalid cached data, the

application node sends a read request to one of the gate-

way nodes. The gateway node then accesses the data

from the remote cluster and returns it to the application

node. Panache supports different mechanisms for gate-

way nodes to share the data with application nodes. One

option is for the gateway nodes to write the remote data

to the shared storage, which the application nodes can

then read and return the data to the application. Another

option is for gateway nodes to transfer the data directly

to the application nodes using the cluster interconnect.

Our current Panache prototype shares data through the

storage subsystem, which can generally give higher per-

formance than a typical network link.

All updates to the cache cause an application node to

send and queue a command message on one or more

gateway nodes. Note that this message includes no file

data or metadata. At a later time, the gateway node(s)

will read the data in parallel from the storage system and

push it to the remote cluster over pNFS.

The selection of a gateway node to service a request

needs to ensure that dependent requests are executed in

the intended order. The application node selects a gate-

way node using a hash function based on a unique iden-

tifier of the object on which a file system operation is

requested. Sections 5 and 6 describe how this identifier

is chosen and how Panache executes read and update op-

erations in more detail.

4.1 Consistency

Consistency in Panache can be controlled across various

dimensions and can be defined relative to the cache clus-

ter, the remote cluster and the network connectivity.

Definition 1 Locally consistent: The cached data is

considered locally consistent if a read from a node of

the cache cluster returns the last write from any node of

the cache cluster.

Definition 2 Validity Lag: The time delay between a

read at the cache cluster reflecting the last write at the

remote cluster.

Definition 3 Synchronization Lag: The time delay be-

tween a read at the remote cluster reflecting the last

write at the cache cluster.

Definition 4 Eventually Consistent: After recovering

from a node or network failure, in the absence of further

failures, the cache and remote cluster data will eventu-

ally become consistent within the bounds of the lags.

Panache, by virtue of relying on the cluster-wide dis-

tributed locking mechanism of the underlying clustered

file system, is always locally consistent for the updates

made at the cache cluster. Accesses are serialized by

electing one of the nodes to be the token manager and

issuing read and write tokens [26]. Local consistency

within the cache cluster basically translates to the tradi-

tional definition of strong consistency [17].

For cross-cluster consistency across the WAN,

Panache allows both the validity lag and the synchro-

nization (synch) lag to be tunable based on the workload.

For example, setting the validity lag to zero ensures that

data is always validated with the remote cluster on an

open and setting the synch lag to zero ensures that up-

dates are flushed to the remote cluster immediately.

NFS uses a attribute timeout value (typically 30s)

to recheck with the server if the file attributes have

changed. Dependence on NFS consistency semantics

can be removed via the O DIRECT parameter (which

disables NFS client data caching) and/or by disabling

attribute caching (effectively setting the attribute time-

out value to 0). NFSv4 file delegations can reduce the

overhead of consistency management by having the re-

mote cluster’s NFS/pNFS server transfer ownership of a

file to the cache cluster. This allows the cache cluster to

avoid periodically checking the remote file’s attributes

and safely assume that the data is valid.

When the synch lag is greater than zero, all updates

made to the cache are asynchronously committed at the

remote cluster. In fact, the semantics will no longer be

close-to-open as updates will ignore the file close and

will be time delayed. Asynchronous updates can result

in conflicts which, in Panache, are resolved using poli-

cies as discussed in Section 6.3.

When there is a network or remote cluster failure both

the validation lag and synch lag become indeterminate.

When connectivity is restored, the cache and remote

clusters are eventually synchronized.

5 Synchronous Operations

Synchronous operations block until the remote operation

completes, either because an object does not exist in the

cache, i.e., a cache miss, or the object exists in the cache

but needs to be revalidated. In either case, the object

or its attributes need to be fetched or validated from the

remote cluster on an application request. All file system

data and metadata “read” operations, e.g., lookup, open,

read, readdir, getattr, are synchronous. Unlike typical

caching systems, Panache ingests the data and metadata
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in parallel from multiple gateway nodes so that the cache

miss or pre-populate time is limited only by the network

bandwidth between the caching and remote clusters.

5.1 Metadata Reads

The first time an application node accesses an object via

the VFS lookup or open operations, the object is created

in the cache cluster as an empty object with no data. The

mapping with the remote object is through the NFS file-

handle that is stored with the inode as an extended at-

tribute. The flow of messages proceeds as follows: i)

the application node sends a request to the designated

gateway node based on a hash of the inode number or

its parent inode number if the object doesn’t exist ii)

the gateway node sends a request to the remote cluster’s

NFS/pNFS server(s), iii) on success at the remote clus-

ter, the filehandle and attributes of the object are returned

back to the gateway node which then creates the object

in the cache, marks it as empty, and stores the remote

filehandle mapping, iv) the gateway node then returns

success back to the application node. On a later read

or prefetch request the data in the empty object will be

populated.

5.2 Parallel Data Reads

On an application read request, the application node first

checks if the object exists in the local cache cluster. If

the object exists but is empty or incomplete, the ap-

plication node, as before, requests the designated gate-

way node to read in the requested offset and size. The

gateway node, based on the prefetch policy, fetches the

requested bytes or the entire file and writes it to the

cache cluster. With prefetching, the whole file is asyn-

chronously read after the byte-range requested by the ap-

plication is ingested. Panache supports both whole file

and partial file (segments consisting of a set of contigu-

ous blocks) caching. Once the data is ingested, the ap-

plication node reads the requested bytes from the local

cache and returns them to the application as if they were

present locally all along. Recall that the application and

gateway nodes exchange only request and response mes-

sages while the actual data is accessed locally via the

shared storage subsystem. On a later cache hit, the ap-

plication node(s) can directly service the file read request

from the local cache cluster. The cache miss perfor-

mance is, therefore, limited by the network bandwidth

to the remote cluster, while the cache hit performance is

limited only by the local storage subsystem bandwidth

(as shown in Table 1).

Panache scales I/O performance by using multiple

gateway nodes to read chunks of a single file in paral-

lel from the multiple nodes over NFS/pNFS. One of the

gateway nodes (based on the hash function) becomes the

coordinator for a file. It, in turn, divides the requests

Figure 4: Multiple gateway node configurations. The top

setup is a single pNFS client reading a file from multiple data

servers in parallel. The middle setup is multiple gateway nodes

acting as NFS clients reading parts of the file from the remote

cluster’s NFS servers. The bottom setup has multiple gateway

nodes acting as pNFS clients reading parts of the file in paral-

lel from multiple data servers.

File Read 2 gateway nodes 3 gateway nodes

Miss 1.456 Gb/s 1.952 Gb/s

Hit 8.24 Gb/s 8.24 Gb/s

Direct over pNFS 1.776 Gb/s 2.552 Gb/s

Table 1: Panache (with pNFS) and pNFS read perfor-

mance using the IOR benchmark. Clients read 20 files of

5GB each using 2 and 3 gateway nodes with gigabit ethernet

connecting to a 6-node remote cluster. Panache scales on both

cache miss and cache hit. On cache miss, Panache incurs the

overhead of passing data through the SAN, while on a cache

hit it saturates the SAN.

among the other gateway nodes which can proceed to

read the data in parallel. Once a node is finished with

its chunk it requests the coordinator for more chunks to

read. When all the requested chunks have been read the

gateway node responds to the application node that the

requested blocks of the object are now in cache. If the

remote cluster file system does not support pNFS but

does support NFS access to multiple servers, data can

still be read in parallel. Given N gateway nodes at the

cache cluster and M nodes exporting data at the remote

cluster, a file can be read either in 1xM (pNFS case) par-

allel streams, or min{N,M} 1x1 parallel streams (mul-

tiple gateway parallel reads with NFS) or NxM parallel

streams (multiple gateway parallel reads with pNFS) as

shown in Figure 4.

5.3 Namespace Caching

Panache provides a standard POSIX file system in-

terface for applications. When an application tra-
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verses the namespace directory tree, Panache reflects

the view of the corresponding tree at the remote clus-

ter. For example, an “ls -R” done at the cache clus-

ter presents the same list of entries as one done at the

remote cluster. Note that Panache does not simply re-

turn the directory listing with dirents containing the

< name, inode num > pairs from the remote cluster

( as an NFS client would). Instead, Panache first creates

the directory entries in the local cluster and then returns

the cached name and inode number to the application.

This is done to ensure application nodes can continue to

traverse the directory tree if a network or server outage

occurs. In addition, if the cache simply returns the re-

mote inode numbers to the application, and later a file is

created in the cache with that inode number, the applica-

tion may observe different inode numbers for the same

file.

One approach to returning consistent inode numbers

to the application on a readdir (directory listing) or

lookup and getattr, e.g., file stat, is by mandating that

the remote cluster and the cache cluster mirror the same

inode space. This can be impossible to implement where

remote inode numbers conflict with inode numbers of

reserved files and clearly limits the choice of the remote

cluster file systems. A simple approach is to fetch the at-

tributes of all the directory entries, i.e., an extra lookup

across the network and create the files locally on a read-

dir request. This approach of creating files on a directory

access has an obvious performance penalty for directo-

ries with a large number of files.

To solve the performance problems with creates on a

readdir and allow for the cache cluster to operate with a

separate inode space, we create only the directory entries

in the local cluster and create placeholders for the actual

files and directories. This is done by allocating but not

creating or using inodes for the new entries. This allows

us to satisfy the readdir request with locally allocated in-

ode numbers without incurring the overhead of creating

all the entries. These allocated, but not yet created, en-

tries are termed orphans. On a subsequent lookup, the

allocated inode is ”filled” with the correct attributes and

created on disk. Orphan inodes cause interesting prob-

lems on fsck, file deletes, and cache eviction and have to

be handled separately in each case. Table 2 shows the

performance (in secs) of reading a directory for 3 cases:

i) where the files are created on a readdir, ii) when only

orphan inodes are created, and iii) when the readdir is

returned locally from the cache.

5.4 Data and Attribute Revalidation

The data validity in the cache cluster is controlled by

a revalidation timeout, in a manner similar to the NFS

attribute timeout, whose value is determined by the de-

sired validity lag of the workload. The cache cluster’s

Files per dir readdir & readdir & readdir

creates orphan inodes from cache

100 1.952 (s) 0.77 (s) 0.032 (s)

1,000 3.122 1.26 0.097

10,000 7.588 2.825 0.15

100,000 451.76 25.45 1.212

Table 2: Cache traversal with a readdir. Performance (in

secs.) of a readdir on a cache miss where the individual files

are created vs. the orphan inodes. The last column shows the

performance of readdir on a cache hit.

inode stores both the local modification time mtimelocal

and inode change time ctimelocal along with the re-

mote mtimeremote, ctimeremote. When the object is

accessed after the revalidation timeout has expired the

gateway node gets the remote object’s time attributes

and compares them with the stored values. A change in

mtimeremote indicates that the object’s data was modi-

fied and a change in ctimeremote, indicates that the ob-

ject’s inode was changed as the attributes or data was

modified 1. In case the remote cluster supports NFSv4

with delegations, some of this overhead can be removed

by assuming the data is valid when there is an active del-

egation. However, every time the delegation is recalled,

the cache falls back to timeout based revalidation.

During a network outage or remote server failure, the

revalidation lag becomes indeterminate. By policy, ei-

ther the requests are made blocking where they wait till

connectivity is restored or all synchronous operations

are handled locally by the cache cluster and no request

is sent to the gateway node for remote execution.

6 Asynchronous Operations

One important design decision in Panache was to mask

the WAN latencies by ensuring applications see the

cache cluster’s performance on all data writes and meta-

data updates. Towards that end, all data writes and meta-

data updates are done asynchronously—the application

proceeds after the update is “committed” to the cache

cluster with the update being pushed to the remote clus-

ter at a later time governed by the synch lag. Moreover,

executing updates to the remote cluster is done in par-

allel across multiple gateway nodes. Most caching sys-

tems delay only data writes and perform all the metadata

and namespace updates synchronously, preventing dis-

connected operation. By allowing asynchronous meta-

data updates, Panache allows data and metadata updates

at local speeds and also masks remote cluster failures

and network outages.

In Panache asynchronous operations consist of oper-

ations that encapsulate modifications to the cached file

1Currently we ignore the possibility that the mtime may not change

on update. This may require content based signatures or a kernel sup-

ported change info to verify.
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system. These include relatively simple modify requests

that involve a single file or directory, e.g., write, trun-

cate, and modification of attributes such as ownership,

times, and more complex requests that involve changes

to the name space through updates of one or more direc-

tories, e.g., creation, deletion or renaming of a file and

directory or symbolic links.

6.1 Dependent Metadata Operations

In contrast to synchronous operations, asynchronous op-

erations modify the data and metadata at the cache clus-

ter and then are simply queued at the gateway nodes for

delayed execution at the remote cluster. Each gateway

node maintains an in-memory queue of asynchronous

requests that were sent by the application nodes. Each

message contains the unique object identifier fileId: <

inode num, gen num, fsid > of one or more objects be-

ing operated upon and the parameters of the command.

If there is a single gateway node and all the requests

are queued in FIFO order, then operations will execute

remotely in the same order as they did in the cache clus-

ter. When multiple gateway nodes can push commands

to the remote cluster, the distributed multi-node queue

has to be controlled to maintain the desired ordering. To

better understand this, let’s first define some terms.

Definition 5 A pair of update commands

Ci(X), Cj(X), on an object X, executed at the

cache cluster at time ti < tj are said to be time

ordered , denoted by Ci → Cj , if they need to be

executed in the same relative order at the remote cluster.

For example, commands CREATE(File X) and

WRITE(File X, offset, length) are time ordered as the

data writes cannot be pushed to the remote cluster until

the file gets created.

Observation 1 If commands Ci, Cj , Ck are pair-wise

time ordered, i.e.,Ci → Cj andCj → Ck then the three

commands form a time ordered sequence Ci → Cj →
Ck

Definition 6 A pair of objects Ox, Oy , are said to be

dependent objects if there exists queued commands Ci

and Cj such that Ci(Ox) and Cj(Oy) are time ordered.

For example, creating a file FileX and its parent di-

rectory DirY make X and Y dependent objects as the

parent directory create has to be pushed before the file

create.

Observation 2 If objects Ox, Oy , and Oy, Oz are pair-

wise dependent, thenOx, Oz are also dependent objects.

Observe that the creation of a file depends on the cre-

ation of its parent directory, which in turn depends on

the creation of its parent directory, and so on. Thus, a

create of a directory tree creates a chain of dependent

objects. The removes follow the reverse order where the

rmdir depends on the directory being empty so that the

removes of the children need to execute earlier.

Definition 7 A set of commands over a set of objects,

C1(Ox), C2(Oy)...Cn(Oz), are said to be permutable

if they are neither time ordered nor contain dependent

objects.

Thus permutable commands can be pushed out in par-

allel from multiple gateway nodes without affecting cor-

rectness. For example, create file A, create file B are

permutable among themselves.

Based on these definitions, if all commands on a given

object are queued and pushed in FIFO order at the same

gateway node we trivially get the time order require-

ments satisfied for all commands on that object. Thus,

Panache hashes on the object’s unique identifier, e.g., in-

ode number and generation number, to select a gateway

node on which to queue an object. It is dependent ob-

jects queued on different gateway nodes that make dis-

tributed queue ordering a challenge. To further compli-

cate the issue, some commands such as rename and link

involve multiple objects.

To maintain the distributed time ordering among de-

pendent objects across multiple gateway node queues,

we build upon the GPFS distributed token management

infrastructure. This infrastructure currently coordinates

access to shared objects such as inodes and byte-range

locks and is explained in detail elsewhere [26]. Panache

extends this distributed token infrastructure to coordi-

nate execution of queued commands among multiple

gateway nodes. The key idea is that an enqueued com-

mand acquires a shared token on objects on which it

operates. Prior to the execution of a command to the

remote cluster, it upgrades these tokens to exclusive,

which in turn forces a token revoke on the shared tokens

that are currently held by other commands on dependent

objects on other gateway nodes. When a command re-

ceives a token revoke, it then also upgrades its tokens to

exclusive, which results in a chain reaction of token re-

vokes. Once a command acquires an exclusive token on

its objects, it is executed and dequeued. This process re-

sults in all commands being pushed out of the distributed

queues in dependent order.

The link and rename commands operate on multiple

objects. Panache uses the hash function to queue these

commands on multiple gateway nodes. When a multi-

object request is executed, only one of the queued com-

mands will execute to the remote cluster, with the oth-

ers simply acting as placeholders to ensure intra-gateway

node ordering.
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6.2 Data Write Operations

On a write request, the application node first writes the

data locally to the cache cluster and then sends a mes-

sage to the designated gateway node to perform the write

operation at the remote cluster. At a later time, the gate-

way node reads the data from the cache cluster and com-

pletes the remote write over pNFS.

The delayed nature of the queued write requests al-

low some optimizations that would not otherwise be pos-

sible if the requests had been synchronously serviced.

One such optimization is write coalescing that groups

the write request to match the optimal GPFS and NFS

buffer sizes. The queue is also evaluated before requests

are serviced to eliminate transient data updates, e.g., the

creation and deletion of temporary files. All such “can-

celing” operations are purged without affecting the be-

havior of the remote cluster.

In case of remote cluster failures and network out-

ages, all asynchronous operations can still update the

cache cluster and return successfully to the application.

The requests simply remain queued at the gateway nodes

pending execution at the remote cluster. Any such fail-

ure, however, will affect the synchronization lag making

the consistency semantics fall back to a looser eventual

consistency guarantee.

6.3 Discussion

Conflict Handling Clearly, asynchronous updates can

result in non-serializable executions and conflicting up-

dates. For example, the same file may be created or

updated by both the cache cluster and the remote clus-

ter. Panache cannot prevent such conflicts, but it will

detect them and resolve them based on simple policies.

For example, one policy could have the cache cluster al-

ways override any conflict; another policy could move a

copy of the conflicting file to a special “.conflicts” direc-

tory for manual inspection and intervention, similar to

the lost+found directory generated on a normal file sys-

tem check (fsck) scan. Further, it is possible to merge

some types of conflicts without intervention. For exam-

ple, a directory with two new files, one created by the

cache and another by the remote system can be merged

to form the directory containing both files. Earlier re-

search on conflict handling of disconnected operations

in Coda [25] and Intermezzo have inspired some of the

techniques used in Panache after being suitably modified

to handle a cluster setting.

Access control and authentication: One aspect of the

caching system is that data is no more vulnerable to

wrongful access as it was at the remote cluster. Panache

requires userid mappings to make sure that file access

permissions and ACLs setup at the remote cluster are

enforced at the cache. Similarly, authentication via

NFSv4’s RPCSEC GSS mechanism can be forwarded

to the remote cluster to make sure end-to-end authenti-

cation can be enforced.

Recovery on Failure: The queue of pending updates

can be lost due to memory pressures or a cache cluster

node reboot. To avoid losing track of application up-

dates, Panache stores sufficient persistent state to recre-

ate the updates and synchronize the data with the remote

cluster. The persistent state is stored in the inode on

disk and relies on the GPFS fast inode scan to deter-

mine which inodes have been updated. Inode scans are

very efficient as they can be done in parallel across mul-

tiple nodes and are basically a sequential read of the in-

ode file. For example, in our test environment, a simple

inode scan (with file attributes) on a single application

node of 300K files took 2.24 seconds.

7 Evaluation

In this section we assess the performance of Panache

as a scalable cache. We first use the IOR micro-

benchmark [2] to analyze the amount of overhead

Panache incurs along the data path to the remote cluster.

We then use the mdtest micro-benchmark [4] to measure

the overhead Panache incurs to queue and flush metadata

operations on the gateway nodes. Finally, we run a par-

allel visualization application and a Hadoop application

to analyze Panache with an HPC access pattern.

7.1 Experimental Setup

All experiments use a sixteen-node cluster connected

via gigabit Ethernet, with each node assigned a differ-

ent role depending on the experiment. Each node is

equipped with dual 3 GHz Xeon processors, 4 GB mem-

ory and runs an experimental version of Linux 2.6.27

with pNFS. GPFS uses a 1 MB stripe size. All NFS

experiments use 32 server threads and 512 KB wsize

and rsize. All nodes have access to the SAN, which

is comprised of a 16-port FC switch connected to a

DS4800 storage controller with 12 LUNs configured for

the cache cluster.

7.2 I/O Performance

Ideally, the design of Panache is such that it should

match the storage subsystem throughput on a cache hit

and saturate the network bandwidth on a cache miss (as-

suming that the network bandwidth is less than the disk

bandwidth of the cache cluster).

In the first experiment, we measure the performance

reading separate 8 GB files in parallel from the remote

cluster. Our local Panache cluster uses up to 5 applica-

tion and gateway nodes, while the remote 5 node GPFS

cluster has all nodes configured to be pNFS data servers.

As we increase the number of application (client) nodes,
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Figure 5: Aggregate Read Throughput. (a) pNFS and NFSv4 scale with available remote bandwidth. (b) Panache using pNFS
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Figure 6: Aggregate Write Throughput. (a) pNFS and NFSv4 scale with available disk bandwidth. (b) Panache local write

performance matches standard GPFS, demonstrating the negligible overhead of queuing write messages on the gateway nodes.

the number of gateway nodes increases as well since

the miss requests are evenly dispatched. Figure 5(a)

displays how the underlying data transfer mechanisms

used by Panache can scale with the available bandwidth.

NFSv4 with a single server is limited to the bandwidth

of the single remote server while NFSv4 with multiple

servers and pNFS can take advantage of all 5 available

remote servers. With each NFSv4 client mounting a sep-

arate server, aggregate read throughput reaches a maxi-

mum of 516.49 MB/s with 5 clients. pNFS scales in

a similar manner, reaching a maximum aggregate read

throughput of 529.37 with 5 clients.

Figure 5(b) displays the aggregate read throughput of

Panache utilizing pNFS and NFSv4 as its underlying

transfer mechanism. The performance of Panache using

NFSv4 with a single server is 5-10% less than standard

NFSv4 performance. This performance hit comes from

our Panache prototype, which does not fully pipeline the

data between the application and gateway nodes. When

Panache uses pNFS and NFSv4 using multiple servers,

increasing the number of clients gives a maximum ag-

gregate throughput of 247.16 MB/s due to a saturation

of the storage network. A more robust SAN would shift

the bottleneck back on the network between the local

and remote clusters.

Finally, Figure 5(c) demonstrates that once a file is

cached, Panache stays out of the I/O path, allowing the

aggregate read throughput of Panache to match the ag-

gregate read throughput of standard GPFS.

In the second experiment we increase the number of

clients writing to a separate 8 GB files. As shown in

Figure 6(b), the aggregate write throughput of Panache

matches the aggregate write throughput of standard

GPFS. For Panache, writes are done locally to GPFS

while a write request is queued on a gateway node for

asynchronous execution to the remote cluster. This ex-

periment demonstrates that the extra step of queuing the

write request on the gateway node does not impact write

performance. Therefore, application write throughput is

not constrained by the network bandwidth or the number

of pNFS data servers, but rather by the same constraints

as standard GPFS.

Eventually, data written to the cache must be syn-

chronized to the remote cluster. Depending on the ca-

pabilities of the remote cluster, Panache can use three

I/O methods: standard NFSv4 to a single server, stan-

dard NFSv4 with each client mounting a separate re-

mote server, and pNFS. Figure 6(a) displays the ag-
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Figure 7: Metadata performance. Performance of mdtest benchmark for file creates. Each node creates 1000 files in parallel.

In (a), we use a single gateway node. In (b), the number of application and gateway nodes are increased in unison, with each

cluster node playing both application and gateway roles.

gregate write performance of writing separate 8 GB

files to the remote cluster using these three I/O meth-

ods. Unsurprisingly, aggregate write throughput for

standard NFSv4 with a single server remains flat. With

each NFSv4 client mounting a separate server, aggregate

write throughput reaches a maximum of 413.77 MB/s

with 5 clients. pNFS scales in a similar manner, reaching

a maximum aggregate write throughput of 380.78 MB/s

with 5 clients. Neither NFSv4 with multiple servers nor

pNFS saturate the available network bandwidth due to

limitations in the disk subsystem.

It is important to note that although the performance

of pNFS and NFSv4 with multiple servers appears on

the surface to be similar, the lack of coordinated access

in NFSv4 creates several performance hurdles. For in-

stance, if there are a greater number of gateway nodes

than remote servers, NFSv4 clients will not be evenly

load balanced among the servers, creating possible hot

spots. pNFS avoids this by always balancing I/O re-

quests among the remote servers evenly. In addition,

NFSv4 unaligned file writes across multiple servers can

create false sharing of data blocks, causing the cluster

file system to lock and flush data unnecessarily.

7.3 Metadata Performance

To measure the metadata update performance in the

cache cluster we use the mdtest benchmark, which per-

forms file creates from multiple nodes in the cluster. Fig-

ure 7(a) shows the aggregate throughput of 1000 file

create operations per cluster node. With 4 application

nodes simultaneously creating a total of 4000 files, the

Panache throughput (2574 ops/s) is roughly half that of

the local GPFS (4370 ops/s) performance. The Panache

code path has the added overhead of first creating the

file locally and then sending a RPC to queue the oper-

ation on a gateway node. As the graph shows, as the
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Figure 8: Metadata flush performance. Performance of

mdtest benchmark for file creates with flush. Each node flushes

1000 files in parallel back to the home cluster.

number of nodes increases, we can saturate the single

gateway node. To see the impact of increasing the num-

ber of gateway nodes, Figure 7(b) demonstrates the scale

up when the number of application nodes and gateway

nodes increase in tandem, up to a maximum of 8 cache

and remote nodes.

As all updates are asynchronous, we also demonstrate

the performance of flushing file creates to the remote

cluster in Figure 8. By increasing the number of gateway

and remote nodes in tandem, we can scale the number of

creates per second from 400 to 2000, a five fold increase

for 7 additional nodes. The lack of linear increase is

due to our prototype’s inefficient use of the GPFS token

management service.

7.4 WAN Performance

To validate the effectiveness of Panache over a WAN

we used the IOR parallel file read benchmark and the

Linux tc command. The WAN represented the 30ms la-
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tency link between the IBM San Jose and Tucson facili-

ties. The cache and remote clusters both contain 8 nodes,

keeping the gateway and remote nodes in tandem. Fig-

ure 9 shows the aggregate bandwidth on both a hit and

a miss for an increasing number of nodes in the cluster.

The hit bandwidth matches that of a local GPFS read.

For cache miss, while Panache can utilize parallel ingest

to increase performance initially, both Panache and NFS

eventually suffer from slow network bandwidth.

7.5 Visualization for Cognitive Models

This section evaluates Panache with a real supercomput-

ing application that visualizes the 8x106 neural firings of

a large scale cognitive model of a mouse brain [23]. The

cognitive model runs at a remote cluster (a BlueGene/L

system with 4096 nodes) and the visualization applica-

tion runs at the cache cluster and creates a ”movie” as

output. In the experiment in Table 3, we copied a frac-

tion of the data (64 files of 200MB each) generated by

the cognitive model to our 5 node remote cluster and

ran the visualization application on the Panache cluster.

The application reads in the data and creates a movie

file of 250MB. Visualization is a CPU-bound operation,

but asynchronous writes helped Panache reduce runtime

over pNFS by 14 percent. Once the data is cached, time

to regenerate the visualization files is reduced by an ad-

ditional 17.6 percent.

pNFS Panache (miss) Panache (hit)

46.74 (s) 40.2 (s) 31.96 (s)

Table 3: Supercomputing application. pNFS includes re-

mote cluster reads and writes. Panache Miss reads from the

remote and asynchronous write back. Panache Hit reads from

the cache and asynchronous write back.

7.6 MapReduce Application

The MapReduce framework provides a programmable

infrastructure to build highly parallel applications that

operate on large data sets [11]. Using this framework,

applications define a map function that defines a key and

operates on a chunk of the data. The reduce function

aggregates the results for a given key. Developers may

write several MapReduce programs to extract different

properties from a single data set, building a use case

for remote caching. We use the MapReduce framework

from Hadoop 0.20.1 [6] and configured it to use Panache

as the underlying distributed store (instead of the HDFS

file system it uses by default).

Table 4 presents the performance of Distributed Grep,

a canonical MapReduce example application, over a data

set of 16 files, 500MB each, running in parallel across 8

nodes with the remote cluster also consisting of 8 nodes.

The GPFS result was the baseline result where the data

was already available in the local GPFS cluster. In the

Panache miss case, as the distributed grep application

accessed the input files, the gateway nodes dynamically

ingested the data in parallel from the remote cluster. In

the hit case, Panache revalidated the data every 15 secs

with the remote cluster. This experiment validates our

assertion that data can be dynamically cached and imme-

diately available for parallel access from multiple nodes

within the cluster.

Hadoop+GPFS Hadoop+Panache

Local Miss LAN Miss WAN Hit

81.6 (s) 113.1 (s) 140.6 (s) 86.5 (s)

Table 4: MapReduce application. Distributed Grep using

the Hadoop framework over GPFS and Panache. The WAN

results are over a 30ms latency link.

8 Related Work

Distributed file systems have been an active area of re-

search for almost two decades. NFS is among the most

widely-used distributed networked file systems. Other

variants of NFS, Spritely NFS [28] and NQNFS [20]

added stronger consistency semantics to NFS by adding

server callbacks and leases. NFSv4 greatly enhances

wide-area access support, optimizes consistency support

via delegations, and improves compatibility with Win-

dows. The latest revision, NFSv4.1, also adds parallel

data access across a variety of clustered file and stor-

age systems. In the non-Unix world, the Common In-

ternet File System (CIFS) protocol is used to allow MS-

Windows hosts to share data over the Internet. While

these distributed file systems provide remote file access

and some limited in-memory client caching they cannot

operate across multiple nodes and in the presence of net-
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work and server failures.

Apart from NFS, another widely studied globally

distributed file system is AFS [17]. It provides

close-to-open consistency, supports client-side persis-

tent caching, and relies on client callbacks as the primary

mechanism for cache revalidation. Later, Coda [25] and

Ficus [24] dealt with replication for better scalability

while focusing on disconnected operations for greater

data availability in the event of a network partition.

More recently, the work on TierStore applies some of

the same principles for the development and deployment

of applications in bandwidth challenged networks [13].

It defines Delay Tolerant Networking with a store-and-

forward network overlay and a publish/subscribe-based

multicast replication protocol. In limited bandwidth en-

vironments, LBFS takes a different approach by focus-

ing on reducing bandwidth usage by eliminating cross-

file similarities [22]. Panache can easily absorb some

of its similarity techniques to reduce the data transfer to

and from the cache.

A plethora of commercial WAFS and WAN accelera-

tion products provide caching for NFS and CIFS using

custom devices and proprietary protocols [1]. Panache

differs from WAFS solutions as it relies on standard pro-

tocols between the remote and cache sites. Muntz and

Honeyman [21] looked at multi-level caching to solve

scaling problems in distributed file systems but ques-

tioned its effectiveness. However, their observations

may not hold today as the advances in network band-

width, web-based applications, and the emerging trends

of cloud stores have substantially increased remote col-

laboration. Furthermore, cooperative caching, both in

the web and file system space, has been extensively stud-

ied [10]. The primary focus, however, has been to ex-

pand the cache space available by sharing data across

sites to improve hit rates.

Lustre [3] and PanFS [29] are highly-scalable object

based cluster file systems. These efforts have focused on

improving file-serving performance and are not designed

for remotely accessing data from existing file servers and

NAS appliances over a WAN.

FS-Cache is a single-node caching file system layer

for Linux that can be used to enhance the performance of

a distributed file system such as NFS [18]. FS-Cache is

not a standalone file system; instead it is meant to work

with the front and back file systems. Unlike Panache,

it does not mimic the namespace of the remote file sys-

tem and does not provide direct POSIX access to the

cache. Moreover, FS-Cache is a single node system and

is not designed for multiple nodes of a cluster accessing

the cache concurrently. Similar implementations such

as CacheFS are available on other platforms such as So-

laris and as a stackable file system with improved cache

policies [27].

A number of research efforts have focused on build-

ing large scale distributed storage facilities using cus-

tomized protocols and replication. The Bayou [12]

project introduced eventual consistency across repli-

cas, an idea that we borrowed in Panache for converg-

ing to a consistent state after failure. The Oceanstore

project [19] used Byzantine agreement techniques to co-

ordinate access between the primary replica and the sec-

ondaries. The PRACTI replication framework [9] sep-

arated the flow of cache invalidation traffic from that

of data itself. Others like Farsite [8] enabled unreli-

able servers to combine their resources into a highly-

available and reliable file storage facility.

Recently the success of file sharing on the Web, es-

pecially BitTorrent [5] which has been widely studied,

has triggered renewed effort for applying similar ideas to

build peer-to-peer storage systems. BitTorrent’s chunk-

based data retrieval method that enables clients to fetch

data in parallel from multiple remote sources is similar

to the implementation of parallel reads in Panache.

9 Conclusions

This paper introduced Panache, a scalable, high-

performance, clustered file system cache that promises

seamless access to massive and remote datasets.

Panache supports a POSIX interface and employs a fully

parallelizable design, enabling applications to saturate

available network and compute hardware. Panache can

also mask fluctuating WAN latencies and outages by act-

ing as a standalone file system under adverse conditions.
We evaluated Panache using several data and meta-

data micro-benchmarks in local and wide area networks,
demonstrating the scalability of using multiple gateway
nodes to flush and ingest data from a remote cluster. We
also demonstrated the benefits for both a visualization
and analytics application. As Panache achieves the per-
formance of a clustered file system on a cache hit, large
scale applications can leverage a clustered caching solu-
tion without paying the performance penalty of access-
ing remote data using out-of-band techniques.
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Abstract
Live migration of virtual hard disks between storage

arrays has long been possible. However, there is a dearth
of online tools to perform automated virtual disk place-
ment and IO load balancing across multiple storage ar-
rays. This problem is quite challenging because the per-
formance of IO workloads depends heavily on their own
characteristics and that of the underlying storage device.
Moreover, many device-specific details are hidden behind
the interface exposed by storage arrays.

In this paper, we introduce BASIL, a novel software
system that automatically manages virtual disk placement
and performs load balancing across devices without as-
suming any support from the storage arrays. BASIL uses
IO latency as a primary metric for modeling. Our tech-
nique involves separate online modeling of workloads
and storage devices. BASIL uses these models to rec-
ommend migrations between devices to balance load and
improve overall performance.

We present the design and implementation of BASIL in
the context of VMware ESX, a hypervisor-based virtual-
ization system, and demonstrate that the modeling works
well for a wide range of workloads and devices. We eval-
uate the placements recommended by BASIL, and show
that they lead to improvements of at least 25% in both
latency and throughput for 80 percent of the hundreds
of microbenchmark configurations we ran. When tested
with enterprise applications, BASIL performed favorably
versus human experts, improving latency by 18-27%.

1 Introduction

Live migration of virtual machines has been used exten-
sively in order to manage CPU and memory resources,
and to improve overall utilization across multiple physi-
cal hosts. Tools such as VMware’s Distributed Resource
Scheduler (DRS) perform automated placement of vir-
tual machines (VMs) on a cluster of hosts in an efficient

and effective manner [6]. However, automatic placement
and load balancing of IO workloads across a set of stor-
age devices has remained an open problem. Diverse IO
behavior from various workloads and hot-spotting can
cause significant imbalance across devices over time.

An automated tool would also enable the aggregation
of multiple storage devices (LUNs), also known as data
stores, into a single, flexible pool of storage that we call
a POD (i.e. Pool of Data stores). Administrators can
dynamically populate PODs with data stores of similar
reliability characteristics and then just associate virtual
disks with a POD. The load balancer would take care of
initial placement as well as future migrations based on
actual workload measurements. The flexibility of sep-
arating the physical from the logical greatly simplifies
storage management by allowing data stores to be effi-
ciently and dynamically added or removed from PODs
to deal with maintenance, out of space conditions and
performance issues.

In spite of significant research towards storage config-
uration, workload characterization, array modeling and
automatic data placement [8, 10, 12, 15, 21], most stor-
age administrators in IT organizations today rely on rules
of thumb and ad hoc techniques, both for configuring a
storage array and laying out data on different LUNs. For
example, placement of workloads is often based on bal-
ancing space consumption or the number of workloads
on each data store, which can lead to hot-spotting of IOs
on fewer devices. Over-provisioning is also used in some
cases to mitigate real or perceived performance issues
and to isolate top-tier workloads.

The need for a storage management utility is even
greater in virtualized environments because of high de-
grees of storage consolidation and sprawl of virtual disks
over tens to hundreds of data stores. Figure 1 shows a typ-
ical setup in a virtualized datacenter, where a set of hosts
has access to multiple shared data stores. The storage
array is carved up into groups of disks with some RAID
level configuration. Each such disk group is further di-
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Figure 1: Live virtual disk migration between devices.

vided into LUNs which are exported to hosts as storage
devices (referred to interchangeably as data stores). Ini-
tial placement of virtual disks and data migration across
different data stores should be guided by workload char-
acterization, device modeling and analysis to improve
IO performance as well as utilization of storage devices.
This is more difficult than CPU or memory allocation
because storage is a stateful resource: IO performance
depends strongly on workload and device characteristics.

In this paper, we present the design and implementa-
tion of BASIL, a light-weight online storage management
system. BASIL is novel in two key ways: (1) identify-
ing IO latency as the primary metric for modeling, and
(2) using simple models both for workloads and devices
that can be obtained efficiently online. BASIL uses IO
latency as the main metric because of its near linear re-
lationship with application-level characteristics (shown
later in Section 3). Throughput and bandwidth, on the
other hand, behave non-linearly with respect to various
workload characteristics.

For modeling, we partition the measurements into two
sets. First are the properties that are inherent to a work-
load and mostly independent of the underlying device
such as seek-distance profile, IO size, read-write ratio
and number of outstanding IOs. Second are device de-
pendent measurements such as IOPS and IO latency. We
use the first set to model workloads and a subset of the
latter to model devices. Based on measurements and the
corresponding models, the analyzer assigns the IO load
in proportion to the performance of each storage device.

We have prototyped BASIL in a real environment with
a set of virtualized servers, each running multiple VMs
placed across many data stores. Our extensive evalua-
tion based on hundreds of workloads and tens of device
configurations shows that our models are simple yet effec-
tive. Results indicate that BASIL achieves improvements
in throughput of at least 25% and latency reduction of at
least 33% in over 80 percent of all of our test configura-
tions. In fact, approximately half the tests cases saw at
least 50% better throughput and latency. BASIL achieves
optimal initial placement of virtual disks in 68% of our
experiments. For load balancing of enterprise applica-
tions, BASIL outperforms human experts by improving
latency by 18-27% and throughput by up to 10%.

The next section presents some background on the rele-
vant prior work and a comparison with BASIL. Section 3
discusses details of our workload characterization and
modeling techniques. Device modeling techniques and
storage specific issues are discussed in Section 4. Load
balancing and initial placement algorithms are described
in Section 5. Section 6 presents the results of our ex-
tensive evaluation on real testbeds. Finally, we conclude
with some directions for future work in Section 7.

2 Background and Prior Art

Storage management has been an active area of research
in the past decade but the state of the art still consists of
rules of thumb, guess work and extensive manual tuning.
Prior work has focused on a variety of related problems
such as disk drive and array modeling, storage array con-
figuration, workload characterization and data migration.

Existing modeling approaches can be classified as ei-
ther white-box or black-box, based on the need for de-
tailed information about internals of a storage device.
Black-box models are generally preferred because they
are oblivious to the internal details of arrays and can be
widely deployed in practice. Another classification is
based on absolute vs. relative modeling of devices. Ab-
solute models try to predict the actual bandwidth, IOPS
and/or latency for a given workload when placed on a stor-
age device. In contrast, a relative model may just provide
the relative change in performance of a workload from
device A to B. The latter is more useful if a workload’s
performance on one of the devices is already known. Our
approach (BASIL) is a black-box technique that relies on
the relative performance modeling of storage devices.

Automated management tools such as Hippo-
drome [10] and Minerva [8] have been proposed in
prior work to ease the tasks of a storage administrator.
Hippodrome automates storage system configuration
by iterating over three stages: analyze workloads,
design the new system and implement the new design.
Similarly, Minerva [8] uses a declarative specification
of application requirements and device capabilities
to solve a constraint-based optimization problem for
storage-system design. The goal is to come up with the
best array configuration for a workload. The workload
characteristics used by both Minerva and Hippodrome
are somewhat more detailed and different than ours.
These tools are trying to solve a different and a more
difficult problem of optimizing overall storage system
configuration. We instead focus on load balancing of
IO workloads among existing storage devices across
multiple arrays.

Mesnier et al. [15] proposed a black-box approach
based on evaluating relative fitness of storage devices
to predict the performance of a workload as it is moved
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from its current storage device to another. Their approach
requires extensive training data to create relative fitness
models among every pair of devices. Practically speak-
ing, this is hard to do in an enterprise environment where
storage devices may get added over time and may not be
available for such analysis. They also do very extensive
offline modeling for bandwidth, IOPS and latency and we
derive a much simpler device model consisting of a single
parameter in a completely online manner. As such, our
models may be somewhat less detailed or less accurate,
but experimentation shows that they work well enough in
practice to guide our load balancer. Their model can po-
tentially be integrated with our load balancer as an input
into our own device modeling.

Analytical models have been proposed in the past for
both single disk drives and storage arrays [14, 17, 19, 20].
Other models include table-based [9] and machine learn-
ing [22] techniques. These models try to accurately pre-
dict the performance of a storage device given a particular
workload. Most analytical models require detailed knowl-
edge of the storage device such as sectors per track, cache
sizes, read-ahead policies, RAID type, RPM for disks etc.
Such information is very hard to obtain automatically
in real systems, and most of it is abstracted out in the
interfaces presented by storage arrays to the hosts. Oth-
ers need an extensive offline analysis to generate device
models. One key requirement that BASIL addresses is
using only the information that can be easily collected on-
line in a live system using existing performance monitor-
ing tools. While one can clearly make better predictions
given more detailed information and exclusive, offline ac-
cess to storage devices, we don’t consider this practical
for real deployments.

3 Workload Characterization

Any attempt at designing intelligent IO-aware placement
policies must start with storage workload characterization
as an essential first step. For each workload in our sys-
tem, we currently track the average IO latency along the
following parameters: seek distance, IO sizes, read-write
ratio and average number of outstanding IOs. We use
the VMware ESX hypervisor, in which these parameters
can be easily obtained for each VM and each virtual disk
in an online, light-weight and transparent manner [7]. A
similar tool is available for Xen [18]. Data is collected for
both reads and writes to identify any potential anomalies
in the application or device behavior towards different
request types.

We have observed that, to the first approximation, four
of our measured parameters (i.e., randomness, IO size,
read-write ratio and average outstanding IOs) are inherent
to a workload and are mostly independent of the underly-
ing device. In actual fact, some of the characteristics that

we classify as inherent to a workload can indeed be par-
tially dependent on the response times delivered by the
storage device; e.g., IO sizes for a database logger might
decrease as IO latencies decrease. In previous work [15],
Mesnier et al. modeled the change in workload as it is
moved from one device to another. According to their
data, most characteristics showed a small change except
write seek distance. Our model makes this assumption
for simplicity and errors associated with this assumption
appear to be quite small.

Our workload model tries to predict a notion of load
that a workload might induce on storage devices using
these characteristics. In order to develop a model, we
ran a large set of experiments varying the values of each
of these parameters using Iometer [3] inside a Microsoft
Windows 2003 VM accessing a 4-disk RAID-0 LUN on
an EMC CLARiiON array. The set of values chosen for
our 750 configurations are a cross-product of:

Outstanding IOs {4, 8, 16, 32, 64}
IO size (in KB) {8, 16, 32, 128, 256, 512}

Read% {0, 25, 50, 75, 100}
Random% {0, 25, 50, 75, 100}

For each of these configurations we obtain the values of
average IO latency and IOPS, both for reads and writes.
For the purpose of workload modeling, we next discuss
some representative sample observations of average IO la-
tency for each one of these parameters while keeping the
others fixed. Figure 2(a) shows the relationship between
IO latency and outstanding IOs (OIOs) for various work-
load configurations. We note that latency varies linearly
with the number of outstanding IOs for all the configu-
rations. This is expected because as the total number of
OIOs increases, the overall queuing delay should increase
linearly with it. For very small number of OIOs, we may
see non-linear behavior because of the improvement in
device throughput but over a reasonable range (8-64) of
OIOs, we consistently observe very linear behavior. Sim-
ilarly, IO latency tends to vary linearly with the variation
in IO sizes as shown in Figure 2(b). This is because the
transmission delay increases linearly with IO size.

Figure 2(c) shows the variation of IO latency as we
increase the percentage of reads in the workload. In-
terestingly, the latency again varies linearly with read
percentage except for some non-linearity around corner
cases such as completely sequential workloads. We use
the read-write ratio as a parameter in our modeling be-
cause we noticed that, for most cases, the read latencies
were very different compared to write (almost an order
of magnitude higher) making it important to characterize
a workload using this parameter. We believe that the dif-
ference in latencies is mainly due to the fact that writes
return once they are written to the cache at the array and
the latency of destaging is hidden from the application.
Of course, in cases where the cache is almost full, the
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Figure 2: Variation of IO latency with respect to each of the four workload characteristics: outstanding IOs, IO size, %
Reads and % Randomness. Experiments run on a 4-disk RAID-0 LUN on an EMC CLARiiON CX3-40 array.

writes may see latencies closer to the reads. We believe
this to be fairly uncommon especially given the burstiness
of most enterprise applications [12]. Finally, the variation
of latency with random% is shown in Figure 2(d). Notice
the linear relationship with a very small slope, except for
a big drop in latency for the completely sequential work-
load. These results show that except for extreme cases
such as 100% sequential or 100% write workloads, the
behavior of latency with respect to these parameters is
quite close to linear1. Another key observation is that the
cases where we typically observe non-linearity are easy
to identify using their online characterization.

Based on these observations, we modeled the IO la-
tency (L) of a workload using the following equation:

L =
(K1 +OIO)(K2 + IOsize)(K3 +

read%
100

)(K4 +
random%

100
)

K5
(1)

We compute all of the constants in the above equation
using the data points available to us. We explain the
computation of K1 here, other constants K2,K3 and K4 are
computed in a similar manner. To compute K1, we take
two latency measurements with different OIO values but
the same value for the other three workload parameters.
Then by dividing the two equations we get:

L1

L2
=

K1 +OIO1

K1 +OIO2
(2)

1The small negative slope in some cases in Figure 2(d) with large
OIOs is due to known prefetching issues in our target array’s firmware
version. This effect went away when prefetching is turned off.

K1 =
OIO1−OIO2 ∗L1/L2

L1/L2−1
(3)

We compute the value of K1 for all pairs where the
three parameters except OIO are identical and take the
median of the set of values obtained as K1. The values of
K1 fall within a range with some outliers and picking a
median ensures that we are not biased by a few extreme
values. We repeat the same procedure to obtain other
constants in the numerator of Equation 1.

To obtain the value of K5, we compute a linear fit be-
tween actual latency values and the value of the numera-
tor based on Ki values. Linear fitting returns the value of
K5 that minimizes the least square error between the ac-
tual measured values of latency and our estimated values.

Using IO latencies for training our workload model
creates some dependence on the underlying device and
storage array architectures. While this isn’t ideal, we
argue that as a practical matter, if the associated errors
are small enough, and if the high error cases can usually
be identified and dealt with separately, the simplicity of
our modeling approach makes it an attractive technique.

Once we determined all the constants of the model
in Equation 1, we compared the computed and actual
latency values. Figure 3(a) (LUN1) shows the relative
error between the actual and computed latency values
for all workload configurations. Note that the computed
values do a fairly good job of tracking the actual values in
most cases. We individually studied the data points with
high errors and the majority of those were sequential IO
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Figure 3: Relative error in latency computation based on our formula and actual latency values observed.

or write-only patterns. Figure 3(b) plots the same data
but with the 100% sequential workloads filtered out.

In order to validate our modeling technique, we ran the
same 750 workload configurations on a different LUN on
the same EMC storage array, this time with 8 disks. We
used the same values of K1, K2,K3 and K4 as computed
before on the 4-disk LUN. Since the disk types and RAID
configuration was identical, K5 should vary in proportion
with the number of disks, so we doubled the value, as the
number of disks is doubled in this case. Figure 3 (LUN
2) again shows the error between actual and computed
latency values for various workload configurations. Note
that the computed values based on the previous constants
are fairly good at tracking the actual values. We again
noticed that most of the high error cases were due to the
poor prediction for corner cases, such as 100% sequential,
100% writes, etc.

To understand variation across different storage archi-
tectures, we ran a similar set of 750 tests on a NetApp
FAS-3140 storage array. The experiments were run on a
256 GB virtual disk created on a 500 GB LUN backed
by a 7-disk RAID-6 (double parity) group. Figures 4(a),
(b), (c) and (d) show the relationship between average
IO latency with OIOs, IO size, Read% and Random%
respectively. Again for OIOs, IO size and Random%, we
observed a linear behavior with positive slope. However,
for the Read% case on the NetApp array, the slope was
close to zero or slightly negative. We also found that the
read latencies were very close to or slightly smaller than
write latencies in most cases. We believe this is due to a
small NVRAM cache in the array (512 MB). The writes
are getting flushed to the disks in a synchronous manner
and array is giving slight preference to reads over writes.
We again modeled the system using Equation 1, calcu-
lated the Ki constants and computed the relative error in
the measured and computed latencies using the NetApp
measurements. Figure 3 (NetApp) shows the relative er-
ror for all 750 cases. We looked into the mapping of cases

with high error with the actual configurations and noticed
that almost all of those configurations are completely se-
quential workloads. This shows that our linear model
over-predicts the latency for 100% sequential workloads
because the linearity assumption doesn’t hold in such ex-
treme cases. Figures 2(d) and 4(d) also show a big drop
in latency as we go from 25% random to 0% random.
We looked at the relationship between IO latency and
workload parameters for such extreme cases. Figure 5
shows that for sequential cases the relationship between
IO latency and read% is not quite linear.

In practice, we think such cases are less common and
poor prediction for such cases is not as critical. Earlier
work in the area of workload characterization [12,13] con-
firms our experience. Most enterprise and web workloads
that have been studied including Microsoft Exchange, a
maps server, and TPC-C and TPC-E like workloads ex-
hibit very little sequential accesses. The only notable
workloads that have greater than 75% sequentiality are
decision support systems.

Since K5 is a device dependent parameter, we use the
numerator of Equation 1 to represent the load metric (L )
for a workload. Based on our experience and empirical
data, K1, K2, K3 and K4 lie in a narrow range even when
measured across devices. This gives us a choice when
applying our modeling on a real system: we can use a
fixed set of values for the constants or recalibrate the
model by computing the constants on a per-device basis
in an offline manner when a device is first provisioned
and added to the storage POD.

4 Storage Device Modeling

So far we have discussed the modeling of workloads
based on the parameters that are inherent to a workload.
In this section we present our device modeling technique
using the measurements dependent on the performance of
the device. Most of the device-level characteristics such
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Figure 4: Variation of IO latency with respect to each of the four workload characteristics: outstanding IOs, IO size, %
Reads and % Randomness. Experiments run on a 7-disk RAID-6 LUN on a NetApp FAS-3140 array.
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Figure 5: Varying Read% for the Anomalous Workloads

as number of disk spindles backing a LUN, disk-level
features such as RPM, average seek delay, etc. are hid-
den from the hosts. Storage arrays only expose a LUN
as a logical device. This makes it very hard to make load
balancing decisions because we don’t know if a workload
is being moved from a LUN with 20 disks to a LUN with
5 disks, or from a LUN with faster Fibre Channel (FC)
disk drives to a LUN with slower SATA drives.

For device modeling, instead of trying to obtain a
white-box model of the LUNs, we use IO latency as the
main performance metric. We collect information pairs
consisting of number of outstanding IOs and average IO
latency observed. In any time interval, hosts know the av-
erage number of outstanding IOs that are sent to a LUN
and they also measure the average IO latency observed
by the IOs. This information can be easily gathered using

existing tools such as esxtop or xentop, without any extra
overhead. For clustered environments, where multiple
hosts access the same LUN, we aggregate this informa-
tion across hosts to get a complete view.

We have observed that IO latency increases linearly
with the increase in number of outstanding IOs (i.e., load)
on the array. This is also shown in earlier studies [11].
Given this knowledge, we use the set of data points of the
form OIO,Latency over a period of time and compute
a linear fit which minimizes the least squares error for
the data points. The slope of the resulting line would
indicate the overall performance capability of the LUN.
We believe that this should cover cases where LUNs have
different number of disks and where disks have diverse
characteristics, e.g., enterprise-class FC vs SATA disks.

We conducted a simple experiment using LUNs with
different number of disks and measured the slope of the
linear fit line. An illustrative workload of 8KB random
IOs is run on each of the LUNs using a Windows 2003
VM running Iometer [3]. Figure 6 shows the variation of
IO latency with OIOs for LUNs with 4 to 16 disks. Note
that the slopes vary inversely with the number of disks.

To understand the behavior in presence of different
disk types, we ran an experiment on a NetApp FAS-3140
storage array using two LUNs, each with seven disks and
dual parity RAID. LUN1 consisted of enterprise class
FC disks (134 GB each) and LUN2 consisted of slower
SATA disks (414 GB each). We created virtual disks of
size 256 GB on each of the LUNs and ran a workload
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Figure 7: Device Modeling: different disk types

with 80% reads, 70% randomness and 16KB IOs, with
different values of OIOs. The workloads were generated
using Iometer [3] inside a Windows 2003 VM. Figure 7
shows the average latency observed for these two LUNs
with respect to OIOs. Note that the slope for LUN1 with
faster disks is 1.13, which is lower compared to the slope
of 3.5 for LUN2 with slower disks.

This data shows that the performance of a LUN can be
estimated by looking at the slope of relationship between
average latency and outstanding IOs over a long time
interval. Based on these results, we define a performance
parameter P to be the inverse of the slope obtained by
computing a linear fit on the OIO,Latency data pairs
collected for that LUN.

4.1 Storage-specific Challenges
Storage devices are stateful, and IO latencies observed
are dependent on the actual workload going to the LUN.
For example, writes and sequential IOs may have very
different latencies compared to reads and random IOs,
respectively. This can create problems for device mod-
eling if the IO behavior is different for various OIO val-
ues. We observed this behavior while experimenting with
the DVD Store [1] database test suite, which represents a
complete online e-commerce application running on SQL
databases. The setup consisted of one database LUN and
one log LUN, of sizes 250 GB and 10 GB respectively.
Figure 8 shows the distribution of OIO and latency pairs
for a 30 minute run of DVD Store. Note that the slope
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Figure 8: Negative slope in case of running DVD Store
workload on a LUN. This happens due to a large number
of writes happening during periods of high OIOs.
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Figure 9: This plot shows the slopes for two data stores,
both running DVD Store. Writes are filtered out in the
model. The slopes are positive here and the slope value
is lower for the 8 disk LUN.

turned out to be slightly negative, which is not desirable
for modeling. Upon investigation, we found that the data
points with larger OIO values were bursty writes that have
smaller latencies because of write caching at the array.

Similar anomalies can happen for other cases: (1) Se-
quential IOs: the slope can be negative if IOs are highly
sequential during the periods of large OIOs and random
for smaller OIO values. (2) Large IO sizes: the slope can
be negative if the IO sizes are large during the period of
low OIOs and small during high OIO periods. All these
workload-specific details and extreme cases can adversely
impact the workload model.

In order to mitigate this issue, we made two modifica-
tions to our model: first, we consider only read OIOs and
average read latencies. This ensures that cached writes
are not going to affect the overall device model. Second,
we ignore data points where an extreme behavior is de-
tected in terms of average IO size and sequentiality. In
our current prototype, we ignore data points when IO size
is greater than 32 KB or sequentiality is more than 90%.
In the future, we plan to study normalizing latency by IO
size instead of ignoring such data points. In practice, this
isn’t a big problem because (a) with virtualization, single
LUNs typically host VMs with numerous different work-
load types, (b) we expect to collect data for each LUN
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over a period of days in order to make migration deci-
sions, which allows IO from various VMs to be included
in our results and (c) even if a single VM workload is se-
quential, the overall IO pattern arriving at the array may
look random due to high consolidation ratios typical in
virtualized systems.

With these provisions in place, we used DVD Store
again to perform device modeling and looked at the slope
values for two different LUNs with 4 and 8 disks. Fig-
ure 9 shows the slope values for the two LUNs. Note that
the slopes are positive for both LUNs and the slope is
lower for the LUN with more disks.

Cache size available to a LUN can also impact the
overall IO performance. The first order impact should be
captured by the IO latency seen by a workload. In some
experiments, we observed that the slope was smaller for
LUNs on an array with a larger cache, even if other char-
acteristics were similar. Next, we complete the algorithm
by showing how the workload and device models are used
for dynamic load balancing and initial placement of vir-
tual disks on LUNs.

5 Load Balance Engine

Load balancing requires a metric to balance over multi-
ple resources. We use the numerator of Equation 1 (de-
noted as Li), as the main metric for load balancing for
each workload Wi. Furthermore, we also need to consider
LUN performance while doing load balancing. We use
parameter P j to represent the performance of device D j.
Intuitively we want to make the load proportional to the
performance of each device. So the problem reduces to
equalizing the ratio of the sum of workload metrics and
the LUN performance metric for each LUN. Mathemati-
cally, we want to equate the following across devices:

∑
∀ Wi on D j

Li

P j
(4)

The algorithm first computes the sum of workload met-
rics. Let N be the normalized load on a device:

Nj =
∑Li

P j
(5)

Let Avg({N}) and σ({N}) be the average and stan-
dard deviation of the normalized load across devices.
Let the imbalance fraction f be defined as f ({N}) =
σ({N})/Avg({N}). In a loop, until we get the imbalance
fraction f ({N}) under a threshold, we pick the devices
with minimum and maximum normalized load to do pair-
wise migrations such that the imbalance is lowered with
each move. Each iteration of the loop tries to find the
virtual disks that need to be moved from the device with

Algorithm 1: Load Balancing Step
foreach device D j do

foreach workload Wi currently placed D j do
S+ = Li

Nj ←− S/P j

while f ({N}) > imbalanceT hreshold do
dx ←− Device with maximum normalized load
dy ←− Device with minimum normalized load
Nx,Ny ←− PairWiseRecommendMigration(dx, dy)

maximum normalized load to the one with the minimum
normalized load. Perfect balancing between these two de-
vices is a variant of subset-sum problem which is known
to be NP-complete. We are using one of the approxima-
tions [16] proposed for this problem with a quite good
competitive ratio of 3/4 with respect to optimal. We have
tested other heuristics as well, but the gain from trying
to reach the best balance is outweighed by the cost of
migrations in some cases.

Algorithm 1 presents the pseudo-code for the load bal-
ancing algorithm. The imbalance threshold can be used
to control the tolerated degree of imbalance in the sys-
tem and therefore the aggressiveness of the algorithm.
Optimizations in terms of data movement and cost of mi-
grations are explained next.
Workload/Virtual Disk Selection: To refine the recom-
mendations, we propose biasing the choice of migration
candidates in one of many ways: (1) pick virtual disks
with the highest value of Li/(disk size) first, so that
the change in load per GB of data movement is higher
leading to smaller data movement, (2) pick virtual disks
with smallest current IOPS/Li first, so that the immedi-
ate impact of data movement is minimal, (3) filter for
constraints such as affinity between virtual disks and data
stores, (4) avoid ping-ponging of the same virtual disk be-
tween data stores, (5) prevent migration movements that
violate per-VM data reliability or data protection poli-
cies (e.g., RAID-level), etc. Hard constraints (e.g., access
to the destination data store at the current host running
the VM) can also be handled as part of virtual disk se-
lection in this step. Overall, this step incorporates any
cost-benefit analysis that is needed to choose which VMs
to migrate in order to do load balancing. After computing
these recommendations, they can either be presented to
the user as suggestions or can be carried out automati-
cally during periods of low activity. Administrators can
even configure the times when the migrations should be
carried out, e.g., migrate on Saturday nights after 2am.
Initial Placement: A good decision for the initial place-
ment of a workload is as important as future migrations.
Initial placement gives us a good way to reduce potential
imbalance issues in future. In BASIL, we use the over-
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all normalized load N as an indicator of current load on
a LUN. After resolving user-specified hard constraints
(e.g., reliability), we choose the LUN with the minimum
value of the normalized load for a new virtual disk. This
ensures that with each initial placement, we are attempt-
ing to naturally reduce the overall load imbalance among
LUNs.

Discussion: In previous work [12], we looked at the im-
pact of consolidation on various kinds of workloads. We
observed that when random workloads and the underly-
ing devices are consolidated, they tend to perform at least
as good or better in terms of handling bursts and the over-
all impact of interference is very small. However, when
random and sequential workloads were placed together,
we saw degradation in throughput of sequential work-
loads. As noted in Section 3, studies [12, 13] of several
enterprise applications such as Microsoft Exchange and
databases have observed that random access IO patterns
are the predominant type.

Nevertheless, to handle specific workloads such as log
virtual disks, decision support systems, and multi-media
servers, we plan to incorporate two optimizations. First,
identifying such cases and isolating them on a separate
set of spindles to reduce interference. Second, allocat-
ing fewer disks to the sequential workloads because their
performance is less dependent on the number of disks as
compared to random ones. This can be done by setting
soft affinity for these workloads to specific LUNs, and
anti-affinity for them against random ones. Thus we can
bias our greedy load balancing heuristic to consider such
affinity rules while making placement decisions.

Whereas we consider these optimizations as part of
our future work, we believe that the proposed techniques
are useful for a wide variety of cases, even in their cur-
rent form, since in some cases, administrators may isolate
such workloads on separate LUNs manually and set hard
affinity rules. We can also assist storage administrators
by identifying such workloads based on our online data
collection. In some cases users may have reliability or
other policy constraints such as RAID-level or mirroring,
attached to VM disks. In those cases a set of devices
would be unsuitable for some VMs, and we would treat
that as a hard constraint in our load balancing mecha-
nism while recommending placements and migrations.
Essentially the migrations would occur among devices
with similar static characteristics. The administrator can
choose the set of static characteristics that are used for
combining devices into a single storage POD (our load
balancing domain). Some of these may be reliabilitity,
backup frequency, support for de-duplication, thin provi-
sioning, security isolation and so on.

Type OIO range IO size %Read %Random
Workstation [4-12] 8 80 80
Exchange [4-16] 4 67 100

OLTP [12-16] 8 70 100
Webserver [1-4] 4 95 75

Table 1: Iometer workload configuration definitions.

6 Experimental Evaluation

In this section we discuss experimental results based on
an extensive evaluation of BASIL in a real testbed. The
metrics that we use for evaluating BASIL are overall
throughput gain and overall latency reduction. Here over-
all throughput is aggregated across all data stores and
overall latency is the average latency weighted by IOPS
across all data stores. These metrics are used instead of
just individual data store values, because a change at one
data store may lead to an inverse change on another, and
our goal is to improve the overall performance and uti-
lization of the system, and not just individual data stores.

6.1 Testing Framework
Since the performance of a storage device depends greatly
on the type of workloads to which it is subjected, and
their interference, it would be hard to reason about a
load balancing scheme with just a few representative test
cases. One can always argue that the testing is too limited.
Furthermore, once we make a change in the modeling
techniques or load balancing algorithm, we will need to
validate and compare the performance with the previous
versions. To enable repeatable, extensive and quick eval-
uation of BASIL, we implemented a testing framework
emulating a real data center environment, although at a
smaller scale. Our framework consists of a set of hosts,
each running multiple VMs. All the hosts have access to
all the data stores in the load balancing domain. This con-
nectivity requirement is critical to ensure that we don’t
have to worry about physical constraints during our test-
ing. In practice, connectivity can be treated as another
migration constraint. Our testing framework has three
modules: admin, modeler and analyzer that we describe
in detail next.
Admin module: This module initiates the workloads in
each VM, starts collecting periodic IO stats from all hosts
and feeds the stats to the next module for generation of
workload and device models. The IO stats are collected
per virtual disk. The granularity of sampling is config-
urable and set to 2-10 seconds for experiments in this
paper. Finally, this module is also responsible for apply-
ing migrations that are recommended by the analyzer. In
order to speed up the testing, we emulate the migrations
by shifting the workload from one data store to another,
instead of actually doing data migration. This is possible
because we create an identical copy of each virtual disk
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Before Running BASIL After Running BASIL
Iometer BASIL Online Workload Model Latency Throughput Location Latency Throughput Location

Workload [OIO, IOsize, Read%, Random%] (ms) (IOPS) (ms) (IOPS)
oltp [7, 8, 70, 100] 28 618 3diskLUN 22 1048 3diskLUN
oltp [16, 8, 69, 100] 35 516 3diskLUN 12 1643 9diskLUN

workstation [6, 8, 81, 79] 60 129 3diskLUN 24 338 9diskLUN
exchange [6, 4, 67, 100] 9 940 6diskLUN 9 964 6diskLUN
exchange [6, 4, 67, 100] 11 777 6diskLUN 8 991 6diskLUN

workstation [4, 8, 80, 79] 13 538 6diskLUN 21 487 9diskLUN
webserver [1, 4, 95, 74] 4 327 9diskLUN 29 79 9diskLUN
webserver [1, 4, 95, 75] 4 327 9diskLUN 45 81 9diskLUN
Weighted Average Latency or Total Throughput 16.7 4172 14.9 (-11%) 5631 (+35%)

Table 2: BASIL online workload model and recommended migrations for a sample initial configuration. Overall
average latency and IO throughput improved after migrations.

Before BASIL After BASIL
Data Stores # Disks P =1/Slope Latency (ms) IOPS Latency (ms) IOPS

3diskLUN 3 0.7 34 1263 22 1048
6diskLUN 6 1.4 10 2255 8 1955
9diskLUN 9 2.0 4 654 16 2628

Table 3: BASIL online device model and disk migrations for a sample initial configuration. Latency, IOPS and overall
load on three data stores before and after recommended migrations.

on all data stores, so a VM can just start accessing the
virtual disk on the destination data store instead of the
source one. This helped to reduce our experimental cycle
from weeks to days.
Modeler: This module gets the raw stats from the admin
module and creates both workload and device models.
The workload models are generated by using per virtual
disk stats. The module computes the cumulative distribu-
tion of all four parameters: OIOs, IO size, Read% and
Random%. To compute the workload load metric Li, we
use the 90th percentile values of these parameters. We
didn’t choose average values because storage workloads
tend to be bursty and the averages can be much lower and
more variable compared to the 90th percentile values. We
want the migration decision to be effective in most cases
instead of just average case scenarios. Since migrations
can take hours to finish, we want the decision to be more
conservative rather than aggressive.

For the device models, we aggregate IO stats from dif-
ferent hosts that may be accessing the same device (e.g.,
using a cluster file system). This is very common in vir-
tualized environments. The OIO values are aggregated as
a sum, and the latency value is computed as a weighted
average using IOPS as the weight in that interval. The
OIO,Latency pairs are collected over a long period of
time to get higher accuracy. Based on these values, the
modeler computes a slope Pi for each device. A device
with no data, is assigned a slope of zero which also mim-
ics the introduction of a new device in the POD.
Analyzer: This module takes all the workload and device
models as input and generates migration recommenda-
tions. It can also be invoked to perform initial placement
of a new virtual disk based on the current configuration.

The output of the analyzer is fed into the admin module
to carry out the recommendations. This can be done iter-
atively till the load imbalance is corrected and the system
stabilizes with no more recommendations generated.

The experiments presented in the next sections are run
on two different servers, one configured with 2 dual-core
3 GHz CPUs, 8 GB RAM and the other with 4 dual-core
3 GHz CPUs and 32 GB RAM. Both hosts have access
to three data stores with 3, 6 and 9 disks over a FC SAN
network. These data stores are 150 GB in size and are
created on an EMC CLARiiON storage array. We ran
8 VMs for our experiments each with one 15 GB OS
disk and one 10 GB experimental disk. The workloads
in the VMs are generated using Iometer [3]. The Iometer
workload types are selected from Table 1, which shows
Iometer configurations that closely represent some of the
real enterprise workloads [5].

6.2 Simple Load Balancing Scenario
In this section, we present detailed analysis for one of
the input cases which looks balanced in terms of number
of VMs per data store. Later, we’ll also show data for a
large number of other scenarios. As shown in Table 2,
we started with an initial configuration using 8 VMs,
each running a workload chosen from Table 1 against
one of the three data stores. First we ran the workloads in
VMs without BASIL; Table 2 shows the corresponding
throughput (IOPS) and latency values seen by the work-
loads. Then we ran BASIL, which created workload and
device models online. The computed workload model
is shown in the second column of Table 2 and device
model is shown as P (third column) in Table 3. It is
worth noting that the computed performance metrics for



USENIX Association  FAST ’10: 8th USENIX Conference on File and Storage Technologies 179

Before Running BASIL After Running BASIL
Iometer BASIL Online Workload Model Latency Throughput Location Latency Throughput Location

Workload [OIO, IOsize, Read%, Random%] (ms) (IOPS) (ms) (IOPS)
exchange [8, 4, 67, 100] 37 234 6diskLUN 62 156 6diskLUN
exchange [8, 4, 67, 100] 39 227 6diskLUN 12 710 3diskLUN
webserver [2, 4, 95, 75] 54 43 6diskLUN 15 158 9diskLUN
webserver [2, 4, 95, 75] 60 39 6diskLUN 18 133 9diskLUN

workstation [7, 8, 80, 80] 41 191 6diskLUN 11 657 9diskLUN
workstation [8, 8, 80, 80] 51 150 6diskLUN 11 686 9diskLUN

oltp [8, 8, 70, 100] 64 402 6diskLUN 28 661 6diskLUN
oltp [8, 8, 70, 100] 59 410 6diskLUN 28 658 6diskLUN

Weighted Average Latency or Total Throughput 51.6 1696 19.5 (-62%) 3819 (+125%)

Table 4: New device provisioning: 3DiskLUN and 9DiskLUN are newly added into the system that had 8 workloads
running on the 6DiskLUN. Average latency, IO throughput and placement for all 8 workloads before and after migration.

Before BASIL After BASIL
Data Stores # Disks P =1/Slope Latency (ms) IOPS Latency (ms) IOPS

3diskLUN 3 0.6 0 0 12 710
6diskLUN 6 1.4 51 1696 31 1475
9diskLUN 9 1.7 0 0 11 1634

Table 5: New device provisioning: latency, IOPS and overall load on three data stores.
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Figure 10: CDF of throughput and latency improvements
with load balancing, starting from random configurations.

devices are proportional to their number of disks. Based
on the modeling, BASIL suggested three migrations over
two rounds. After performing the set of migrations we
again ran BASIL and no further recommendations were
suggested. Tables 2 and 3 show the performance of work-
loads and data stores in the final configuration. Note that
5 out of 8 workloads observed an improvement in IOPS
and reduction in latency. The aggregated IOPS across all
data stores (shown in Table 2) improved by 35% and over-
all weighted latency decreased by 11%. This shows that
for this sample setup BASIL is able to recommend migra-
tions based on actual workload characteristics and device
modeling, thereby improving the overall utilization and
performance.

6.3 New Device Provisioning
Next we studied the behavior of BASIL during the well
known operation of adding more storage devices to a
storage POD. This is typically in response to a space
crunch or a performance bottleneck. In this experiment,
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Figure 11: CDF of latency and throughput improvements
from BASIL initial placement versus random.

we started with all VMs on the single 6DiskLUN data
store and we added the other two LUNs into the sys-
tem. In the first round, BASIL observed the two new
data stores, but didn’t have any device model for them
due to lack of IOs. In a full implementation, we have the
option of performing some offline modeling at the time of
provisioning, but currently we use the heuristic of placing
only one workload on a new data store with no model.

Table 4 shows the eight workloads, their computed
models, initial placement and the observed IOPS and
latency values. BASIL recommended five migrations
over two rounds. In the first round BASIL migrated one
workload to each of 3DiskLUN and 9DiskLUN. In the
next round, BASIL had slope information for all three
data stores and it migrated three more workloads from
6DiskLUN to 9DiskLUN. The final placement along with
performance results are again shown in Table 4. Seven
out of eight workloads observed gains in throughput and
decreased latencies. The loss in one workload is offset
by gains in others on the same data store. We believe
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that this loss happened due to unfair IO scheduling of
LUN resources at the storage array. Such effects have
been observed before [11]. Overall data store models and
performance before and after running BASIL are shown
in Table 5. Note that the load is evenly distributed across
data stores in proportion to their performance. In the
end, we observed a 125% gain in aggregated IOPS and
62% decrease in weighted average latency (Table 4). This
shows that BASIL can handle provisioning of new stor-
age devices well by quickly performing online modeling
and recommending appropriate migrations to get higher
utilization and better performance from the system.

6.4 Summary for 500 Configurations

Having looked at BASIL for individual test cases, we ran
it for a large set of randomly generated initial configura-
tions. In this section, we present a summary of results
of over 500 different configurations. Each test case in-
volved a random selection of 8 workloads from the set
shown in Table 1, and a random initial placement of them
on three data stores. Then in a loop we collected all the
statistics in terms of IOPS and latency, performed online
modeling, ran the load balancer and performed workload
migrations. This was repeated until no further migrations
were recommended. We observed that all configurations
showed an increase in overall IOPS and decrease in over-
all latency. There were fluctuations in the performance
of individual workloads, but that is expected given that
load balancing puts extra load on some data stores and
reduces load on others. Figure 10 shows the cumulative
distribution of gain in IOPS and reduction in latency for
500 different runs. We observed an overall throughput in-
crease of greater than 25% and latency reduction of 33%
in over 80% of all the configurations that we ran. In fact,
approximately half the tests cases saw at least 50% higher
throughput and 50% better latency. This is very promis-
ing as it shows that BASIL can work well for a wide
range of workload combinations and their placements.

6.5 Initial Placement

One of the main use cases of BASIL is to recommend
initial placement for new virtual disks. Good initial place-
ment can greatly reduce the number of future migrations
and provide better performance from the start. We eval-
uated our initial placement mechanism using two sets of
tests. In the first set we started with one virtual disk,
placed randomly. Then in each iteration we added one
more disk into the system. To place the new disk, we used
the current performance statistics and recommendations
generated by BASIL. No migrations were computed by
BASIL; it ran only to suggest initial placement.

BASIL Online Workload Model
Workload [OIO, IOsize, Read%, Random%]
dvdstore-1 [5, 8, 100, 100]
dvdstore-2 [3, 62, 100, 100]
dvdstore-3 [6, 8, 86, 100]

swing-1 [13, 16, 67, 100]
swing-2 [31, 121, 65, 100]

fb-mail-1 [4, 5, 16, 99]
fb-mail-2 [5, 6, 52, 99]
fb-mail-3 [7, 6, 47, 99]
fb-mail-4 [5, 5, 60, 99]
fb-oltp-1 [1, 2, 100, 100]
fb-oltp-2 [6, 8, 86, 100]
fb-web-1 [8, 18, 99, 98]
fb-web-2 [5, 5, 60, 99]

Table 6: Enterprise workloads. For the database VMs,
only the table space and index disks were modeled.

Data Stores # Disks RAID LUN Size P =1/Slope
EMC 6 FC 5 450 GB 1.1

NetApp-SP 7 FC 5 400 GB 0.83
NetApp-DP 7 SATA 6 250 GB 0.48

Table 7: Enterprise workload LUNs and their models.

We compared the performance of placement done by
BASIL with a random placement of virtual disks as long
as space constraints were satisfied. In both cases, the
VMs were running the exact same workloads. We ran
100 such cases, and Figure 11 shows the cumulative dis-
tribution of percentage gain in overall throughput and
reduction in overall latency of BASIL as compared to
random selection. This shows that the placement recom-
mended by BASIL provided 45% reduction in latency
and 53% increase in IOPS for at least half of the cases, as
compared to the random placement.

The second set of tests compare BASIL with an oracle
that can predict the best placement for the next virtual
disk. To test this, we started with an initial configuration
of 7 virtual disks that were randomly chosen and placed.
We ran this configuration and fed the data to BASIL to
find a data store for the eighth disk. We tried the eighth
disk on all the data stores manually and compared the
performance of BASIL’s recommendation with the best
possible placement. To compute the rank of BASIL com-
pared to the oracle, we ran 194 such cases and BASIL
chose the best data store in 68% of them. This indicates
that BASIL finds good initial placements with high accu-
racy for a wide variety of workload configurations.

6.6 Enterprise Workloads

In addition to the extensive micro-benchmark evaluation,
we also ran enterprise applications and filebench work-
load models to evaluate BASIL in more realistic scenar-
ios. The CPU was not bottlenecked in any of the ex-
periments. For the database workloads, we isolated the
data and log virtual disks. Virtual disks containing data
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Workload T Space-Balanced After Two BASIL Rounds Human Expert #1 Human Expert #2
Units R T Location R T Location R T Location R T Location

dvd-1 opm 72 2753 EMC 78 2654 EMC 59 2986 EMC 68 2826 NetApp-SP
dvd-2 opm 82 1535 NetApp-SP 89 1487 EMC 58 1706 EMC 96 1446 EMC
dvd-3 opm 154 1692 NetApp-DP 68 2237 NetApp-SP 128 1821 NetApp-DP 78 2140 EMC

swing-1 tpm n/r 8150 NetApp-SP n/r 8250 NetApp-SP n/r 7500 NetApp-DP n/r 7480 NetApp-SP
swing-2 tpm n/r 8650 EMC n/r 8870 EMC n/r 8950 EMC n/r 8500 NetApp-DP

fb-mail-1 ops/s 38 60 NetApp-SP 36 63 NetApp-SP 35 61 NetApp-SP 15 63 EMC
fb-mail-2 ops/s 35 84 NetApp-SP 37 88 NetApp-SP 34 85 NetApp-SP 16 88 EMC
fb-mail-3 ops/s 81 67 NetApp-DP 27 69 NetApp-DP 30 73 NetApp-SP 28 74 NetApp-SP
fb-mail-4 ops/s 9.2 77 EMC 14 75 EMC 11 76 EMC 16 75 EMC
fb-oltp-1 ops/s 32 25 NetApp-SP 35 25 NetApp-SP 70 24 NetApp-DP 44 25 NetApp-DP
fb-oltp-2 ops/s 84 22 NetApp-DP 40 22 NetApp-DP 79 22 NetApp-DP 30 23 NetApp-SP
fb-web-1 ops/s 58 454 NetApp-DP 26 462 NetApp-SP 56 460 NetApp-DP 22 597 EMC
fb-web-2 ops/s 11 550 EMC 11 550 EMC 21 500 NetApp-SP 14 534 EMC

Table 8: Enterprise Workloads. Human expert generated placements versus BASIL. Applying BASIL recommendations
resulted in improved application as well as more balanced latencies. R denotes application-reported transaction response
time (ms) and T is the throughput in specified units.

Space-Balanced After Two BASIL Rounds Human Expert #1 Human Expert #2
Latency (ms) IOPS Latency (ms) IOPS Latency (ms) IOPS Latency (ms) IOPS

EMC 9.6 836 12 988 9.9 872 14 781
NetApp-SP 29 551 19 790 27 728 26 588
NetApp-DP 45 412 23 101 40 317 17 340
Weighted Average Latency
or Total Throughput

23.6 1799 15.5 1874 21.2 1917 18.9 1709

Table 9: Enterprise Workloads. Aggregate statistics on three LUNs for BASIL and human expert placements.

were placed on the LUNs under test and log disks were
placed on a separate LUN. We used five workload types
as explained below.

DVDStore [1] version 2.0 is an online e-commerce test
application with a SQL database, and a client load gener-
ator. We used a 20 GB dataset size for this benchmark, 10
user threads and 150 ms think time between transactions.

Swingbench [4] (order entry workload) represents an
online transaction processing application designed to
stress an underlying Oracle database. It takes the num-
ber of users, think time between transactions, and a set
of transactions as input to generate a workload. For this
workload, we used 50 users, 100-200 ms think time be-
tween requests and all five transaction types (i.e., new
customer registration, browse products, order products,
process orders and browse orders with variable percent-
ages set to 10%, 28%, 28%, 6% and 28% respectively).

Filebench [2], a well-known application IO modeling
tool, was used to generate three different types of work-
loads: OLTP, mail server and webserver.

We built 13 VMs running different configurations of
the above workloads as shown in Table 6 and ran them
on two quad-core servers with 3 GHz CPUs and 16 GB
RAM. Both hosts had access to three LUNs with dif-
ferent characteristics, as shown in Table 7. To eval-
uate BASIL’s performance, we requested domain ex-
perts within VMware to pick their own placements us-
ing full knowledge of workload characteristics and de-
tailed knowledge of the underlying storage arrays. We

requested two types of configurations: space-balanced
and performance-balanced.

The space-balanced configuration was used as a base-
line and we ran BASIL on top of that. BASIL recom-
mended three moves over two rounds. Table 8 provides
the results in terms of the application-reported transac-
tion latency and throughput in both configurations. In
this instance, the naive space-balanced configuration had
placed similar load on the less capable data stores as on
the faster ones causing VMs on the former to suffer from
higher latencies. BASIL recommended moves from less
capable LUNs to more capable ones, thus balancing out
application-visible latencies. This is a key component of
our algorithm. For example, before the moves, the three
DVDStore VMs were seeing latencies of 72 ms, 82 ms
and 154 ms whereas a more balanced result was seen af-
terward: 78 ms, 89 ms and 68 ms. Filebench OLTP work-
loads had a distribution of 32 ms and 84 ms before versus
35 ms and 40 ms afterward. Swingbench didn’t report
latency data but judging from the throughput, both VMs
were well balanced before and BASIL didn’t change that.
The Filebench webserver and mail VMs also had much
reduced variance in latencies. Even compared to the two
expert placement results, BASIL fares better in terms of
variance. This demonstrates the ability of BASIL to bal-
ance real enterprise workloads across data stores of very
different capabilities using online models.

BASIL also performed well in the critical metrics of
maintaining overall storage array efficiency while balanc-
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ing load. Table 9 shows the achieved device IO latency
and IO throughput for the LUNs. Notice that, in compar-
ison to the space-balanced placement, the weighted aver-
age latency across three LUNs went down from 23.6 ms
to 15.5 ms, a gain of 34%, while IOPS increased slightly
by 4% from 1799 to 1874. BASIL fared well even against
hand placement by domain experts. Against expert #2,
BASIL achieved an impressive 18% better latency and
10% better throughput. Compared to expert #1, BASIL
achieved a better weighted average latency by 27% al-
beit with 2% less throughput. Since latency is of primary
importance to enterprise workloads, we believe this is a
reasonable trade off.

7 Conclusions and Future Work
This paper presented BASIL, a storage management sys-
tem that does initial placement and IO load balancing of
workloads across a set of storage devices. BASIL is novel
in two key ways: (1) identifying IO latency as the primary
metric for modeling, and (2) using simple models both
for workloads and devices that can be efficiently obtained
online. The linear relationship of IO latency with various
parameters such as outstanding IOs, IO size, read % etc.
is used to create models. Based on these models, the load
balancing engine recommends migrations in order to bal-
ance load on devices in proportion to their capabilities.

Our extensive evaluation in a real system with mul-
tiple LUNs and workloads shows that BASIL achieved
improvements of at least 25% in throughput and 33% in
overall latency in over 80% of the hundreds of micro-
benchmark configurations that we tested. Furthermore,
for real enterprise applications, BASIL lowered the vari-
ance of latencies across the workloads and improved the
weighted average latency by 18-27% with similar or bet-
ter achieved throughput when evaluated against configu-
rations generated by human experts.

So far we’ve focused on the quality of the BASIL
recommended moves. As future work, we plan to add
migration cost considerations into the algorithm and
more closely study convergence properties. Also on our
roadmap is special handling of the less common sequen-
tial workloads, as well as applying standard techniques
for ping-pong avoidance. We are also looking at using
automatically-generated affinity and anti-affinity rules to
minimize the interference among various workloads ac-
cessing a device.
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Abstract

An understanding of application I/O access patterns is
useful in several situations. First, gaining insight into what
applications are doing with their data at a semantic level
helps in designing efficient storage systems. Second, it helps
create benchmarks that mimic realistic application behav-
ior closely. Third, it enables autonomic systems as the infor-
mation obtained can be used to adapt the system in a closed
loop.
All these use cases require the ability to extract the

application-level semantics of I/O operations. Methods
such as modifying application code to associate I/O oper-
ations with semantic tags are intrusive. It is well known
that network file system traces are an important source of
information that can be obtained non-intrusively and ana-
lyzed either online or offline. These traces are a sequence
of primitive file system operations and their parameters.
Simple counting, statistical analysis or deterministic search
techniques are inadequate for discovering application-level
semantics in the general case, because of the inherent vari-
ation and noise in realistic traces.
In this paper, we describe a trace analysis methodology

based on Profile Hidden Markov Models. We show that
the methodology has powerful discriminatory capabilities
that enable it to recognize applications based on the pat-
terns in the traces, and to mark out regions in a long trace
that encapsulate sets of primitive operations that represent
higher-level application actions. It is robust enough that it
can work around discrepancies between training and target
traces such as in length and interleaving with other opera-
tions. We demonstrate the feasibility of recognizing patterns
based on a small sampling of the trace, enabling faster trace
analysis. Preliminary experiments show that the method is
capable of learning accurate profile models on live traces
in an online setting. We present a detailed evaluation of this
methodology in a UNIX environment using NFS traces of
selected commonly used applications such as compilations
as well as on industrial strength benchmarks such as TPC-
C and Postmark, and discuss its capabilities and limitations
in the context of the use cases mentioned above.

1 Introduction

Enterprise systems require an understanding of the be-
havior of the applications that use their services. This
application-level knowledge is necessary for self-tuning,
planning or automated troubleshooting and management.
Unfortunately, there is no accepted mechanism for this
knowledge to flow from the application to the system. We
can neither impose upon application developers to give
hints, nor over-engineer network protocols to transport
more semantics. Therefore, we need mechanisms for sys-
tems to learn what the application is doing automatically.

Being able to identify the application-level workload has
significant benefits. If we can figure out that the client OLTP
(online transaction processing) application is doing a join,
we can tune the caching and prefetching suitably. If we can
discover that the client is executing the compile phase of a
make, we can immediately know that it will be followed by
a link phase, that the output files generated will be accessed
very soon, and that the output files can be placed on less-
critical storage since they can be generated at will. If we
can spot that the client is executing a copy operation, then
we can derive data provenance information usable by com-
pliance engines. If we can match the signature of a trace
with that of known malware or viruses, that can be use-
ful as well. We can employ offline workload identification
for auditing, forensics and chargeback. We can help stor-
age systems management by providing inputs to sizing and
planning tools.

In this paper, we tackle a specific instance of the prob-
lem – given the headers of an NFS [4] trace, to identify the
application-level workload that generated it. NFS clients
send messages to the server that contain opcodes such as
READ, WRITE, SETATTR, READDIR, etc., their associ-
ated parameters such as file handles and file offsets, and
data. An NFS trace contains a timestamped sequence of
these messages along with the responses sent by the server
to the client. These traces can be easily captured [12, 1]
for online or offline analysis, allowing us to develop a non-
invasive tool using the methodology described here. Fur-
thermore, the NFS trace contains all the interactions be-
tween the clients and the server. As all the necessary in-

1
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formation is available, we can assert that any deficiency in
tackling our use cases is solely due to the sophistication of
the analysis methods.

However, given a trace captured at the server, it is non-
trivial to identify the client applications that generated it.
First, there could be noise in the form of background com-
munication between the client and server. Second, mes-
sages could be interleaved with those from other applica-
tions on the same client machine. Third, the application’s
parameters may create variations in the trace. For instance,
traces of a single file copy and that of a recursive file copy
may look very different (see Tables 1 and 2), even though
it is the same application. Fourth, the asynchrony in multi-
threaded applications impact the ordering of messages in
the traces. Therefore, we believe that deterministic pat-
tern searching methods will not be able to unearth the fun-
damental patterns hidden in a trace. Methods originating
in the Machine Learning domain have shown considerable
promise in computational biology [16, 14] as well as in ini-
tial studies on trace analysis [19]. In this paper, we apply a
well-known technique called Profile Hidden Markov Model
(profile HMM) [16, 14] to this problem, and demonstrate
its pattern-recognition capabilities with respect to our use
cases.

The key contributions of this paper are as follows:

Workload Identification We show that profile HMMs,
once trained, are capable of identifying the applica-
tion that generated the trace. Using commonly used
UNIX commands such as make, cp, find, mv, tar, un-
tar, etc., as well as industry benchmarks such as TPC-
C, we show that we are able to cleanly distinguish the
traces that these commands generate.

Trace Annotation We show that our methodology is able
to identify transitions between workloads, and mark
workload-specific regions in a long trace sequence.

Trace Sampling We show that profile HMMs do not need
the entire trace to work on. With merely a 20% seg-
ment of the trace, sampled randomly, we are able
to discriminate between many workloads and identify
them with high confidence. This will enable us to per-
form faster analysis. Further, we show how to use this
ability to identify concurrently executing workloads.

Automated Learning We demonstrate a technique by
which the profile HMMs can be trained automatically
without manual labeling of workloads. We use the
technique to train and then subsequently identify con-
stituent workloads of a Linux kernel compilation task.

Power of Opcode Sequences We show that opcode se-
quences alone contain sufficient information to tackle
many of the common use cases. Other information in

the traces such as file handles and offsets are not suf-
ficiently amenable to mathematical modeling, so this
result is valuable.

Since the technique we use requires training on data sets
followed by a recognition phase and also involves reason-
able amounts of computation, it is best suited for those
problems whose natural time constants are in the minutes or
hours range (such as in system management, for example,
detecting configuration errors). Algorithmic approaches,
widely used, are still the best if the time constants are much
smaller (such as in milliseconds or seconds).

The rest of the paper is organized as follows. Section 2
presents the current state of research in this area and places
our work in context. Section 3 describes the mathematics
behind our methodology, the workflow associated with it,
and describes how it is used to identify workloads and mark
out regions exhibiting known patterns in the trace. Sec-
tion 4 offers experimental validation of our techniques. Fi-
nally, Section 6 summarizes our conclusions and proposes
avenues for continuing this work.

2 Related Work

There is a rich body of work in which file system
traces have been analyzed to get aggregate information
about systems and to understand how storage is used over
time [2, 17, 24, 11]. Our work differs from this body of
work in that we focus on individual workloads running
on the system and attempt to discover them. Since prior
research efforts are oriented towards extracting gross be-
havior, counting-based tools suffice. The problem that we
tackle in this paper requires more powerful methods.

Traces are a good source of information as they contain
a complete picture of the inputs to a system and at the same
time are easy to capture in a non-invasive manner. Ellard
[10] makes a strong case that the information in NFS traces
can be used to enable system optimizations. HMMs gener-
ated from block traces have been used for adaptive prefetch-
ing [27]. Traces have been used for file classification [19].
In that work, the authors build a decision tree based sys-
tem that uses NFS traces to infer correlations between the
create-time properties of files such as their names and the
dynamic properties such as access patterns and size. In this
paper, we do not attempt to classify files and data but focus
more on the applications that access them.

The power of HMM as a tool to extract workload access
patterns is known [18]. Our work is significantly larger in
scope. While they restrict themselves to inferring the se-
quentiality of workloads using read and write headers in the
block traces, we use all the opcodes available in NFS head-
ers to discover the higher-level application that caused it.
The sequentiality of a workload can perhaps also be discov-
ered using our framework by including the file offsets as

2
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part of the alphabet through an appropriate scheme of quan-
tization.

Magpie [3] diagnoses problems in distributed systems by
monitoring the communications between black-box com-
ponents, and applying an edit-distance based clustering
method to group similar workloads together. Somewhat
similar is Spectroscope [25], which uses clustering on re-
quest flow graphs constructed from traces to categorize and
learn about differences in system behavior. Intrusion detec-
tion is another area where various such techniques are used.
Warrender [29] surveys methods for intrusion detection us-
ing various data mining techniques including HMMs, on
system call traces.

Our work is different from all of the above in that it is not
only able to identify a higher-level workload, given a trace,
but also to be able to accurately mark out workload regions
in a composite trace.

3 Methodology

A key observation that motivates our approach to solv-
ing the problem is that NFS traces corresponding to a given
workload class exhibit significant variability, yet have a
characteristic signature. For instance, look at the four traces
depicting a cp command, shown in Tables 1 and 2. The
fuzziness in the repeating subsequences in the trace of cp *
dir/ and cp -r dir1 dir make us look at probabilistic meth-
ods.

An HMM is appropriate for probabilistic modeling of
sequences, and has been used in similar settings in the
past [14]. However, in our case, the sequences of the same
workload show additions, deletions and mutations between
them that are not easily modeled by an HMM. A cp foo bar
differs from cp foo dir/ – the latter has an extra lookup oper-
ation, as seen in Table 2. Our method should have the power
to ignore this extra operation since that operation must not
be used for discrimination. A variant of the HMM called
the profile HMM [8] offers exactly this ability, via non-
emitting (or delete) states. Therefore, we conjecture that
profile HMM will be a good method to use for classifying
NFS traces. In the rest of this section, we first outline the
theory behind the profile HMM and then describe the work-
flow of our workload identification methodology.

3.1 Profile HMMs for Modeling Opcode Traces

It is well known and empirically verified, e.g., Table 1,
that opcode traces of the same command are often very sim-
ilar but not exactly the same. It is also known that traces cor-
responding to different commands are dissimilar. These ob-
servations motivate the development of mathematical mod-
els that are capable of discovering a command/workload by
merely looking at the trace it generates (e.g., opcode se-

cp * dir/
GETATTR Call, FH:0x0eb18814
READDIRPLUS Call, FH:0x0eb18814
READDIRPLUS Reply (Call In 9) ...
LOOKUP Call, DH:0xe003db8b/tqslwiz.h
LOOKUP Reply Error:NFS3ERR_NOENT
GETATTR Call, FH:0x21b1a714
ACCESS Call, FH:0x21b1a714
CREATE Call, DH:0xe003db8b/tqslwiz.h
SETATTR Call, FH:0x6bd9e67c
GETACL Call
GETATTR Call, FH:0x6bd9e67c
READ Call, FH:0x21b1a714 ...
WRITE Call, FH:0x6bd9e67c ...
COMMIT Call, FH:0x6bd9e67c
GETATTR Call, FH:0xe003db8b
LOOKUP Call, DH:0xe003db8b/TrustedQSL.spec
LOOKUP Reply Error:NFS3ERR_NOENT
GETATTR Call, FH:0x2fb1a914
ACCESS Call, FH:0x2fb1a914
CREATE Call, DH:0xe003db8b/TrustedQSL.spec
SETATTR Call, FH:0x65d9e87c
GETATTR Call, FH:0x65d9e87c
READ Call, FH:0x2fb1a914 ...
WRITE Call, FH:0x65d9e87c ...
COMMIT Call, FH:0x65d9e87c
LOOKUP Call,
DH:0xe003db8b/TrustedQSL.spec.in
LOOKUP Reply Error:NFS3ERR_NOENT
GETATTR Call, FH:0x23b1a514
ACCESS Call, FH:0x23b1a514
CREATE Call,
DH:0xe003db8b/TrustedQSL.spec.in
SETATTR Call, FH:0x67d9ea7c
GETATTR Call, FH:0x67d9ea7c
READ Call, FH:0x23b1a514 ...
WRITE Call, FH:0x67d9ea7c ...

COMMIT Call, FH:0x67d9ea7c

cp -r dir1 dir
ACCESS Call, FH:0xc5914d40
LOOKUP Call, DH:0xc5914d40/dir
LOOKUP Reply Error:NFS3ERR_NOENT
MKDIR Call, DH:0xc5914d40/dir
GETATTR Call, FH:0xc5914d40
GETACL Call
ACCESS Call, FH:0xc5914d40
LOOKUP Call, DH:0xc5914d40/dir
LOOKUP Reply, FH:0x3fb1b914
GETATTR Call, FH:0x0eb18814
ACCESS Call, FH:0x0eb18814
READDIRPLUS Call, FH:0x0eb18814
READDIRPLUS Reply . ..
ACCESS Call, FH:0x3fb1b914
MKDIR Call, DH:0x3fb1b914/hh
GETATTR Call, FH:0x3fb1b914
GETACL Call
GETATTR Call, FH:0x3fb1b914
GETATTR Call, FH:0x36b1b014
ACCESS Call, FH:0x36b1b014
READDIRPLUS Call, FH:0x36b1b014
READDIRPLUS Reply . ..
GETATTR Call, FH:0x39b1bf14
ACCESS Call, FH:0x39b1bf14
ACCESS Call, FH:0x3db1bb14
CREATE Call, DH:0x3db1bb14/contacts.csv
SETATTR Call, FH:0x33b1b514
GETACL Call
GETATTR Call, FH:0x33b1b514
READ Call, FH:0x39b1bf14 ...
WRITE Call, FH:0x33b1b514 ...
COMMIT Call, FH:0x33b1b514
GETATTR Call, FH:0x21b1a714
ACCESS Call, FH:0x21b1a714
CREATE Call, DH:0x3fb1b914/tqslwiz.h
SETATTR Call, FH:0x35b1b314
GETATTR Call, FH:0x35b1b314
READ Call, FH:0x21b1a714 ...
WRITE Call, FH:0x35b1b314 ...

COMMIT Call, FH:0x35b1b314

Table 1. Two cp NFS trace headers. The first one copies 3 files into

a directory, while the second one is a recursive copy. These traces illus-

trate that workloads repeat some elements of the trace, with one region be-

ing underlined. However, the repetition of symbols is not strict and cannot

be captured by a finite state automata model. There is sufficient variability

that warrants a fuzzy or probabilistic pattern recognition algorithm such as

an HMM. Figure shows only the client→server requests, not the responses.

The sole exception is that of responses to LOOKUP since they will help the

reader understand the traces.

cp contacts.csv con.csv
ACCESS Call, FH:0xe003db8b
LOOKUP Call, DH:0xe003db8b/con.csv
LOOKUP Reply Error:NFS3ERR_NOENT
LOOKUP Call,
DH:0xe003db8b/contacts.csv
LOOKUP Reply, FH:0x71d9fc7c
GETATTR Call, FH:0x71d9fc7c
ACCESS Call, FH:0x71d9fc7c
CREATE Call, DH:0xe003db8b/con.csv
SETATTR Call, FH:0x58d9d57c
GETACL Call
GETATTR Call, FH:0x58d9d57c
READ Call, FH:0x71d9fc7c ...
WRITE Call, FH:0x58d9d57c ...

COMMIT Call, FH:0x58d9d57c

cp contacts.csv dir/con.csv
LOOKUP Call, DH:0xe003db8b/dir
LOOKUP Reply, FH:0x0eb18814
ACCESS Call, FH:0x0eb18814
LOOKUP Call, DH:0x0eb18814/con.csv
LOOKUP Reply Error:NFS3ERR_NOENT
LOOKUP Call,
DH:0xe003db8b/contacts.csv
LOOKUP Reply, FH:0x71d9fc7c
GETATTR Call, FH:0x71d9fc7c
ACCESS Call, FH:0x71d9fc7c
CREATE Call, DH:0x0eb18814/con.csv
SETATTR Call, FH:0x14b19214
GETACL Call
GETATTR Call, FH:0x14b19214
READ Call, FH:0x71d9fc7c ...
WRITE Call, FH:0x14b19214 ...

COMMIT Call, FH:0x14b19214

Table 2. Two cp NFS trace headers. The second one differs from the

first in an extra LOOKUP operation (underlined), showing the need for a

methodology that can suppress or ignore certain elements in traces. Profile

HMM is one such candidate. Figure shows only the client→server requests,

not the responses. The sole exception is that of responses to LOOKUP since

they will help the reader understand the traces.
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quence), and checking for its similarity with prior traces
of the same command with various arguments. The prob-
lem of constructing such models is complicated as there is
no unique trace for every command. Similar issues arise in
many other areas, notable among them being computational
biology. The study of designing efficient sequence match-
ing algorithms has received a significant impetus from com-
putational biology where one needs to align a family of
many closely related sequences (typically genetic or protein
sequences). These sequences diverge due to chance muta-
tions at certain points in the sequence while, at the same
time, conserving critical parts of the sequence.

The similarity of two symbol sequences can be measured
via the number of mutations needed to make them identical,
also called the edit distance. Hence, to measure the similar-
ity of a sequence to a set of sequences, one could first align
them to be of the same length by adding, deleting or re-
placing the minimal number of symbols, and then use the
smallest edit distance.

As of today there are quite a few techniques for se-
quence matching, ranging from deterministic [13] to prob-
abilistic approaches [6]. Deterministic approaches are
based on dynamic programming, which often leads to al-
gorithms that have prohibitively high time complexity for
large symbol sequences: O(Nr) to match with r sequences,
each of length N. Probabilistic approaches such as Profile
HMMs [6] have emerged as faster alternatives to determin-
istic methods and have been proven to be very effective
for computational biology problems. The key observation
behind our work is that trace-based workload identifica-
tion and annotation maps well to the sequence-matching
problem in computational biology, and hence can benefit
from similar techniques. Profile HMMs are special Hidden
Markov models (HMMs) developed for modeling sequence
similarity occurring in biological sequences. Next, we pro-
vide a high-level intuitive understanding of HMMs, profile
HMMs and their use for sequence matching.

An HMM [23] is a statistical tool that captures certain
properties of one or more sequences of observable sym-
bols (such as NFS opcodes) by constructing a probabilis-
tic finite state machine with artificial hidden states respon-
sible for emitting those sequences. During training, the
state machine’s graph and its state transition probabilities
are computed to best produce the training sequences. Later,
the HMM can be used to evaluate whether a new unseen
“test” sequence is “of the same kind” as the training data,
with a score to quantify confidence in the match. The test
sequence gets a higher score if the HMM has to traverse
higher-probability edges in its state machine to produce that
sequence. Thus, the HMM’s state machine encodes the
commonality among various opcode sequences of a given
application workload by boosting the probabilities of the
corresponding state transitions. It identifies a new work-

load by measuring how well its opcode sequence makes the
HMM to make high-frequency transitions.

A profile HMM is a special type of HMMwith states and
a left-to-right state transition diagram specifically designed,
as explained in Section 3.4.2, to efficiently remember sym-
bol matches as well as tolerate chance mutations (i.e., in-
serts and deletes) in observed symbol sequences. Unlike a
fully connected state graph of a traditional HMM, the pro-
file HMM’s left-to-right transition graph enables very fast
O(N) matching of a test sequence against known workload
patterns.

In this paper, we consider two specific problems where
existing sequence-matching techniques are applicable:

• Workload identification: we are told that samples are
only from one workload but not told which one. Can
we say which workload it is from?

• Annotation: we are told that distinct workloads ran se-
quentially one after another. Can we mark the bound-
aries when the workloads were switched?

In the following sections, we provide a more formal de-
scription of the HMM construct, including the concept of
sequence alignment and how it is central to do approximate
matching of large symbol sequences like opcode traces.

3.2 A Brief Review of HMMs

An HMM is defined by an alphabet Σ, a set of hidden
states denoted by Z, a matrix of state transition probabili-
ties A, a matrix of emission probabilities E, and an initial
state distribution π. The matrix A is |Z| × |Z| with individ-
ual entries Auv , which denotes the probability of transiting
to state v from u. The matrix E (|Z| × |Σ|) contains entries
Eut, which denotes the probability of emitting a symbol
t ∈ Σ while in hidden state u. Let λ be the model’s param-
eters; these depend on Σ, Z,A,E and π and hence written
as λ = (Σ, Z,A,E, π). If we see a sequence X , an HMM
can assign a probability to it as follows (assuming a model
λ):

P (X|λ) =
�

z

�

k

Azk,zk+1
Ezk,Xk

The (inner) product terms arise from the probabilities of
transition from one state (zk) to another state (zk+1) in the
sequence of states under consideration whereas the (outer)
sum of terms arises from having to sum all the possible
ways of emitting the sequence X through all possible se-
quence of states. There is an iterative procedure based on
expectation maximization algorithms for determining the
parameters λ from a training set [23]. Popularity of HMMs
stems from the fact that there are efficient procedures such
as (a) Viterbi algorithm [23]) to compute the most proba-
ble state Z given a sequence X , i.e. compute Z to max-
imize P (Z|X) (b) forward and backward procedures [23]
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to compute the likelihood, P (X) and (c) Expectation Maxi-
mization procedures [23] to learn the parameters, (A,E, π)
given a dataset of independent and identically distributed
sequences.

3.3 Problem Definition

At this point we can state the problem more formally as
follows. Let {S1, S2, . . . , Sr} be a set of traces obtained by
executing r times a particular workload, sayW . The traces
are different as they are obtained by executing the workload
with different parameters; they may also be different due to
some stochastic events in the system. The jth symbol sij
of the sequence Si is generated from the alphabet Σ of all
possible opcodes. Let the sequence Si be of length ni, i.e
the index j varies from 1 to ni. We consider the task of
constructing a model on these r sequences such that when
presented with a previously unseen sequence,X , the model
can infer whether X was generated by executing workload
W .

3.4 Profile HMMs for identifying workloads

We will begin by recalling a few definitions related to se-
quence alignment. We will then discuss profiles and Profile
HMMs, finally ending with a scheme for classifying work-
loads using them.
3.4.1 On Aligning Multiple Sequences

Let Si = si1si2 . . . sini
(i = 1, 2) be two sequences of

different lengths n1 and n2 generated from an alphabet Σ.
An alignment of these two sequences is defined as a pair
of new equal length sequences S∗i = s∗i1 . . . s

∗

in (i = 1, 2)
obtained from S1(S2) by inserting “−” states in S1(S2) to
record differences in the two sequences. Let n be the length
of S∗1 (which is also that of S∗2 ) with (n1 + n2) ≥ n ≥
max(n1, n2). We will call s1k and s2l as matched if for
some j , s∗1j = s1k, s

∗

2j = s2l. On the other hand if s∗1j =
“−”,s∗2j = s2m then we will say that there is a delete state
in S1 and insert state in S2.

The global alignment problem is posed as that of com-
puting two equal length sequences S∗1 and S∗2 such that the
matches are maximized and insertions/deletions are mini-
mized. This problem can be precisely formulated for suit-
ably defined score functions and solved by dynamic pro-
gramming based algorithms [20]. Global alignment is a
good indicator of how similar two sequences are.

The problem of local alignment tries to locate two sub-
sequences one from each string such that they are very sim-
ilar. This problem can be formulated as that of finding two
subsequences which are maximally aligned in the global
sense for a suitably defined score function. It also admits
a dynamic programming based algorithm [26] and can be
solved exactly.

However both global and local alignment are defined for
a pair of sequences. As mentioned before, our interest is in
inferring similarities in more than two sequences. This will
require the notion of multiple alignment, which generalizes
the notion of alignment to more than two sequences. Mul-
tiple alignment is defined as the set S = {S∗1 , S

∗

2 , . . . , S
∗

r}
where, as before, S∗i is obtained from Si by inserting “−”
states so that the length of all the resulting r sequences are
equal, say n. Multiple alignment can be visualized as a
r × n matrix where each row consists of a specific string
and each column corresponds to specific position in the
alignment. Each matrix entry can take values in Σ ∪ “−”.
Multiple alignments are useful in detecting similar subse-
quences which remain conserved in sequences originating
from the same family. Thus multiple alignment can decide
the membership of a given new sequence with respect to
a family represented by the multiple alignment. Figure 1
shows an alignment of ten traces of opcodes generated by
an edit workload. Each symbol in the alignment represents
a particular opcode. The alignment shows regions of high
conservation where more than half of the symbols in the col-
umn are present. These conserved regions capture the simi-
larity between the traces of this workload. When identifying
a previously unseen trace generated by the same workload,
it would be desirable to concentrate on checking that these
more conserved columns are present.

One can extend the dynamic programming based solu-
tions for the pairwise case to the problem at hand. Un-
fortunately they are prohibitively expensive, O(nr) in both
time and space [13], and are not very practical for detect-
ing large file operation sequences (100s to 1000s) typical in
networked storage workloads.
3.4.2 Introduction to Profile HMMs

A profile is said to be a representation of a multiple align-
ment (such as that of multiple proteins that are closely re-
lated and belong to the same family). One can attribute
the slight differences between family members to chance
mutations, whose underlying probability distribution is not
known. It has been empirically observed that HMMs are
extremely useful in building profiles from biological se-
quences [6].

Profile HMMs: For modeling alignments, a natural
choice for hidden states correspond to Insertions, Deletions
and Matchings. In a Profile HMM, each insert state Ii and
match stateMi has a nonzero emission probability of emit-
ting a symbol, whereas the delete state Di does not emit a
symbol. The non-emitting states make Profile HMMs dif-
ferent from traditional HMMs. From an insert state, it is
possible to move to the next delete state, continue in the
same insert state or go to the next match state (Figure 2).
Each diamond, circle, and square represents insert, delete
and match states respectively. From each insert, delete or
match state, the possible state transitions are as follows:

5
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Figure 1. An example of multiple alignment of ten NFSv3 traces generated by an edit workload using the wireshark [5] tool. Here, G is getattr, S setattr, L lookup,

R read, W write, A access, D readdirplus, C create, M commit, V remove, etc. Aligned columns are annotated at the bottom by a ’+’ if the opcodes in those columns are

highly conserved. These columns will be modeled as match states in the profile HMM.

Ii → Di+1, Ii, Mi+1,

Di → Di+1, Ii, Mi+1,

Mi → Di+1, Ii, Mi+1.
Profile HMMs are essentially Left-Right HMMs (Fig-

ure 2). Unlike fully connected state machines, Left-Right
HMMs have a more sparse transition matrix and are of-
ten upper triangular. Inference on such machines is much
quicker and hence often preferred in many applications such
as speech processing [23].

Figure 2. The transition structure of a profile HMM [8]. For example,

from an insert state (diamond), we can go to the next delete state (circle),

continue in the insert state (self loop) or go to the next match state (rectangle).

Note that while multiple sequential deletions are possible by following the

circle states, each with a different probability, multiple sequential insertions

are only possible with the same probability.

It is straightforward to adapt the traditional HMM algo-
rithms such as Viterbi algorithm, Forward-Backward pro-
cedure and Expectation Maximization based learning pro-
cedure [23] to profile HMMs [6, 8].

These models provide flexibility in modeling closely re-
lated sequences by the choice of more complex score func-
tions. This has made profile HMMs extremely popular for
comparing biological sequences.
Learning a Profile HMM from data: The parameters of
profile HMMs are the emission probabilities and the state
transition probabilities. This is easy to compute if one
knows the multiple alignment. In such a case, the state tran-
sition probabilities are given by auv = ANuv�

v
ANuv

and the

emission probabilities are given by eut = ENut�
t

ENut

where

ANuv denotes the number of transitions from the state u to
v and ENut denotes the number of emissions of t given a
state u(see [6]).
3.4.3 Profile HMM for identifying workloads

Let us now revisit the problem as defined in subsection
3.3. Assume that we have pretrained many Profile HMMs,
each for a workload. Now consider the problem of identify-
ing the underlying workload when a new trace is presented.
Using Profile HMMs one can consider solving such a prob-
lem by the decision rule

y(X) = argmaxkP (X|λk)

where X is the unseen sequence, λk denotes the model for
the kth workload and y(X) is prediction for the underly-
ing workload which generated the sequence X . Using the
forward-backward procedure we can compute this decision
rule easily. This can be understood as globally aligning the
profile with the unseen sequence. Though there is no con-
fidence measure with respect to prediction, the input is re-
jected (no prediction is made) if a confidence threshold is
not crossed.

Now consider the problem of annotating a huge trace of
opcodes generated by sequentially running workloads. As
before assume that we have pretrained models of individual
workloads. This would be equivalent to computing a local
alignment of each profile with the bigger trace.

It is thus clear that the Profile HMM architecture chosen
should be versatile enough to solve such problems. The
architecture shown in Figure 2 will require some tweaking
or the inference mechanism needs to be modified for such
problems.

A Specific Implementation for Profile HMMs: For our
work here, we have used the open source HMMER [7] im-
plementation of a profile HMM whose architecture (Figure

6
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Figure 3. Architecture of HMMER [7]. Squares represent match states
w.r.t. an alignment, diamonds are insert and ignored emitting states (N,J,C),
circles are delete and special begin/end states (B,E,S,T). Note that there are
no D to I or I to D transitions in HMMER.

3) allows flexibility in deciding between global and local
alignments by adjusting the parameters of self-transitions
involving nodes N (at the beginning), C (at the end), and
J (in between). These self-transitions model the unaligned
(or “ignored”) part of the sequences. The set of states with
their abbreviations are as follows:

Mx Match state x, emitter.
Dx Delete state x, non-emitter.
Ix Insert state x, emitter.
S Start state, non-emitter.
T Terminal State, non-emitter.
N N-terminal unaligned sequence state

in the beginning of a sequence, emitter.
B Begin state (for entering main model),

non-emitter.
E End state (for exiting main model),

non-emitter.
C C-terminal unaligned sequence state

at the end of a sequence, emitter.
J Joining segment unaligned sequence state,

emitter

If the loop probability modeling the transition between
N → N is set to 0, all alignments are constrained to start
at the beginning of the model. If the probability of transi-
tion from C → C is set to 0, all alignments are constrained
to end at the last node of the model. Setting E → J to 0
forces a global alignment. If it is not set to 0, the model
can start at any point in a larger sequence and end some
distance away for effecting local alignments. This option
can be used for the sequence annotation task mentioned be-
fore by aligning the model locally against a large sequence.
Furthermore, the transition J → J can be used to control
the gap between local alignments. One can do the reverse,
i.e., globally aligning a smaller sequence to a part of the
model, by controlling the transitions between B → M and
M → E. HMMER is an extremely versatile and power-
ful sequence alignment tool. It can thus be very useful in
locating sequences of opcodes from traces.

To learn the parameters of the model, it may be useful
to use a small set of multiply aligned sequences. We have
used an open source implementation of multiple alignment
provided in [9] for this purpose.

3.5 Workload Identification Workflow: An
Overview

In this section, we give an overview of our methodology
using profile HMMs. Figure 4 gives the workflow for build-
ing a profile HMM model of a given workload. We need
to supply one or more opcode sequences corresponding to
traces of different runs of an application workload. These
opcode sequences need to be encoded into a limited-sized
alphabet that the HMM model works with. This is done
by the alphabetizer module. The encoded sequences pass
through a multiple alignment module (explained in Sec-
tion 3.4.1), which creates a canonical aligned sequence for
training. We use an open-source tool called Muscle [9] for
this purpose. We then use HMMER [7] to generate a pro-
file HMM model of the workload based on the aligned se-
quences.

To annotate the occurrences of a set of trained work-
loads in an arbitrary NFS trace, we extract the NFS opcode
sequence from the trace, alphabetize it and pass it to the
HMMER’s pattern search tool called hmmpfam along with
the profile HMM models of the workloads that we want to
identify within the trace. The tool outputs the indices of
the subsequences that it matched with various workloads
along with a fractional score (in the range 0 to 1) indicat-
ing its confidence in the match relative to other workloads.
We have written a script to post-process this output to pro-
duce the final annotation of the test sequence. The post-
processing phase involves the following steps:
1. Merge two contiguous matches of the same workload.

2. Remove the matching subsequence with very low
score (less than 0.1 percent of the average score for
the matching subsequences of the same workload).

3. Again, merge any two new contiguous matching sub-
sequences of the same workload.

4. If more than two workloads are reported for the same
region, report the workload with a higher score.

4 Evaluation

In this section, we illustrate the capabilities of our profile
HMM based methodology including its ability to identify
and mark out the positions of high-level operations in an
unknown network file system trace as well as its ability to
isolate multiple workloads running concurrently. We also
evaluate the training and pattern recognition performance
of the methodology via micro-benchmarks.
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Figure 4. Profile HMM Training and usage workflow. Given a set of opcode traces of a given workload w with various parameters, this workflow produces a profile

HMM model in the file w.hmm. Muscle and HMMER are existing open source tools, whereas the alphabetizer and post processor are modules that we developed. The

bottom flow represents trace identification, where we input the workload models developed by the training workflow above into the HMMER search engine.

4.1 Experimental Setup and Training Method

For our evaluation, we choose several popular UNIX
commands and user operations on files and directories as
our application workloads: tar, untar, make, edit, copy,
move, grep, find, compile. The UNIX commands access
subsets of 14361 files and 1529 directories up to 7 levels
deep stored on a Linux NFSv3 server from one or more
Linux NFSv3 clients. For a more realistic evaluation, we
also incorporated TPC-C [22] workloads. TPC-C is an
OLTP benchmark portraying the activities of a wholesale
supplier, where a population of terminal operators executes
transactions against a warehouse database. Our TPC-C con-
figuration used 1 to 5 warehouses with 1 to 5 database
clients per warehouse. The database had 100,000 items.

The NFS clients are located on the same 1 Gbps LAN
with NFS client-side caching enabled. The caching effects
across multiple experiments were eliminated by mounting
and unmounting the file system between each experiment.
We capture the NFS packet trace at the NFS server ma-
chine’s network interface using the Wireshark tool [5], and
filter out the data portion of the NFS operations. For all ex-
periments in this paper, we only use the opcode information
in the NFS trace. Hence, we use the term trace in the rest
of this section to refer only to the opcode sequences.

We build profile HMMs for each of the UNIX commands
as follows. First, we run the UNIX command many times
with different parameters and capture their traces. The num-
ber of captured traces for each command along with their
average length in opcodes, is shown in Table 3. Next, we

build the profile HMM for the command with increasing
numbers of randomly selected traces as outlined in Figure 4,
each time cross-validating its recognition quality by testing
with the remaining traces. We stop when the improvement
in the model quality metric diminishes below a threshold.
We found that ten traces of each command were sufficient.
We call those sequences as our training sequences, and the
rest as test sequences.

4.2 Workload Identification

Our first experiment evaluates how well profile HMM
can identify pure application-level workloads based on past
training. We feed the test sequences to the trained profile
HMM for identification. Table 3 shows the results in the
form of a “confusion” matrix. Each row of the matrix indi-
cates a test command and each column under the “models”
umbrella indicates a command for which profile HMM got
trained. Each cell indicates how well the profile HMM la-
beled the sequence as the given command, the ideal being
100%. Commands were recognized correctly much of the
time with a few exceptions.

For instance, about 9% of the copy workloads are mis-
labeled as edit workloads. These were primarily single file
copies and they share similarities with edit workloads that
we trained with; they both exhibit an even mix of reads and
writes. Copies of multiple files or recursive copies were
not confused with edit workloads. The results also show
that 11.3% of grep workloads are getting mis-labeled as tar
workloads. Upon close inspection, we discovered that many

8
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Trace Models

Command make find grep tar untar copy move edit tpcc

make 91.7 1.2 1.2 2.4 3.6

find 91.8 2.1 3.1 1 2.1

grep 1 72 22 5

tar 100

untar 1.2 98.8

copy 1 1 6 82 1 9

move 5.6 0.8 0.8 2.4 89.6 0.8

edit 100

tpcc 100

Table 3. Recognizing a single workload using the profile HMM on a test opcode sequence. Confusion matrix gives entries indicating the percentage of instances

recognized correctly; the rows add up to 100%. The profile HMM recognized most commands correctly.

of the single-file grep commands (“grep foo bar.c”) were
being identified as tar’s. The combined multiple alignment
model shows that the initial subsequence of tar, where a sin-
gle file is being read from beginning to end, is very much
like that of a single-file grep. That could have led to the pro-
file HMM making an error. The diversity of the training set
is critical. For instance, when we manually picked the grep
training traces to have diverse command traces, we could
improve the accuracy from 72% to 85%.

Consider another example: find and tar need to traverse
a directory hierarchy in its entirety, except that in our case,
tar additionally reads the file contents and writes the tar file.
This distinction was enough for profile HMM to success-
fully distinguish find from tar in 100% of the cases. Over-
all, our methodology is able to distinguish workloads well
based on small differences in their trace patterns.

An interesting result here is that the tpcc workload was
identified correctly 100% of the time. The intuition behind
this result is that, a complex workload contains unique pat-
terns in its traces that can be accurately recognized. A sim-
ple workload may not have a strong signature in its traces,
leading the profile HMM to mis-identify it occasionally.

Discrimination between TPC-C and Postmark: We
also wanted to see how two large applications can be ac-
curately distinguished using the NFS traces; we selected
TPC-C and Postmark for this experiment. Postmark [15]
is a synthetic benchmark that has been designed to create
a large pool of continually changing files and measure the
transaction rates for a workload approximating a large In-
ternet electronic mail server.

Postmark traces were generated by running the bench-
mark 60 times with varying parameters. The file sizes were
varied between 10000 bytes and 300000 bytes, the frac-
tion of creations vs. deletions was varied between 10% and
100%, and the fraction of reads vs. appends was varied
between 10% and 100%. Out of this set of traces, 10 were
randomly picked for training, and 50 traces for testing. Sim-
ilarly, 20 traces of previously unknown TPC-C workload

TPC-C Postmark
TPC-C 100% 0%
Postmark 0% 100%

Table 4. Workload identification accuracy with TPC-C and Postmark

loads.

were attempted after training with 4 traces. The TPC-C
traces were from the previous experiment. The results of
the workload identification are given in Table 4.

In both cases, there were no misclassifications. This ex-
periment shows the capability of profile HMMs in discrim-
inating between two complex and large workloads.

4.3 Trace Annotation

Our next experiment evaluates how profile HMM can
mark out the NFS operations constituting various com-
mands in a long but not earlier seen NFS packet trace. It
tells us how accurately it can detect the start and end of
commands just by observing the NFS operations. We run
sequences of commands to simulate a variety of common
user-level activities, collect their NFS opcode traces and
query the profile HMM to identify the commands and their
positions in each trace, as outlined in Figure 4. We then
compare them with the known correct positions. Profile
HMM is able to detect the boundaries of a command’s op-
code sequence to within a few opcodes in many cases.

Figure 5 shows the trace annotation diagram with both
the detected and actual command boundaries for a com-
mand sequence <untar;make;edit;make;tar> that attempts
to simulate the process of downloading the HMMER source
package, compiling it, modifying it, compiling it again, and
then tar’ing up the resulting package. The bottom-most
bar in the figure shows the actual command boundaries,
while the other bars show the annotation made by the pro-
file HMM.We see that the quality of annotation is high. The
NFS operations corresponding to the untar, the two make’s

9
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Figure 5. Visualization of the annotated trace for a sequence of user

commands: <untar; make; edit;make; tar>. The bottom-most bar in the fig-

ure shows the actual sequence in the trace, while the other bars above show

the annotation by the profile HMM. The vertical lines indicate workload tran-

sition boundaries. The visualizations in this figure show that the annotation

is reasonably accurate. make is a harder command to classify because it in-

vokes other commands.

and tar commands are accurately marked.

Figure 6. Overall Trace Annotation Accuracy for a random sequence

of UNIX commands.

We then ran a comprehensive experiment, so that our re-
sults can be more statistically significant. We generated 100
traces, where each trace contained a run from a sequence of
100 commands, each picked randomly from our available
pool of commands. We analyzed the traces using profile
HMM, and annotated each opcode with its identified com-
mand. The results are presented in Figure 6. The annotation
accuracy is a measure of how much of the trace is marked
correctly with respect to start and end of the traces (and un-
related to confusion matrix entries computed for workload
identification). 86% of the opcodes were annotated cor-
rectly; 10% of them were marked as belonging to a wrong
command; and, 4% were identified as not belonging to any
of our commands. Figure 7 shows the results broken down
on a per-workload basis. Here we notice that opcodes be-
longing to grep and move were often incorrectly annotated.
Both these workloads perform poorly in the sampling ex-
periments above as well, implying that their characteristic
patterns are not very unique.

In summary, profile HMMs are able to make use of
subtle differences in workload traces to accurately iden-
tify transitions among workloads and annotate opcodes with
the higher-level operations that they represent. The minor
discrepancies observed were likely caused by not having

Figure 7. Trace Annotation Accuracy on a per-command basis. Note

that it is lower than that for identification as the starting and ending of the

traces have also to be marked correctly.

enough diversity in the selected training traces. Note that
for single workload identification described in 4.2, manu-
ally picking the grep training traces to have diverse com-
mand traces resulted in accuracy improvement from 72% to
85%. Further work is needed to figure out how to select
traces for improved discrimination.

4.4 Trace Processing Rate

Next, we measure the rate at which the profile HMMs
can process (identify or annotate) a trace by applying it on a
trace of length 50000 opcodes. Such a trace is constructed
randomly using traces in our test sequence set. For identi-
fication, each model in turn reports how many instances of
its family are present in the whole trace as well as a score
that indicates how well it matches with its training set. For
annotation, each model marks out its portion in the trace
and a post-processing procedure decides which workload is
assigned to a segment of the trace (based on a score).

Profile HMMs are not particularly fast – they processed
the trace at a rate of 356 opcodes per second on a Intel
Quad-Core CPU at 2.66 GHz and 3 GB of memory run-
ning Ubuntu Linux, kernel version 2.6.28. We then isolated
each model and measured their performance individually
on the same trace. The results are shown in the “process-
ing rate” column of Table 5. We find that the models differ
markedly in their speed (make and tpcc being the slowest).
We see a strong inverse correlation between the speed of the
model and the maximum sequence length of the training
traces. This is understandable: shorter training sequences
will likely build a profile HMM with fewer states and tran-
sitions. One could speed up the models by choosing shorter
traces for training, provided they do not jeopardize the iden-
tification accuracy. This is a tradeoff worth exploring in the
future.

10
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Trace # Test Trace Length Processing rate

Command Traces min. mean max (opcodes/sec)

make 84 23 2653 32175 2971

find 98 33 10683 66093 135893

grep 100 19 4784 24024 121701

tar 98 67 1255 19578 49430

untar 81 85 2082 28013 24680

copy 100 35 8665 97789 21408

move 125 9 26 39 667714

edit 127 657 670 687 22177

tpcc 24 1289 12665 61430 565

Table 5. Trace processing rates. Since each model has different number

of states in its profile HMM, the processing rates differ.

Figure 8. Sensitivity of profile HMM to the length of the trace sam-

ple analyzed for various commands when sample picked randomly from the

whole trace. Y-axis indicates the percent of runs (out of hundred runs) where

the command was correctly recognized.

4.5 Identification of Randomly Sampled Partial
Traces

In a real system, we will not have the entire trace of a
single command or a neatly ordered sequential set of com-
mands to analyze. They will typically be interleaved be-
cause of concurrent execution. Therefore, we must be able
to detect an application operation just by observing a snip-
pet of a command’s trace. Further, for online behavior de-
tection and adaptation, we should be able to quickly detect
an application operation, which implies that we should need
to analyze small amounts of traces to identify workloads.

Our next experiment evaluates how much of a randomly
sampled NFS trace the profile HMM methodology needs to
be able to correctly recognize a high-level operation. For
this experiment, we feed the profile HMM with contiguous
substrings of the pure test sequences — of various lengths
and at random locations in the full sequence — and mea-
sure how often it detects the command correctly. Figure 8
contains plots of profile HMM’s sensitivity to trace snippet
size for various high-level commands. As the graphs indi-
cate, profile HMM is able to recognize most workloads with

Figure 9. Sensitivity of profile HMM’s accuracy to the length of the

trace prefix analyzed for various commands. The Y-axis indicates the percent

of runs (out of hundred runs) where the command was correctly recognized.

80% accuracy by examining a small fraction of the trace.
The move command generates a small trace to begin with.
Therefore, the profile HMM requires a large fraction of its
trace to be examined to correctly identify it.

The characteristic patterns of a workload may be concen-
trated at some locations for certain commands, while they
may be distributed better for other commands. Having char-
acteristic patterns at various locations in the trace is useful
for online behavior detection, since there is a larger likeli-
hood of identifying a workload from a random sample. To
understand the distribution of characteristic patterns in our
workloads, we tested the profile HMM with varying length
prefixes of traces. Figure 9 shows the results. We see that
the predictive value of small prefixes of traces is quite high.
For some commands like copy and move, the end of a trace
seems to have strong characteristics.

This evaluation suggests that in real scenarios, some
workloads may be identified by examining just a small snip-
pet, while other workloads may need a large fraction of their
traces to be analyzed before identification.

4.6 Automated Learning on Real Traces

Validating our approach using real traces from real
deployments is important. Our approach is based on
a classification-based methodology that requires that the
training data be labeled. Unfortunately, real traces are typi-
cally not labeled with workload information. Therefore, we
will neither be able to train with the real trace nor be able to
validate our results.

To tackle this problem, we use the LD_PRELOAD en-
vironment variable on the client to interpose our own li-
brary that intercepts all process invocations (“exec” family
of calls in UNIX) and forces a sentinel marker in the trace
by doing an operation that can be spotted. Whenever we
see an “exec”, we “stat” a non-existent file – the file name
encodes the identity of the exec’ed program. The NFS re-

11
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gcc cat mv ld
gcc 80.5 1.9 0.9 16.8
cat 3.1 77.9 0.8 18.2
mv 0.6 0.5 62.5 36.4
ld 13.3 1.2 1.7 83.8

Table 6. Workload identification accuracy on live traces.

sponse that the file does not exist (ENOENT) with the coded
filename is enough for us to mark the boundaries of the trace
segment generated by each of the command invocations.
Here we need to ensure that the invocation is “atomic”, i.e.,
it does not result in exec’ing of other programs that are of
interest independently for identification (otherwise, we will
mark a only a subtrace as belonging to the invocation and
mark some part of the following trace as belonging to the
subprocess). We used an open-source tool called Snoopy
[21] and modified it to suit our purposes.

As an example, we used the compilation of Linux 2.6.30
source as the generator of a real trace. We instrumented
the client with the above interposition library, collected the
traces for a certain amount of time and constructed our
training trace data automatically. Our sentinel markers in
the trace also give us an easy way to validate our results.

The following commands were detected in the Linux
source compilation on the Ubuntu 9 system1: “gcc”, “rm”,
“cat”, “mv”, “expr”, “make”, “getent”, “cut”, “mkdir”,
“bash”, “run-parts”, “sed”, “date”, “whoami”, “host-
name”, “dnsdomainname”, “tail”, “grep”, “cmp”, “sudo”,
“objdump”, “ld”, “nm”, “objcopy”, “awk”, “update-
motd”, “renice”, “ionice”, “basename”, “landscape-
sysinfo”, “who”, “stat”, “apt-config”, “ls”. Since com-
mands like “make” initiate, for example, many gcc com-
piles, it is not possible to demarcate the beginning and end
of the trace that “make” contributes as we are interested in
“gcc” as a workload in itself. We eliminated such compos-
ite commands and those that do not contribute to NFS traces
(eg. “date”), and ended finally by selecting 4 commands in
the live trace.

For workload identification, we considered the 105
minute live trace of the Linux source compilation discussed
earlier with training on approximately 3 minutes of the
trace. The results are given in Table 6.

To understand how learning is improved with larger
number of training traces used, we chose 30 sec, 40 sec,
50 sec, 1 min, 2 min, 3 min, 4 min and 5 min durations of
the trace and used the specific workload found in these dura-
tions for training that workload. From Figure 10, we notice
that the accuracy of the workload identification improves
with increase in the number of training sequences used, thus
demonstrating learning in the system. Commands that gen-

1“landscape-sysinfo” provides a quick summary about the machine’s
status regarding disk space, memory, processes, etc. “run-parts” runs a
number of scripts or programs found in a single directory.

Figure 10. Online learning on live traces.
erate a small amount of traces, such as cat and mv pose dif-
ficulties for our methodology. In this experiment, the output
of the cat commands were for /dev/null and for a single spe-
cific file; because of client-side caching, the traces did not
have a strong signature. We need traces with good signa-
tures (like gcc) to get good results. This is acceptable from
a practical standpoint as bigger application workloads, in
general, are of more interest in the systems community.

The value of the profile HMM as a practical tool will
be significantly enhanced if we can automatically generate
a labeled trace, with each of its constituent workloads de-
marcated, for training. The LD_PRELOAD mechanism is
a way to do this. On new clients or clients running new ap-
plications, the interposition library could be introduced to
generate new training sets. The library could subsequently
be removed after sufficient training data has been generated.

4.7 Concurrent Workloads

Shared storage systems almost always serve multiple
concurrent workloads. Therefore, the server-side trace con-
tains the trace sequences of multiple application-level oper-
ations interleaved with each other in time. However, while a
shared storage systemmay serve files to thousands of clients
in an enterprise deployment, the NFS trace contains client
IDs that can be used to tease the interleaving apart. There-
fore, we need automated tools only to separate out the traces
due to requests from a single client. Typically, the number
of concurrent applications at a single client invoking NFS
operations to the same backend server are small.

Profile HMM’s ability to detect high-level commands
from small snippets of file system operations helps iden-
tify the various workloads running concurrently. Our next
experiment evaluates this ability. We run sequences of com-
mands from 2 to 6 NFS clients accessing the same NFS
server, capture the NFS opcode trace at the server’s net-
work interface, remove the client ID (to simulate the effect
of multiple applications from the same client), and feed it
into the profile HMM for marking the commands’ opera-
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Figure 11. Concurrent sequences of commands were run from 2 to 6

clients. The graph shows the quality of the annotation.

tion sequences. We compare the result with the sequences
identified manually based on the source IP address. Fig-
ure 11 shows the quality of the annotation. The amount of
concurrency determines whether there will be long enough
snippets for profile HMM to accurately annotate the trace.
As expected, for a concurrency level of 2 or 3, the results
are acceptable, but gets worse beyond that. The interesting
point to note here is that the incorrect annotations do not
increase with concurrency; only the proportion of unrecog-
nized sequences do. The profile HMM’s ability to explicitly
tag unrecognized sequences as such helps the user rely on
its output.

More than the exact marking of regions, the identifica-
tion of constituent workloads in a mixed-workload scenario
is itself of good value. This is because, for the typical ad-
ministrator, a more compelling use case than unraveling the
opcode sequences of interleaving workloads is to identify
which workloads are running in a given interval of time.
Note that TPC-C, a very concurrent workload, can be identi-
fied quite successfully as reported earlier (Sections 4.2, 4.3).

5 Limitations

During the course of our evaluation, we discovered a few
limitations with this methodology. First, training the tool
requires a diverse and representative sample of workloads.
This is a fundamental characteristic of machine learning
methodologies. Second, the open-source tools that we used
to build our solution are from computational biology. The
current off-the-shelf solutions have a limited alphabet space
which may not be completely appropriate for systems appli-
cations. However, we believe that there are no fundamental
mathematical limitations in the number of symbols, except
that we may have to perform significantly more training if
we use more symbols. Third, the level of concurrency at a
client adversely affected the accuracy of the tool. The fine-
grained interleaving resulting from a large number of con-
current streams can be tackled only if we are able to iden-

tify workloads using very small trace snippets. Finally, the
profile HMM seems to be slow compared with the typical
rates of NFS operations at a server, hampering online anal-
ysis. Many of these limitations may not be fundamental in
nature, but pointers to future work.

6 Conclusions and Future Work

In this paper, we have presented a profile HMM-based
methodology for analysis of NFS traces. Our method is suc-
cessful at discovering the application-level behavioral char-
acteristics from NFS traces. We have also shown that given
a long sequence of NFS trace headers, it is able to annotate
regions of the sequence as belonging to the applications that
it has been trained with. It can identify and annotate both
sequential and concurrent execution of different workloads.
Finally, we demonstrate that small snippets of traces are suf-
ficient for identifying many workloads. This result has im-
portant consequences. Because traces are going to get gen-
erated faster than one can analyze them, being able to infer
meaningful information from periodic random sampling is
very important for effective analysis.

Although profile HMM methodology looks promising
for trace analysis, our experience indicates that we have
not leveraged all its capabilities. For instance, we have not
used all the information that is available in the NFS trace.
There is a rich amount of data available in the form of file
names and handles, file offsets, read/write lengths and error
responses that throw more light on the application work-
loads. We have to investigate how to incorporate this in-
formation into a form amenable for multiple alignment and
profile HMM. This will be the first step in extending our
work.

NFSv4 introduces client delegations, offering clients the
ability to access and modify a file in its own cache without
talking to the server. This implies that an NFSv4 trace may
not have all the information about application workloads.
Investigating how profile HMMs work on NFSv4 traces is a
clear extension of this work.

We also believe that our methodology is general enough
that we can apply it to other source data such as network
messages, system call traces, disk traces and function call
graphs. This methodology can be a foundation to tackle use
cases in areas such as anomaly detection and provenance
mining, which are building blocks for next-generation sys-
tems management tools. Finally, we will look into other
machine learning methods that overcome some of the limi-
tations of profile HMMs.
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Abstract
The cloud is poised to become the next computing en-

vironment for both data storage and computation due
to its pay-as-you-go and provision-as-you-go models.
Cloud storage is already being used to back up desktop
user data, host shared scientific data, store web applica-
tion data, and to serve web pages. Today’s cloud stores,
however, are missing an important ingredient: prove-
nance.

Provenance is metadata that describes the history of
an object. We make the case that provenance is crucial
for data stored on the cloud and identify the properties of
provenance that enable its utility. We then examine cur-
rent cloud offerings and design and implement three pro-
tocols for maintaining data/provenance in current cloud
stores. The protocols represent different points in the de-
sign space and satisfy different subsets of the provenance
properties. Our evaluation indicates that the overheads
of all three protocols are comparable to each other and
reasonable in absolute terms. Thus, one can select a
protocol based upon the properties it provides without
sacrificing performance. While it is feasible to provide
provenance as a layer on top of today’s cloud offerings,
we conclude by presenting the case for incorporating
provenance as a core cloud feature, discussing the is-
sues in doing so.

1 Introduction
Data is information, and as such has two critical compo-
nents: what it is (its contents) and where it came from
(its ancestry). Traditional work in storage and file sys-
tems addresses the former: storing information and mak-
ing it available to users. Provenance addresses the lat-
ter. Provenance, sometimes called lineage, is metadata
detailing the derivation of an object. If it were possi-
ble to fully capture provenance for digital documents
and transactions, detecting insider trading, reproducing
research results, and identifying the source of system
break-ins would be easy. Unfortunately, the state of the
art falls short of this ideal.

Current research has demonstrated the feasibility of
automatically capturing provenance at all levels of a
system, from the operating system [18, 30] to applica-
tions [27]. Our goal is to extend provenance to the cloud.

Provenance is particularly crucial in the cloud, be-
cause data in the cloud can be shared widely and anony-

mously; without provenance, data consumers have no
means to verify its authenticity or identity. The web
has taught us that widely shared, easy-to-publish data
are useful, but it has also taught us to be skeptical con-
sumers; it is impossible to know exactly how updated
or trustworthy data on the web are. We should solve
the problem now while cloud services are still new and
evolving. For example, Amazon’s “Public Data Sets on
AWS” provides free storage for public data sets such as
GenBank [2], US census data, and PubChem [1]. If re-
searchers are to make the most of these data sources,
they must be able to accurately identify the process used
to generate the data. Provenance, bound to the data it de-
scribes, provides the necessary information for verifying
the process used to generate the data. Similarly, prove-
nance can be used to debug experimental results and to
improve search quality. We discuss these use cases in
Section 2.2.

As both automatic provenance collection and cloud
storage are relatively new developments, it is not obvi-
ous how to best record provenance in the cloud. We be-
gin by identifying four properties crucial for provenance
systems. First, provenance data-coupling states that
when a system records data and provenance, they match
– the provenance accurately describes the data recorded.
Second, multi-object causal ordering states that ances-
tors described in an object’s provenance exist, i.e., the
objects from which another object is derived. This en-
sures that there are no dangling provenance pointers.
Third, data-independent persistence states that prove-
nance must persist even after the object it describes is
removed. Fourth, efficient query states the system sup-
ports queries on provenance across multiple objects. We
discuss these properties and the implications of violating
them in Section 3.

Using these properties as a metric, we designed three
alternative protocols for storing provenance using cur-
rent cloud services. The protocols vary in complexity,
the guarantees they make, and the distributed cloud com-
ponents they involve. The first protocol is the simplest
and uses only a cloud store. In turn, it is the weakest
of the protocols. The second protocol satisfies a larger
subset of the properties and uses a cloud store and a
cloud database. The third protocol uses a cloud store,
a cloud database, and a distributed cloud queuing ser-
vice and satisfies all the properties. The database and
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queue have the same availability, reliability, and scala-
bility properties as the store. We discuss the protocols
and the properties they satisfy in Section 4.3. We use
a Provenance Aware Storage System (PASS) [30] aug-
mented to use Amazon Web Services (AWS) [5] as the
backend to build and evaluate the protocols for storing
provenance. Based on our experience designing and im-
plementing protocols for storing provenance on current
cloud offerings, we discuss research challenges for pro-
viding native provenance support on the cloud.

The contributions of this paper are:

1. Definition of properties that provenance systems
must exhibit.

2. Design and implementation of three protocols for
storing provenance and data on the cloud, evaluat-
ing each protocol with respect to the properties we
established.

3. Evaluation and comparison of the cost and perfor-
mance of our three provenance storage protocols.

The rest of the paper is organized as follows. In the
next section, we provide background on provenance and
our provenance collection substrate, discuss use cases
for provenance in the cloud, and introduce the cloud ser-
vices that are most pertinent to this work. In Section 3,
we present the desirable properties for storing prove-
nance in the cloud. In section 4, we discuss the chal-
lenges unique to storing provenance on the cloud and
present the architecture and implementation of our three
provenance recording protocols. In section 5, we evalu-
ate the protocols for overhead, throughput, and cost. We
discuss related work in section 6. We discuss the chal-
lenges for providing native support for provenance in the
cloud in section 7, and we conclude in section 8.

2 Background

Provenance can be abstractly defined as a directed
acyclic graph (DAG). The DAG structure is fundamen-
tal and holds for all provenance systems irrespective
of the software abstraction layer at which they operate.
The nodes in the DAG represent objects such as files,
processes, tuples, data sets, etc. The edges between
two nodes indicates a dependency between the objects.
Nodes can have attributes. For example, a process node
has attributes such as the the command line arguments,
version number, etc. A file node has name and version
attributes. Each version of a file or process is represented
by a distinct node in the DAG. The provenance graph, by
definition, is acyclic as the presence of cycles would in-
dicate that an object was its own ancestor.

2.1 Provenance Aware Storage System
(PASS)

We use our PASS [30] system to collect provenance.
PASS is a storage system that transparently and au-
tomatically collects provenance for objects stored on
it. It observes application system calls to construct the
provenance graph. For example, when a process issues
a read system call, PASS creates a provenance edge
recording the fact that the process depends upon the file
being read. When that process then issues a write sys-
tem call, PASS creates an edge stating that the file writ-
ten depends upon the process that wrote it, thus tran-
sitively recording the dependency between the file read
and the file written. For processes, PASS records sev-
eral attributes: command line arguments, environment
variables, process name, process id, execution start time,
the file being executed, and a reference to the parent
of the process. For all other objects (files, pipes, etc.),
PASS records the name of the object (pipes do not have
names). Prior to this work, PASS used local file sys-
tems and network attached storage as its storage back-
end; this work leverages PASS as a provenance collec-
tion substrate and extends its reach to using the cloud as
the storage backend.

2.2 Cloud Provenance Use Cases
The following use cases illustrate the utility and need for
provenance in the cloud.

Debug Experimental Results: The Sloan Digital Sky
Survey (SDSS) [20] is an online digital astronomy
archive consisting of raw data from various sources (e.g.,
imaging camera, photometric telescope, etc.). It also
provides an environment for researchers to process and
store data in personal databases. Since researchers use of
the environment is bursty, one can imagine using cloud
stores and virtual machines to provide this service. Con-
sider a scenario where SDSS administrators upgrade the
software distribution on the compute node images unbe-
knownst to the users. Suppose further that when users
run their scripts, the resulting output is flawed. Without
provenance, users are left to manually search for clues
explaining the change in behavior. With provenance,
users can compare the provenance of newly generated
output with the provenance of older output to determine
what has changed between invocations. For example, if
a new JVM had been introduced, the difference in JVMs
would be readily apparent in the provenance output.

Detect and Avoid Faulty Data Propagation: The
SDSS processed data is produced by a pipeline of data
reduction operations. A scientist using the data might
want to ensure that she is using an appropriately cali-
brated data set. Without provenance, the scientist has
no means to verify that she is using data processed by
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the correct software. With provenance, the scientist can
examine the data’s provenance to verify that appropriate
versions of the tools were used to process the data. In
addition, provenance enables users to discover how far
faulty data has propagated throughout a data processing
pipeline.

Improving Text Search Results: Shah et. al. [39]
showed that provenance can improve desktop search re-
sults. The provenance graph provides dependency links
between files, similar to hyperlinks between webpages,
that can be used to improve the quality of search results.
Shah’s scheme first uses a pure content-based search to
compute an initial set of documents. Then, they tra-
verse the provenance DAG of the initial document set
P times. At each iteration of the traversal, they update
the weight for each node based on the number of incom-
ing/outgoing edges. After P runs, they re-rank the files
and include new files to the list based on the weights
computed.

Similarly, provenance can be used to improve search
quality for data stored on the cloud. For example,
consider a scenario where a user archives data on the
cloud. Without any content-based indexing, search-
ing that archived data requires downloading each file to
the user’s desktop. Content-based indexing reduces the
number of files the user needs to download. Content-
based indexing refined by provenance, such as inter-file
dependencies, inputs, or command-line arguments from
the program that generated the data, further reduces the
effort required to locate a particular file.

2.3 Cloud Services
We next provide a brief description of the cloud services
that are most pertinent to this work.

Object Store Service: A cloud object service allows
users to store and retrieve data objects. Service providers
generally provide a REST-based interface for accessing
objects, with each object identified by a unique URI.
The service allows users to PUT, GET, COPY, and
DELETE objects. The PUT operation overwrites any
previous versions of an object. With each object, clients
can store some metadata, represented as <name,value>
pairs. The PUT operation supports atomic updates to
both data and metadata. The cost of using such services
is based on the number of bytes transferred (both to and
from), the storage space utilization, and the number of
operations performed. Amazon Simple Storage Service
(S3) [37] and Microsoft Azure Blob [6] are examples of
object store services.

Database Service: A cloud database service provides
index and query functionality. The data model is semi-
structured, i.e., it consists of a set of rows (called items),
with each row having a unique itemid and each item

having a set of attribute-value pairs. The attribute-value
pairs present in one item need not be present in another,
and an item can have multiple attributes with the same
name. For example, an item can have two phone at-
tributes with different values. The database service pro-
vides the same reliability and availability guarantees as
the data store. Amazon’s SimpleDB [38] and Microsoft
Azure’s Table [8] are examples of such services. Sim-
pleDB supports attribute names and values up to 1 KB,
while Azure allows them to be up to 64KB. SimpleDB
provides a traditional SELECT query interface, whereas
Azure provides a LINQ [25] query interface.

Messaging Service: Distributed messaging systems
provide a queuing abstraction allowing users to ex-
change messages between distributed components in
their systems. Queues are typically identified by a
unique URL. Users can perform operations such as
SendMessage, ReceiveMessage, and DeleteMessage.
The messaging service provides similar guarantees to
that of the corresponding cloud store. Message deliv-
ery is generally best-effort, in-order message delivery.
Amazon’s Simple Queueing Service (SQS) [41] and Mi-
crosoft Azure Queue [7] are examples of such Messag-
ing systems. Both SQS and Queue enforce an 8KB limit
on messages.

2.3.1 Eventual Consistency

As with other distributed systems, building highly scal-
able cloud services involves making various choices in
the design space. A number of recent systems that oper-
ate at the cloud scale have chosen to be provide high per-
formance and high availability while providing a weaker
form of data consistency, called eventual consistency.
AWS is an example of an eventually consistent service
suite. This implies that, for example, a client perform-
ing a GET operation on an S3 object immediately af-
ter a PUT on that object might receive an older copy of
the object as S3 might service that request from a node
that has not yet received the latest update. If two clients
update the same object concurrently via a PUT, the last
writer wins, but for a non-deterministic period of time
after a PUT, a subsequent GET operation might return
either of the two writes to the client. Azure services, on
the other hand, are strictly consistent; a client is guaran-
teed to receive the latest version of an object. Eventual
consistency dictates that clients must design appropriate
mechanisms to detect inconsistencies between objects.
We designed our protocols assuming eventual consis-
tency, as it is the weaker form of concurrency; anything
that works with eventual consistency will work trivially
with stronger models.
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3 Provenance System Properties
There are four properties of provenance systems that
make their provenance truly useful. We motivate and
introduce these properties.

Provenance Data Coupling The data-coupling prop-
erty states that an object and its provenance must match
– that is, the provenance must accurately and com-
pletely describe the data. This property allows users
to make accurate decisions using provenance. Without
data-coupling, a client might use old data based on new
provenance or might use new data based on old prove-
nance. In both of these cases, the user relying on the
provenance is misled into using invalid data.

Systems that do not provide data-coupling during
writes can detect data-coupling violations on access and
withhold or explicitly identify objects without accurate
provenance. For example, if the provenance includes
a hash of the data, we can compute the hash of a data
item to determine if its provenance refers to this version
of that data. Detection is, at best, a mediocre replace-
ment for data-coupling, because although users will not
be misled, they cannot safely use available data when its
provenance is wrong.

Given the eventual consistency model of existing
cloud services and the fact that we cannot modify ex-
isting cloud services, we find a weaker form of the prop-
erty, Eventual data-coupling practical. In eventual data-
coupling, the data and its provenance might not be con-
sistent at a particular instant, but are guaranteed to be
eventually match. With eventual data-coupling, a sys-
tem requires detection, since there may exist intervals
during which an object and its provenance do not match.

Multi-object Causal Ordering This property ac-
knowledges the causal relationship among objects. If an
object, O, is the result of transforming input data P, then
the provenance of O is the super-set of the provenance
of P. Thus, a system must ensure that an object’s ances-
tors (and their provenance) are persistent before making
the object itself persistent. Multi-object Causal Ordering
violations occur when the system writes an object to per-
sistent store before writing all its ancestors, and the sys-
tem crashes before recording those ancestors and their
provenance. These violations produce dangling pointers
in the DAG. Similar to eventual data-coupling, a weaker
form of the property Eventual Causal Ordering is realiz-
able. A system still requires detection to account for the
intervals during which an object’s provenance may be
incomplete, because its ancestors and their provenance
are not yet persistent or not available due to eventual
consistency.

Data-Independent Persistence This property ensures
that a system retains an object’s provenance, even if the

object is removed. As in the last section, assume that P is
an ancestor of O. If P were removed, O’s provenance still
includes the provenance of P, so a system must make
sure to retain P’s provenance, even if P no longer exists.
If P’s provenance is deleted when P is deleted, parts of
the provenance DAG will become disconnected. If P had
no descendants, then a system might choose to remove
its provenance, since it would no longer be accessible via
any provenance chain. Another approach to solving this
problem is to copy and propagate an ancestor’s prove-
nance to its descendants. This is inefficient in terms of
space and can quickly become unwieldy.

Efficient Query Since provenance is created more fre-
quently than it is queried, efficient provenance recording
is essential. However, efficient query is also important
as provenance must be accessible to users who want to
access or verify provenance properties of their data. In
scenarios where the number of objects are few or users
already know the objects whose provenance they want
to access, efficiency is not an issue. Efficiency mat-
ters, however, when the number of objects is sizeable
and users are unsure of the objects they want to access.
For example, users might want to retrieve objects whose
provenance matches certain criteria. In scenarios such as
this, if a system stores provenance, but that provenance
is not easily queried, the provenance is of reduced value.

4 Protocol Design and Implementation
We begin this section by presenting the challenges
unique to the cloud that guided our protocol design.
Next, we present a high level architectural overview and
implementation of our system. Finally, we describe each
of our three protocols in detail. For each protocol, we
discuss its advantages and limitations. For the rest of the
paper, we use AWS as the cloud backend as it is the most
mature product on the market.

4.1 Challenges
The cloud presents a completely different environment
from the ones addressed by previous provenance sys-
tems. The cloud is designed to be highly available and
scalable. None of the existing provenance solutions,
however, account for availability or scalability in their
design. The cloud is also not extensible, while all exist-
ing solutions required making changes to the operating
system, the workflow engine, the application, or some
other piece of software. Further, the long latency be-
tween users and the cloud presents different update and
error models. These properties make managing prove-
nance in the cloud different from managing it on local
storage.

Extensibility: Most existing provenance systems as-
sume the ability to modify system components. For ex-
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ample, PASS uses either a file system or an NFS service
as the storage backend. PASS defined new extensions to
the VFS interface to couple data and provenance [28].
The Virtual Data Grid [17] and myGrid [42] workflow
engines integrate provenance collection into the work-
flow execution environment. The PASOA [34] frame-
work for recording provenance in service oriented ar-
chitectures assumes the existence of a custom designed
provenance recording service. In the case of the cloud,
however, modifying or extending existing services is not
possible.

Availability: One can imagine building a wrapper ser-
vice that acts as a front to the cloud services and pro-
vides a cloud provenance storage service that satisfies
the properties we identified. For the approach to be
viable, however, the wrapper service has to match the
availability of the cloud. If not, the overall availability is
reduced to the availability of the wrapper service. Build-
ing such a highly available wrapper service is counter-
productive as it requires a great deal of effort and infras-
tructure investment, defeating the very purpose of mov-
ing to the cloud. Hence, we design protocols that lever-
age existing services while satisfying the properties.

Scalability: In order to make the provenance
queryable, most systems store provenance in a database.
Hence, we considered storing the provenance in a
database backed by an S3 object (e.g., a MySQL or
Berkeley DB database stored in the S3 object). The
provenance would then be queryable, but this approach
would not scale. First, to avoid corrupting the database,
clients need to synchronize updates between each other.
A single global lock is a scalability bottleneck, and a
distributed lock service would introduce the potential
for distributed deadlock. Second, due to the update
granularity of cloud stores, clients need to download
the database object for every update, which also does
not scale. One can, of course, use more sophisticated
parallel database solutions. This is, however, expensive
and hard to maintain and is against the pay-as-you-use
model of the cloud. All this points to using a scalable
cloud service such as SimpleDB to store provenance,
as we do in two of our protocols (Section 4.3.2 and
Section 4.3.3). Storing the provenance in a separate
service opens the issue of coordinating updates between
the database service and object store service, which we
address while describing the protocols.

Some of the properties of the cloud, on the other hand,
make storing provenance easier. For example, NFS and
the file system have to ensure consistency in the face of
partial object writes, while cloud stores deal only with
complete objects. Hence cloud provenance does not
have to consider partial write failures.

4.2 Architecture Overview

Figure 1: Architecture: The figure shows how prove-
nance is collected and the cloud is used as a backend.

Figure 1 shows our system architecture. The system
is composed of the client (compute node) and the cloud.
The client is in turn composed of PASS and PA-S3fs.
PASS monitors system calls, generating provenance and
sending both provenance and data to Provenance Aware
S3fs (PA-S3fs). PA-S3fs, a user-level provenance-aware
file system interface for Amazon’s S3 storage service,
caches data and provenance on the client to reduce traffic
to S3. PA-S3fs caches data in a local temporary direc-
tory and the provenance in memory. On certain events,
such as file close or flush, it sends both the data and
the provenance to the cloud using one of the protocols
P1, P2, or P3, which we discuss in the next subsections.
Further, PASS has algorithms built into it that preserve
causality by carefully creating logical versions of objects
when they are simultaneously updated by multiple pro-
cesses at the same client [29]. The provenance recorded
in the cloud by the protocols reflects this versioning.

Implementation PA-S3fs is derived from S3fs [36], a
user-level FUSE [19] file system that provides a file sys-
tem interface to S3. PA-S3fs extends S3fs by interfac-
ing it to PASS, our collection infrastructure. PASS inter-
nally uses the Disclosed Provenance API (DPAPI) [28]
to satisfy the properties specified in Section 3 and even-
tually stores the provenance on a backend that exports
the DPAPI. Hence, extending S3fs to PA-S3fs translates
to extending S3fs and FUSE to export the DPAPI.

4.3 Protocols
Table 1 summarizes our three protocols with respect to
the properties in Section 3. Although we discuss the
protocols in the context of moving data from users to
the cloud, they can also be used while replicating data
and provenance across different cloud service providers.
Further, while our implementation is based on extending
the file system interface to the cloud, the protocols are
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(a) (b) (c)

Figure 2: Protocol 1 (a): Both provenance and data are recorded in a cloud object store (S3). Protocol 2 (b): Provenance is
stored in a cloud database (SimpleDB) and data is stored in a cloud store (S3). Protocol 3 (c): Provenance is stored in a cloud
database (SimpleDB) and data is stored in a cloud store (S3). A cloud messaging service (SQS) is used to provide data-coupling
and multi-object causal ordering.

Property P1 P2 P3
Provenance Data-Coupling   

Multi-object Causal Ordering   

Efficient Query   

Table 1: Properties Comparison. A check mark indicates that
the property is supported, otherwise it is not.

independent of the storage model and applicable when-
ever provenance has to be stored on the cloud.

4.3.1 P1: Standalone Cloud Store
Storage Scheme: We map each file to an S3 object and
store the object’s provenance as a separate S3 object. It
might seem attractive to record provenance as metadata
of the object, but that introduces two problems. First,
removing the object removes its provenance, violating
provenance persistence. Second, most systems impose a
hard limit on the size of an object’s metadata. To address
the deletion issue, one could truncate the data in the ob-
ject and rename the object to a shadow directory on dele-
tion. To address the metadata limit, one could store the
extra provenance in the first n bytes of the object itself
and on deletion, truncate the data part of the object. In-
stead, we create a primary S3 object containing the data

and a second, provenance S3 object, named with a uuid
and containing the primary object’s provenance plus an
additional provenance record containing the name of the
primary S3 object. In the primary S3 object’s metadata,
we record a version number and the uuid, thus linking
the data and its provenance. For objects that are not per-
sistent, such as pipes and processes, we record only the
provenance object with no primary object. For prove-
nance queries, this scheme requires us to lookup the pri-
mary object and then retrieve the provenance whereas
the previous scheme can avoid this. On deletions, how-
ever, the previous scheme requires the system to update
all provenance referring to the object to point to the new
name assigned on deletion. We chose to store prove-
nance in a separate object, because provenance queries
are infrequent relative to object operations, and updating
provenance pointers on every delete can be expensive.

Protocol: Figure 2a depicts protocol P1. On a file
close (or flush), we perform the following operations:

1. Extract the provenance of the file (cached by PA-
S3fs). PUT the provenance into the S3 provenance
object. If the provenance object already exists,
GET the existing object, append the new prove-
nance to it, and then issue a PUT.
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2. PUT the data object with metadata attributes con-
taining the name of the provenance object and the
current version.

Before sending the provenance and data of an object,
we need to identify the ancestors of the object and send
any unrecorded ancestors and their provenance to ensure
multi-object causal ordering. A client can, at best, assure
a consistency model comparable to that of the under-
lying system; that is if the underlying system supports
eventual consistency, then the best P1 can do is ensure
eventual multi-object causal ordering. A reading client
that wants to check multi-object causal ordering must
use Merkle hash trees or some similar scheme to verify
the property. If the property is not satisfied, the client
should try refreshing the data until the objects do meet
the multi-object causal ordering property.

Discussion: This protocol does not support data-
coupling, but using version numbers stored both in the
provenance object and the primary object’s metadata,
clients can detect provenance decoupled from data. P1
achieves eventual multi-object causal ordering if it sends
all the ancestors of an object and their provenance to S3
before sending the object’s provenance to S3. However,
such an implementation can suffer from high latency.
Querying is inefficient as we cannot retrieve objects by
their individual provenance attributes; we can only re-
trieve all of an object’s provenance via a GET call. If
we do not know the exact object whose provenance we
seek, then we need to iterate over the provenance of ev-
ery object in the repository, which is so inefficient as to
be impractical.

4.3.2 P2: Cloud Store with a Cloud
Database

Storage Scheme: This scheme, which is already in-
dependently in use by some cloud users [13], stores
each file as an S3 object and the corresponding prove-
nance in SimpleDB. We store the provenance of a ver-
sion of an object as one SimpleDB item (row in tradi-
tional databases). As in P1, we reference the provenance
of an object by uuid assigned to the object at creation
time. For example, assume that an object named foo has
uuid ’uuid1’, its version is 2, and it has two provenance
records: (input, bar 2) and (type, file). P2 stores this in
SimpleDB as:

ItemName=uuid1_2
attribute-name=name,attribute-value=foo
attribute-name=input,attribute-value=bar_2
attribute-name=type,attribute-value=file

The name attribute allows us to find an object from its
provenance. We chose this one-row-per-version scheme
instead of storing the provenance of all versions of an
object as one SimpleDB item, as it allows users to distin-
guish the version to which the provenance belongs. We

store provenance values larger than the 1KB SimpleDB
limit as separate S3 objects, referenced from items in
SimpleDB. As in P1, we store the object’s current ver-
sion number and uuid in its metadata.

Protocol: Figure 2b shows the second protocol. On a
file close, we extract the provenance cached in memory
and convert it to attribute-value pairs. We then group the
attribute-value pairs by file version, construct one item
for the provenance of each version of the file, and per-
form the following actions:

1. If any of the values are larger than 1KB, store them
as S3 objects and update the attribute-value pair to
contain a pointer to that object.

2. Store the provenance in SimpleDB by issuing
BatchPutAttributes calls. SimpleDB allows us
batch up to 25 items per call, hence we issue as
many calls as necessary to store all the items.

3. PUT the data object with metadata attributes con-
taining the name of the provenance object and the
current version.

As in P1, P2 enforces multi-object causal ordering by
recording ancestors and their provenance before sending
the provenance and data of the new object.

Discussion: P2 is an improvement over P1 in that it
provides efficient provenance queries, because we can
retrieve indexed provenance from SimpleDB. Like P1,
P2 does not provide data-coupling but can detect cou-
pling violations and exhibits high latency to ensure
multi-object causal ordering. Due to eventual consis-
tency, we can encounter a scenario in which SimpleDB
returns old versions of provenance when S3 returns more
recent data (and vice versa). We detect this by compar-
ing the version of the object in S3 and the version re-
turned in the provenance. If they are not consistent, we
can request the specific version of the provenance we
need from SimpleDB.

4.3.3 P3: Cloud store with Cloud Database
and Messaging Service

Storage Scheme and Overview: P3 uses the same
S3/SimpleDB storage scheme as P2, but differs from
P2 in its use of a cloud messaging service (SQS) and
transactions to ensure provenance data-coupling. Each
client has an SQS queue that it uses as a write-ahead log
(WAL) and a separate daemon, the commit daemon, that
reads the log records and assembles all the records be-
longing to a transaction. Once it has all the records for
a transaction, the daemon pushes data in the records to
S3 and provenance to SimpleDB. If the client crashes be-
fore it can log all the packets of a transaction to the WAL
queue, the commit daemon ignores these records. One
might be tempted to use a local log instead of an SQS
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queue, but such an arrangement leads to data-coupling
violations when a client crashes before the commit dae-
mon has completely committed a transaction. By using
SQS as the log, if the client running the commit daemon
crashes during a commit, another machine can commit
the partially completed transaction.

Messages on SQS (and Azure) cannot exceed 8KB,
hence we cannot directly record large data items in the
WAL queue. Instead, we store large objects as tempo-
rary S3 objects, recording a pointer to the temporary
object in the WAL queue. The commit daemon, while
processing the WAL queue entries, copies a temporary
object to its real object and then deletes the temporary
object. Both S3 and Azure do not currently support a re-
name operation. Hence the object has to be copied from
the temporary name to the real object. One thousand
copy operations cost 0.01 USD for S3 and 0.001 USD
for Azure with no charge for the data transfer required
to perform the copy. Hence the copy operation has mini-
mal cost from a user’s perspective. Once items are in the
WAL queue, they are guaranteed to eventually be stored
in S3 or SimpleDB, so the order in which we process the
records does not matter.

We must, however, garbage collect state left over by
uncommitted transactions. SQS automatically deletes
messages older than four days, so we do not need to per-
form any additional reclamation (unless the 4-day win-
dow becomes too large) on the queue. However, tempo-
rary objects that have been stored on S3 must be explic-
itly removed if they belong to uncommitted transactions.
We use a cleaner daemon to remove temporary objects
that have not been accessed for 4 days.

Protocol: Figure 2c shows our final protocol. We di-
vide the protocol into two phases: log and commit. The
log phase begins when an application issues a close or
flush on a file and consists of the following actions.

1. Store a copy of the data file with a temporary name
on S3.

2. Allocate a uuid as a transaction id. Extract the
provenance of the object. Group the provenance
records into chunks of 8KB and store each of
these chunks as log records (messages) in the WAL
queue. The first bytes of each message contain the
transaction id and a packet sequence number. The
first message has the following additional records:
A record indicating the total number of packets
in the transaction, a record that has a pointer to
the temporary object, and a record tagged with the
transaction id and the object version.

In the commit phase, the commit daemon assembles the
packets belonging to transactions and once it receives
all the packets of a transaction, performs the following
actions.

1. Store any provenance record larger than 1KB into
a separate S3 object and update the attribute-value
pair to contain a pointer to the S3 object.

2. Store the provenance in SimpleDB by issuing
BatchPutAttributes calls. SimpleDB allows us
batch up to 25 items per call, hence we issue as
many calls as necessary to store all the items.

3. Execute an S3 COPY method to copy the temporary
S3 object to its permanent S3 object, updating the
version as part of the COPY.

4. Delete the temporary S3 object using the S3
DELETE method. Delete all the messages related
to the transaction from the WAL queue using the
SQS DeleteMessage command.

We include all not-yet-written ancestors of an object
in the object’s transaction in order to obtain multi-object
causal ordering. This ensures that we maintain multi-
object causal ordering even if we send packets in parallel
to SQS. In contrast, the previous protocols required that
we carefully order ancestors and their descendants.

Discussion: The protocol satisfies eventual prove-
nance data-coupling. We cannot provide a stronger guar-
antee due to the eventual consistency model of the ser-
vices and due to the fact that we cannot modify the
underlying services. Applications that are sensitive to
provenance data-coupling can detect inconsistency and
can retry again on detecting inconsistency. In prior
work, we discuss provenance-aware read and write
system calls [28], which provide an interface that can
perform these checks on behalf of the application. Sim-
ilar to the previous protocols, this protocol maintains
eventual multi-object causal ordering, but provides bet-
ter throughput. Further, queries are executed efficiently
as SimpleDB provides rapid, indexed lookup.

5 Evaluation
The goal of our evaluation is to understand the relative
merits of the different protocols and their feasibility in
practice. To that end, our evaluation has three parts:
first, we quantify the storage utilization and data transfer
of the protocols independent of the provenance collec-
tion framework (Section 5.1), second, we evaluate the
efficacy, performance, and cost of the protocols under
various workloads (Section 5.2), and third, we evaluate
the query performance of the protocols (Section 5.3).

We used the following software configurations for the
evaluation:

• S3fs: S3fs on a vanilla Linux 2.6.23.17 kernel.
• P1: Provenance-Aware S3fs on a PASS kernel (Linux

2.6.23.17 kernel with appropriate modifications), with
both provenance and data being recorded on S3.

• P2: Provenance-Aware S3fs on a PASS kernel with
provenance stored on SimpleDB.
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• P3: Provenance-Aware S3fs on a PASS kernel with
provenance on SimpleDB, with an SQS queue used
as a log.

To maximize performance, we implemented the proto-
cols to upload the data objects, their provenance, and
ancestral data and provenance in parallel (this violates
multi-object causal ordering for P1 and P2).

We used Amazon EC2 Medium [15] instances running
Fedora 8 to run the benchmarks. The medium instance
configuration at the time we ran the experiments was a
32-bit platform with 1.7 GB of memory, 5 EC2 Com-
pute Units (2 virtual cores with 2.5 EC2 Compute Units
each), and 350 GB of instance storage. Since one can-
not install a custom kernel on EC2 instances, we run the
workload benchmarks (Section 5.2) that use the vanilla
Linux kernel and the PASS kernel as User Mode Linux
(UML) [14] instances with 512MB of RAM on EC2 ma-
chines. We had to use medium EC2 machines as the
small instances proved to be insufficient to run the PASS
kernel as a UML instance. We also ran the benchmarks
from one of our local machines. Both the usage models,
i.e, running the workloads on local machine and storing
data and provenance on the cloud or running the work-
loads on EC2 machines and storing the data and prove-
nance on the cloud are valid as our protocols are agnostic
to the usage model.

We used the following three workloads in our evalua-
tion. Each of the three workloads represents provenance
trees of different depths.

CVSROOT nightly backup This workload simulates
nightly backups of a CVS repository by extracting
nightly snapshots from 30 days of our own repository,
creating a tarball for each night, and uploading the
30 snapshots to AWS. The provenance tree for this work-
load is nearly flat with just the program cp as the ances-
tor of the stored archives. The workload is IO intensive,
has negligible compute time, and S3fs performs 240 op-
erations under this workload.

Blast This is a biological workload representative of
scientific computing workloads. Blast is a tool used to
find protein sequences that are closely related in two dif-
ferent species. This workload simulates the typical Blast
job observed at NIH [12]. The provenance tree of the
workload has a depth of five. The workload has a mix
of compute and IO operations and S3fs performs 10,773
operations under this workload.

Challenge This is the workload used in the first and
second provenance challenge [35]. The workload sim-
ulates an experiment in fMRI imaging. The inputs to
the workload are a set of new brain images and a single
reference brain image. First, the workload normalizes
the images with respect to the reference image. Sec-

ond, it transforms the image into a new image. Third, it
averages all the transformed images into one single im-
age. Fourth, it slices the average image in each of three
dimensions to produce a two-dimensional atlas along
a plane in the third dimension. Last, it converts the
atlas data set into a graphical atlas image. The chal-
lenge workload graph is the deepest with maximum path
length of eleven. Similar to blast, the workload has a mix
of compute and IO operations and S3fs performs 6,179
operations.

We ran each workload at least 5 times for each con-
figuration. The elapsed times we present do not include
the commit daemon times for P3 as it operates asyn-
chronously, thus not affecting the elapsed times.

Our evaluation results are AWS-specific as it is cur-
rently the only mature cloud service that also provides
all the services we need (Note that SimpleDB, as of Jan-
uary 2010, is in public beta). Further, we find that AWS
performance is highly variable due to a variety of fac-
tors that are not under our control, such as the load on
the services, WAN network latencies, and the version of
the software used for the service. Further, upgrades to
the services seem to continually improve performance
over time, thus making reproducibility harder. Due to
the variance, we find that results from different days are
not comparable. We found that we needed to execute
the benchmarks at the same time or within a short time
period for the results to be comparable. Even so, we
find that at a given time, any of the protocols can per-
form well due factors such as relative load on the ser-
vice, proximity of the replica chosen to service requests,
etc. We have run a large number of experiments between
August 2009 and January 2010. The results we present
are those that are most representative of the behavior we
observed and best illustrate the trends that we observed
repeatedly.

5.1 Microbenchmarks
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Figure 3: Elapsed times for the microbenchmark on an EC2
instance and on an UML machine running on an EC2 instance.

Our microbenchmarks quantify the throughput ob-
tained by each protocol relative to S3fs. To isolate
the protocol throughput from the application and prove-
nance collection overheads, we ran the Blast benchmark

9



206 FAST ’10: 8th USENIX Conference on File and Storage Technologies USENIX Association

on a unmodified PASS system and captured the prove-
nance. We then built a tool that uploaded the data ob-
jects and their provenance to the cloud using each pro-
tocol. We ran the microbenchmark on an EC2 instance.
Further, to demonstrate that the results in the following
section are not an artifact of using UML, we also ran the
microbenchmark on a UML instance running on EC2.
Figure 3 shows the microbenchmark results.

On EC2, P3, the protocol that best satisfies our prop-
erties, also exhibits the lowest overhead (32.6%) and P1
dominates P2. As there is no application time in this mi-
crobenchmark, the overheads are relatively high for all
the protocols, ranging from 32% for P3 to 78.9% for P2.
The UML microbenchmark results follow the pattern we
see in the EC2 microbenchmark results, indicating that
UML does not change the relative performance of the
protocols.

S3 SimpleDB SQS
Time (s) 324.7 537.1 36.2

Table 2: Time taken to upload 50MB of provenance to each
of the services.

To understand why the protocols exhibit this relative
performance, we ran another benchmark where we up-
loaded, in parallel, the first 50MB of provenance gener-
ated during a Linux compile to each of S3, SimpleDB,
and SQS. Table 2 shows the results of this experiment.
We find that SQS is dramatically faster than either S3 or
SimpleDB and that S3 is significantly faster than Sim-
pleDB. We tried to find the maximum possible through-
put by varying the number of concurrent connections to
each service. We found that S3 and SQS scaled well
as the number of connections increased (we stopped at
150) while SimpleDB peaked at around 40 concurrent
connections from a single client host. The numbers in
Table 2 used 150 concurrent connections for S3 and SQS
and 40 concurrent connections for SimpleDB. Thus, P1
leverages the better parallelism in S3 relative to Sim-
pleDB and outperforms P2. P3 exhibits the best perfor-
mance as it bundles all its provenance into 8KB chunks
uploading them to SQS, the fastest service.

Table 3 shows the data and operation overheads. The
data overheads are negligible – all under 1%. In con-
trast, the overhead in terms of number of operations is
quite large, because all the protocols are at least dou-
bling their work, writing both provenance and data. But,
as we will see in the next section, operations are not very
expensive.

5.2 Workload Overheads
Figure 4 shows the elapsed times for the workload
benchmarks run from EC2 instances and from a local

Data Transmitted (MB) Operations
S3fs 713.09 617
P1 715.31 (0.31%) 2287 (270.7%)
P2 716.11 (0.42%) 1235 (100.2%)
P3 716.32 (0.45%) 1337 (116.7%)

Table 3: Data transfer and operation overheads for the pro-
tocols. The overheads, shown in parentheses, are relative to
S3fs. Protocol P3 numbers do not include the commit daemon.
The operation count in the microbenchmark are reduced as we
only upload the final results of the computation.

machine. We present results collected during Septem-
ber 2009 (Figure 4a) and during December and January
2009-2010 ( 4b). The Figure consists of 12 sets of re-
sults, with each set consisting of 3 individual results
that measure the individual protocol overhead relative to
S3fs.

Overall, we observe that the overheads are reason-
able – less than 10% for 29 of the 36 individual results
shown above. Of the remaining 7 results, 5 of them have
an overhead less than 20%. The maximum overhead is
36% for P2 for the challenge workload benchmark run
in December/January on EC2. For the same scenario in
September, P2 has an overhead of 24.3%.

Incorporating application time into the equation re-
veals that the relative performance of the different pro-
tocols is comparable. At first blush, P3 seems to be the
fastest protocol as it performs the best in 8 out of the 12
result sets. However, the error bars on the graphs indi-
cate that the difference is not statistically significant.

We expected the elapsed time for the benchmarks to
be greater in the local machine case than in the EC2
case. This was borne out for the nightly backup and
challenge workloads. However, the Blast workload ran
faster on the local machine than on EC2. We hypoth-
esized that this was caused by an interaction between
Blast’s memory accesses and the UML’s small 512MB
memory (512MB is the maximum UML instance mem-
ory). We confirmed this by running Blast and the nightly
backup benchmark on a native (not UML) EC2 instance.
The I/O time for the nightly benchmark increased from
419s on a raw EC2 machine to 528s on a UML EC2 in-
stance. For Blast, the corresponding number increases
from 650s to 1322s. The dramatic difference between
native EC2 and UML EC2 for the Blast workload was
highly suggestive.

Finally, we observe that the elapsed times for all
benchmarks except for the nightly local case, have re-
duced between 4% to 44.5% from September 09 to De-
cember 09/January 10. We also observe that P1’s perfor-
mance approaches that of P3 in many of the application
benchmarks. As we stated earlier, this is due to various
factors that are beyond our control.
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Figure 4: Elapsed times for workload benchmarks. Figure 4a shows the results for the benchmarks from September 2009.
Figure 4b shows the results for the benchmarks from December 2009/January 2010. In both graphs, the left half shows elapsed
times when the benchmark runs on EC2 instances. The right half shows the elapsed time when running on a local machine.

Nightly Blast Challenge
S3fs $1.05 $0.37 $0.27
P1 $1.05 $0.39 $0.29
P2 $1.05 $0.38 $0.29
P3 $1.06 $0.40 $0.30

Table 4: Cost for each benchmark (includes commit daemon
cost).

Table 4 shows the cost in USD for each protocol.
Overall, we observe the following relationship between
protocols: P3 > P1 >= P2 >= S3fs. The extra
cost required to store provenance in each of the pro-
tocols is minimal (compared to S3fs). As expected,
P3 is the most expensive due to the operations it per-
forms to log provenance on SQS and then upload prove-
nance to SimpleDB. The cost for P1 and P2 are similar
for Nightly and Challenge workloads. For Blast, P2 is
cheaper than P1, because P1 needed more operations to
store the provenance on S3 than P2 required to store the
same provenance on SimpleDB.

5.3 Query performance
To evaluate query performance, we ran the following
four queries on the Blast workload provenance:

Q.1 Retrieve all the provenance ever recorded.
Q.2 Given an object, retrieve the provenance of all ver-

sions of the object.
Q.3 Find all the files that were directly output by Blast.
Q.4 Find all the descendants of files derived from Blast.

We chose these queries as they represent varying lev-
els of complexity. The first query is a simple dump of all
the provenance. The second query uses an object handle
to retrieve all of its provenance but requires no search.
The third involves a lookup and a single-level descen-
dant query. The fourth is a full descendant query. Table 5

shows the query results. There are only two different
sets of results as P1 uses S3 objects to store provenance,
and P2 and P3 use SimpleDB to store provenance, thus
having identical query capabilities and performance.

We implement Q.1 in S3 by fetching the list of all
S3 provenance objects and then performing a GET for
each. Since there are no ordering constraints on when
the GET requests are executed, i.e., it is not necessary for
any GET to wait for the completion of another request,
parallelizing these operations greatly improves perfor-
mance (as we can see in the Table 5).

In SimpleDB, we execute “SELECT *” to retrieve all
the provenance. We implement this as a single request
that, due to the limits imposed by SimpleDB, has to be
decomposed into several sequential operations, where
one operation has to complete before the next one can
start, so this request cannot be parallelized. However,
the number of SimpleDB round-trips is smaller than in
S3, and the query thus executes much more quickly.

In Q.2, the performance is comparable for both S3
and SimpleDB. We implement this query by first issuing
a HEAD operation on the object to determine the uuid
used to reference its provenance. In S3, we then issue a
GET on the provenance object, while in SimpleDB we
perform an appropriate SELECT operation. Note that
these two operations must be performed sequentially, so
the query cannot benefit from parallelism. Because both
S3 and SimpleDB perform the HEAD operation, the per-
formance is comparable.

In Q.3 and Q.4, we need to first find records (items)
of processes that correspond to the multiple executions
of Blast. This translates into looking up all items that
satisfy a certain property. In S3, this requires a scan
of all provenance objects. We implemented these two
queries in S3 by retrieving all provenance objects and
then processing the query locally. SimpleDB is more ef-
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Query
S3 (P1) SimpleDB (P2, P3)

Time (s) MB Transferred Ops. Time (s) MB Transferred Ops.Sequential Parallel Sequential Parallel
Q.1 48.57 7.04 2.95 1671 0.83 – 2.05 13
Q.2 0.060 – 0.0015 2 0.037 – 0.008 2
Q.3 48.57 7.04 2.95 1671 0.82 0.34 0.11 37
Q.4 48.57 7.04 2.95 1671 1.86 0.72 0.19 87

Table 5: Query performance. The table shows the time taken to complete the queries, the total data transferred, and the total
number of executed operations. The table shows the times for both sequential and parallel execution of the query. In both cases,
the number of operations and the data transferred was the same. For Q.2, the values shown are the average time taken per object.

ficient for Q.3 and Q.4 as it indexes all the attributes in
the database. Hence, for Q.3 and Q.4 in SimpleDB, we
first issue a SELECT to find all items corresponding to
Blast. We then issue a set of SELECT queries to find
the names of all the items that reference the Blast items
retrieved in the previous call. For Q.4, we have to re-
peat the second step recursively until we have located all
the descendants. As we can see from the results, Sim-
pleDB is an order of magnitude faster as it can retrieve
data more selectively. Further, the performance gap be-
tween S3 and SimpleDB is bound to grow larger as more
objects are involved.

5.4 Summary
All three protocols have low cost and data transfer over-
heads. The workload overheads were less than 10% over
S3fs for all protocols in the majority of the cases. Our
microbenchmarks show that P3, our most robust proto-
col, is the best performing. But, when application over-
heads are included, all protocols are within statistical er-
ror. Thus users can select the best protocol best suited
for their needs, without performance penalty.

6 Related Work
Provenance in distributed workflow-based and grid en-
vironments has been explored by several prior research
projects [11, 17, 21, 40]. There are also systems that
track application-specific data to be able to regenerate
data [23] or reproduce experiments [16]. All prior work
assumes the ability to alter the underlying system com-
ponents, as opposed to having to make due with a given
infrastructure as we do here. We develop a provenance
solution atop an infrastructure over which we have no
control. However, we complement this prior work, and
our protocols can be used to move the provenance col-
lected by the above frameworks to the cloud.

Branthner et. al. [9] explore using S3 as a backend
for a database. They use SQS as a log to ensure atomic
updates to the database, similar to the mechanism we use
in P3. While the mechanisms are similar, this work and
Branthner et. al. address different research questions.
Brantner et. al. use the mechanism to coordinate updates

to a single service. We use the mechanism to provide
consistency between two services, S3 and SimpleDB.

In prior work [31], we explored the challenges of stor-
ing provenance in the cloud, outlined protocols, and per-
formed a rudimentary analysis of the protocols. This
work follows on where that work left off, i.e., we im-
plement and evaluate the protocols. Some tweaks were
necessary to realize the protocols in practice. For ex-
ample, for P1, we had originally intended to store the
provenance as metadata of the S3 object, but this does
not satisfy the data independent persistence property.

Hasan et. al. [22] discuss cryptographic mechanisms
to protect provenance from tampering. Juels et. al [24]
and Ateniese et. al. [4] present schemes that allow users
to efficiently verify that a provider can produce a stored
file. These research projects are complementary to our
work and we can leverage them to verify that malicious
users and servers have not tampered provenance on the
cloud.

7 Native Cloud Provenance: Research
Challenges

This work has focused on storing and accessing prove-
nance on current cloud offerings. In the current scheme
where provenance and data are stored on separate ser-
vices, however, providers have no means to link the
provenance of an object to its data. Providing native sup-
port for provenance on cloud stores enables providers to
relate provenance to its data, allowing the providers to
leverage the provenance for their benefit [32]. For ex-
ample, the graph structure in provenance can provide
service providers with hints for object replication. As
more data moves to the cloud, providers will need to
provide search capabilities to users. As outlined previ-
ously (Section 2.2), provenance can play a crucial role
in improving search quality. Cloud providers could also
allow users to chose between storing data and regener-
ating data on demand, if the provenance of data were
available to them [3].

Building native support for the cloud presents a num-
ber of challenges in addition to the issues that arise in
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building large scale distributed systems. We discuss
some of these research challenges next.

System Architecture A native provenance store has to
support both the object storage requirements of data and
the database functionality requirements of provenance.
The simplest approach is to obviously store the prove-
nance and the data in two separate services. However,
one needs to to co-ordinate updates across the two ser-
vices. To provide strong provenance data-coupling us-
ing an external co-ordination service, the underlying ser-
vices have to export a transactional interface. However,
a fully transactional system is not feasible at the scales
at which the cloud operates. Finding a middleground
between the two extremes and the cost of each approach
(the naive approach, fully transactional, and a possible
middleground) is an open research challenge.

Security Provenance can potentially contain sensitive
information. The fundamental issue is that provenance
and the data it describes do not necessarily share the
same access control. For example, consider a report gen-
erated by aggregating the health information of patients
suffering a certain ailment. While the report (the data)
can be accessible to the public, the files that were used to
generate the report (the provenance) must not be. Prove-
nance security is an open problem that is being explored
by multiple research groups [10]. Providers need to take
these issues into consideration while extending their ser-
vice to support provenance.

Provenance Storage The semi-structured data model,
imported by SimpleDB and Azure Table, is appropri-
ate for storing provenance graphs. These services, how-
ever, are not necessarily optimized to store provenance
graphs. Recently, databases such as Neo4j [33], have
been designed from the ground-up for storing graphs.
Exploring if a data service designed from the ground-
up for storing provenance is more efficient in terms of
performance and cost compared to a generic database
service is an interesting avenue for future work.

Learning Models As we stated above, cloud providers
can take advantage of provenance in a variety of ways.
However, for each particular application, a particular
subset of provenance has to be extracted or a particu-
lar type of generalization has to be made across all ob-
jects. For some applications, a simple pattern match-
ing approach might be sufficient and for other applica-
tions, sophisticated machine learning mechanisms might
be necessary. The models necessary to extract the nec-
essary data for each application is an open question.

Processing Provenance Graphs The models above
need to process the provenance graph to extract the
necessary information. However, there are currently
no general purpose graph processing systems available.

MapReduce is one mechanism that is generally used to
process graphs. Pregel [26], based on Bulk Synchronous
Parallel model, is another approach that is currently be-
ing developed. How the two mechanisms compare with
each other for graph workloads is a study worth under-
taking.

Transparent Provenance Collection This work ex-
pects and trusts users to supply provenance. The prove-
nance graph supplied by users is rich as it consists of
process information. Without support from users, the
cloud can automatically infer diluted provenance, i.e.,
provenance minus process information. In this prove-
nance graph, all the processes from a single host will be
represented by a single node representing the host. What
subset of the provenance applications can be driven by
this diluted graph?

Economics Providing native support for provenance
increases the cost to the provider in terms of storage,
CPU, and network bandwidth. Prior to embarking on
building a native cloud store, an economic analysis that
justifies that the extra cost of provenance is necessary.
To this end, we need to design appropriate economic
models and evaluate the cost of storing provenance.

8 Conclusions
The cloud is poised to become the next generation com-
puting environment, and we have shown that we can
add provenance to cloud storage in several ways. Our
evaluation shows that all three protocols have reason-
able overhead in terms of time to execute and minimal
financial overhead. Further, our most robust protocol,
which provides all the properties we outline, performs as
well, if not better, than the other protocols, making it one
of those rare occasions where we need not make com-
promises to achieve our objectives. We can construct a
fully functional and performant provenance system for
the cloud using off-the shelf cloud components.

The web, which is the most widely used medium for
sharing data, does not provide data provenance. The
cloud, however, is still in its infancy, and can easily in-
corporate provenance now. We can deploy these kinds of
services with systems today, but it is worth investigating
the cost, efficacy, and feasibility of offering provenance
as a native cloud service as well.
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Abstract

Duplication of data in storage systems is becoming in-

creasingly common. We introduce I/O Deduplication, a

storage optimization that utilizes content similarity for

improving I/O performance by eliminating I/O opera-

tions and reducing the mechanical delays during I/O

operations. I/O Deduplication consists of three main

techniques: content-based caching, dynamic replica re-

trieval, and selective duplication. Each of these tech-

niques is motivated by our observations with I/O work-

load traces obtained from actively-used production stor-

age systems, all of which revealed surprisingly high lev-

els of content similarity for both stored and accessed

data. Evaluation of a prototype implementation using

these workloads revealed an overall improvement in disk

I/O performance of 28-47% across these workloads. Fur-

ther breakdown also showed that each of the three tech-

niques contributed significantly to the overall perfor-

mance improvement.

1 Introduction

Duplication of data in primary storage systems is quite

common due to the technological trends that have been

driving storage capacity consolidation. The elimination

of duplicate content at both the file and block levels

for improving storage space utilization is an active area

of research [7, 17, 19, 22, 30, 31, 41]. Indeed, elimi-

nating most duplicate content is inevitable in capacity-

sensitive applications such as archival storage for cost-

effectiveness. On the other hand, there exist systems

with moderate degree of content similarity in their pri-

mary storage such as email servers, virtualized servers,

and NAS devices running file and version control servers.

In case of email servers, mailing lists, circulated at-

tachments and SPAM can lead to duplication. Virtual

machines may run similar software and thus create co-

located duplicate content across their virtual disks. Fi-

nally, file and version control systems servers of collab-

orative groups often store copies of the same documents,

sources and executables. In such systems, if the degree of

content similarity is not overwhelming, eliminating du-

plicate data may not be a primary concern.

Gray and Shenoy have pointed out that given the tech-

nology trends for price-capacity and price-performance

of memory/disk sizes and disk accesses respectively, disk

data must “cool” at the rate of 10X per decade [11]. They

suggest data replication as a means to this end. An in-

stantiation of this suggestion is intrinsic replication of

data created due to consolidation as seen now in many

storage systems, including the ones illustrated earlier.

Here, we refer to intrinsic (or application/user generated)

data replication as opposed to forced (system generated)

redundancy such as in a RAID-1 storage system. In such

systems, capacity constraints are invariably secondary to

I/O performance.

We analyzed on-disk duplication of content and I/O

traces obtained from three varied production systems at

FIU that included a virtualized host running two depart-

ment web-servers, the department email server, and a file

server for our research group. We made three observa-

tions from the analysis of these traces. First, our analysis

revealed significant levels of both disk static similarity

and workload static similarity within each of these sys-

tems. Disk static similarity is an indicator of the amount

of duplicate content in the storage medium, while work-

load static similarity indicates the degree of on-disk du-

plicate content accessed by the I/O workload. We define

these similarity measures formally in § 2. Second, we

discovered a consistent and marked discrepancy between

reuse distances [23] for sector and content in the I/O ac-

cesses on these systems indicating that content is reused

more frequently than sectors. Third, there is significant

overlap in content accessed over successive intervals of

longer time-frames such as days or weeks.

Based on these observations, we explore the premise

that intrinsic content similarity in storage systems and

access to replicated content within I/O workloads can

both be utilized to improve I/O performance. In doing

so, we design and evaluate I/O Deduplication, a stor-

age optimization that utilizes content similarity to either

eliminate I/O operations altogether or optimize the re-

sulting disk head movement within the storage system.

I/O Deduplication comprises three key techniques: (i)

content-based caching that uses the popularity of “data

1
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Workload File System Memory Reads [GB] Writes [GB] File System

type size [GB] size [GB] Total Sectors Content Total Sectors Content accessed

web-vm 70 2 3.40 1.27 1.09 11.46 0.86 4.85 2.8%

mail 500 16 62.00 29.24 28.82 482.10 4.18 34.02 6.27%

homes 470 8 5.79 2.40 1.99 148.86 4.33 33.68 1.44%

Table 1: Summary statistics of one week I/O workload traces obtained from three different systems.

content” rather than “data location” of I/O accesses in

making caching decisions, (ii) dynamic replica retrieval

that upon a cache miss for a read operation, dynami-

cally chooses to retrieve a content replica which mini-

mizes disk head movement, and (iii) selective duplica-

tion that dynamically replicates frequently accessed con-

tent in scratch space that is distributed over the entire

storage medium to increase the effectiveness of dynamic

replica retrieval.

We evaluated a Linux implementation of the I/O Dedu-

plication techniques for workloads from the three sys-

tems described earlier. Performance improvements mea-

sured as the reduction in total disk busy time in the range

28-47% were observed across these workloads. We mea-

sured the influence of each technique of I/O Deduplica-

tion separately and found that each technique contributed

substantially to the overall performance improvement

Particularly, content-based caching increased memory

caching effectiveness by at least 10% and by as much as

4X in cache hit rate for read operations. Head-position

aware dynamic replica retrieval directed I/O operations

to alternate locations on-the-fly and additionally reduced

average I/O times by 10-20%. And finally, selective du-

plication created additional replicas of popular content

during periods of low foreground I/O activity to further

improved the effectiveness of dynamic replica retrieval,

leading to a reduction in average I/O times by 23-35%.

We also measured the memory and CPU overheads of

I/O Deduplication and found these to be nominal.

In Section 2, we make the case for I/O deduplication.

We elaborate on a specific design and implementation of

its three techniques in Section 3. We perform a detailed

evaluation of improvements and overhead for three dif-

ferent workloads in Section 4. We discuss related re-

search in Section 5, discuss salient design and deploy-

ment alternatives in Section 6, and finally conclude with

directions for future work.

2 Motivation and Rationale

In this section, we investigate the nature of content sim-

ilarity and access to duplicate content using workloads

from three production systems that are in active, daily

use at the FIU Computer Science department. We col-

lected I/O traces downstream of an active page cache

from each system for a duration of three weeks. These

systems have different I/O workloads that consist of a

virtual machine running two web-servers (web-vm work-

load), an email server (mail workload), and a file server

(homes workload). The web-vm workload is collected

from a virtualized system that hosts two CS depart-

ment web-servers, one hosting the department’s online

course management system and the other hosting the

department’s web-based email access portal; the local

virtual disks which were traced only hosted root parti-

tions containing the OS distribution, while the http data

for these web-servers reside on a network-attached stor-

age. The mail workload serves user INBOXes for the

entire Computer Science department at FIU. Finally, the

homes workload is that of a NFS server that serves the

home directories of our small-sized research group; ac-

tivities represent those of a typical researcher consisting

of software development, testing, and experimentation,

the use of graph-plotting software, and technical docu-

ment preparation.

Key statistics related to these workloads are summa-

rized in Table 1. The mail server is a heavily used system

and generates a highly-intensive I/O workload in com-

parison to the other two. However, some uniform trends

can be observed across these workloads. A fairly small

percentage of the total file system data is accessed dur-

ing the entire week (1.44-6.27% across the workloads),

representing small working sets. Further, these are write-

intensive workloads. While it is therefore important to

optimize write I/O operations, we also note that most

writes are committed to persistent storage in the back-

ground and do not affect user-perceived performance di-

rectly. Optimizing read operations, on the other hand,

has a direct impact on user-perceived performance and

system throughput because this reduces the waiting time

for blocked foreground I/O operations. For read I/O’s,

we observe that in each workload, the unique content

accessed is lesser than the unique locations that are ac-

cessed on the storage device. These observation directly

motivates the three techniques of our approach as we

elaborate next.

2.1 Content-based cache

The systems of interest in our work are those in which

there are patterns of work shared across more than one

mechanism within a single system. A mechanism rep-

resents any active entity, such as a single thread or pro-

cess or an entire virtual machine. Such duplicated mech-

2
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Figure 1: Page cache hits for the web-vm (top), mail

(middle), and homes (bottom) workloads. A single day

trace was used with an infinite cache assumption.

anisms also lead to intrinsic duplication in content ac-

cessed within the respective mechanisms’ I/O operations.

Duplicate content, however, may be independently man-

aged by each mechanism and stored in distinct locations

on a persistent store. In such systems, traditional storage-

location (sector) addressed caching can lead to content

duplication in the cache, thus reducing the effectiveness

of the cache.

Figure 1 shows that cache hit ratio (for read re-

quests) can be improved substantially by using a content-

addressed cache instead of a sector-addressed one. While

write I/Os leading to content hits could be eliminated for

improved performance, we do not explore it in this pa-

per. A greater number of sector hits with write I/Os are

due to journaling writes by the file system, repeatedly

overwriting locations within a circular journal space.

For further analysis, we define the average sector reuse

distance for a workload as the average number of re-

quests between successive requests to the same sector.

The average content reuse distance is defined similarly

over accesses to the same content. Figure 2 shows that

the average reuse distance for content is smaller than for

sector for each of the three workloads that we studied for

both read and write requests. For such workloads, data

addressed by content can be cache-resident for lesser

time yet be more effective for servicing read requests

than if the same cached data is addressed by location.

Write requests on the other hand do not depend on cache
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Figure 2: Contrasting content and sector reuse dis-

tances for the web-vm (top), mail (middle), and homes

(bottom) workloads.

hits since data is flushed to rather than requested from

the storage system. These observations and those from

Figure 1 motivate content-based caching in I/O Dedupli-

cation.

2.2 Dynamic replica retrieval

Systems with intrinsic duplication of mechanism may

also operate on duplicate data stored in the persistent

stores managed by each mechanism. Such intrinsic con-

tent duplication creates opportunities for optimizing I/O

operations.

We define the disk static similarity as the average num-

ber of copies per filesystem-aligned block of content,

typically of size 4KB, as a formal measure of content

similarity in the storage system. The disk static similar-

ity is calculated as (all − zeros)/(unique − 1), where

all is the total number of blocks, zeroes are the number

of zeroed blocks (never-used), and unique is the num-

ber of blocks with unique content (after eliminating du-

plicates). This static similarity measure includes blocks

that are not currently in use by the file-system; we in-

clude such blocks because they were previously used and

therefore may contain the same content as in-use data

blocks. Table 2 summarizes static similarity values for

each of the three workloads. We notice that there is sub-

stantial duplication of content on the disks used by each

of these workloads. In the case of themailworkload, one

might expect a higher level of content similarity due to

3
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Workloads web-vm mail homes

Unique pages (millions) 1.9 27 62

Total pages (millions) 5.2 73 183

Static similarity 2.67 2.64 2.94

Table 2: Disk static similarity. Total pages excludes
zero pages; Unique pages excludes repeated pages in
addition to zero pages.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

10 100 1000 no limit

W
o
rk

lo
a
d
 s

ta
ti
c
 s

im
ila

ri
ty

Maximum number of copies

web-vm
mail

homes

Figure 3: Workload static similarity. One day traces

were used. The x axis limits the static similarity consid-

eration to blocks which have at most x copies on disk.

mailing-list emails and circulated attachments appearing

in many INBOXes. However, we point out that all emails

within a user’s INBOX are managed as a single large file

by mail server and therefore individual emails are less

likely to be aligned to the filesystem block-size, impact-

ing the disk static similarity measure. Nevertheless, the

level of content similarity in these systems is high.

While the presence of substantial duplicate content on

each of these systems is promising, it is possible that

duplicate content is not accessed frequently in the ac-

tual I/O workload. We measured the average number of

copies in the storage system for all the blocks read within

each of these workloads. We refer to this measure as the

workload static similarity. By considering only the on-

disk duplicate content pertinent to the workload we can

better estimate the impact of optimizations based on con-

tent similarity. To improve the accuracy our measure, we

limit the number of copies of target content. This allows

us to prevent a small set of highly replicated content from

inflating the workload static similarity value. As shown

in Figure 3, the workload static similarity limited to con-

tent not repeated more than 1000 times is 2.5. While

more than one copy of blocks read is present in the stor-

age system on an average, we note that the disk static

similarity values (in Table 2) do overestimate the perfor-

mance improvement potential.

Based on these observations, we can hypothesize that

for each of these workloads, accesses to data that is du-

plicated on the storage device can be optimally redirected
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The trace duration is divided into 7 3-day intervals and

read content overlap for each interval with all content

from the previous interval is presented.

to the location that minimizes the mechanical overhead

of disk I/O operations. This motivates dynamic replica

retrieval in our approach.

2.3 Selective Duplication

A third property of workloads is repeated access to the

same content. Here, we refer to accesses to specific con-

tent, which is a different measure than repeated access to

the same block address. To illustrate this difference, ac-

cesses to two copies of the same executable stored within

two virtual disks owned by distinct virtual machines do

not lead to repeated access to the same block, but do re-

sult in repeated access to the same content.

In Figure 4, we illustrate the overlap in content be-

ing accessed across time for each of the workloads using

traces over a longer, three week duration. More specifi-

cally, we divide the three week trace duration into seven,

3-day intervals and measure the overlap in content read

(thus, we exclude writes) within each interval with all

data accessed (both read and written) in the previous in-

terval. The first 3-day interval uses self-similarity and

therefore represents a 100% content overlap. For the re-

maining intervals we observe high levels of overlap in the

content being read within each interval with all data ac-

cessed during the previous interval; average overlaps are

45%, 85%, and 60%, for the mail, web-vm, and homes

workloads respectively.

Based on these observation, we can assume that if

data accessed in the recent past were replicated in loca-

tions dispersed across the disk area, the choice in access

provided by such replicas for future I/O operations can

help reduce disk arm movement and improve I/O perfor-

mance. Complementary findings about diurnal patterns

in I/O workloads with alternating periods of low and high

storage activity [8, 20] suggest that such selective dupli-

cation, if performed opportunistically during night-time,

may result in negligible impact to foreground I/O activ-

ity.

4
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3 System Design

I/O Deduplication systematically explores the use of

content similarity within storage systems to reduce the

mechanical delays incurred in I/O operations and/or to

eliminate I/O operations altogether. In this section, we

start with an overview of the system architecture and then

present the various design choices and rationale behind

constructing each of the three mechanisms that consti-

tute I/O Deduplication.

3.1 Architectural Overview

An optimization based on content similarity can be built

at various layers of the storage stack, with varying de-

grees of access and control over storage devices and

the I/O workload. Prior research has argued for build-

ing storage optimizations in the block layer of the stor-

age stack [12]. We choose the block layer for several

reasons. First, the block interface is a generic abstrac-

tion that is available in a variety of environments includ-

ing operating system block device implementations, soft-

ware RAID drivers, hardware RAID controllers, SAN

(e.g., iSCSI) storage devices, and the increasingly popu-

lar storage virtualization solutions (e.g., IBM SVC [16],

EMC Invista [9], NetApp V-Series [28]). Consequently,

optimizations based on the block abstraction can poten-

tially be ported and deployed across these varied plat-

forms. In the rest of the paper, we develop an operating

system block device oriented design and implementation

of I/O Deduplication. Second, the simple semantics of

block layer interface allows easy I/O interception, ma-

nipulation, and redirection. Third, by operating at the

block layer, the optimization becomes independent of the

file system implementation, and can support multiple in-

stances and types of file systems. Fourth, this layer en-

ables simplified control over system devices at the block

device abstraction, allowing an elegantly simple imple-

mentation of selective duplication that we describe later.

Finally, additional I/Os generated by I/O Deduplication

can leverage I/O scheduling services, thereby automati-

cally addressing the complexities of block request merg-

ing and reordering.

Figure 5 presents the architecture of I/O Deduplica-

tion for a block device in relation to the storage stack

within an operating system. We augment the storage

stack’s block layer with additional functionality, which

we term I/O Deduplication layer, to implement the three

major mechanisms: the content-based cache, the dy-

namic replica retriever, and the selective duplicator. The

content-based cache is the first mechanism encountered

by the I/O workload which filters the I/O stream based on

hits in a content-addressed cache. The dynamic replica

retriever subsequently optionally redirects the unfiltered

read I/O requests to alternate locations on the disk to

avail the best access latencies to requests. The selective

Applications
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File System: EXT3, JFS,

· · ·

I/O Deduplication

I/O Scheduler

Device Driver
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Figure 5: I/O Deduplication System Architecture.

duplicator is composed of a kernel sub-component that

tracks content accesses to create a candidate list of con-

tent for replication, and a user-space process that runs

during periods of low disk activity and populates replica

content in scratch space distributed across the entire disk.

Thus, while the kernel components run continuously, the

user-space component runs sporadically. Separating out

the actual replication process into a user-level thread al-

lows greater user/administrator control over the timing

and resource consumption of the replication process, an

I/O resource-intensive operation. Next, we elaborate on

the design of each of the three mechanisms within I/O

Deduplication.

3.2 Content based caching

Building a content based cache at the block layer cre-

ates an additional buffer cache separate from the virtual

file system (VFS) cache. Requests to the VFS cache are

sector-based while those to the I/O Deduplication cache

are both sector- and content-based. The I/O Deduplica-

tion layer only sees the read requests for sector misses

in the VFS cache. We discuss exclusivity across these

caches shortly. In the I/O Deduplication layer, read re-

quests identified by sector locations are queried against a

dual sector- and content-addressed cache for hits before

entering the I/O scheduler queue or being merged with

an existing request by the I/O scheduler. Population of

the content-based cache occurs along both the read and

write paths. In case of a cache miss during a read oper-

ation, the I/O completion handler for the read request is

intercepted and modified to additionally insert the data

read into the content-addressed cache after I/O comple-

tion only if it is not already present in the cache and is

important enough in the LRU list to be cached. A write

request to a sector which had contained duplicate data is

simply removed from the corresponding duplicate sector

list to ensure data consistency for future accesses. The

new data contained within write requests is optionally

5
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Figure 6: Data structure for the content-based cache.

The cache is addressable by both sector and content-

hash. vc entrys are unique per sector. Solid lines be-
tween vc entrys indicates that they may have the same
content (they may not in case of hash function collisions.)

Dotted lines form a link between a sector (vc entry) and
a given page (vc page.) Note that some vc entrys do not
point to any page – there is no cached content cached for

these. However, this indicates that the linked vc entrys
have the same data on disk. This happens when some of

the pages are evicted from the cache. Additionally, pages

form an LRU list.

inserted into the content-addressed cache (if it is suffi-

ciently important) in the onward path before entering the

request into the I/O scheduler queue to keep the content

cache up-to-date with important data.

The in-memory data structure implementing the

content-based cache supports look-up based on both sec-

tor and content-hash to address read and write requests

respectively. Entries indexed by content-hash values

contain a sector-list (list of sectors in which the content

is replicated) and the corresponding data if it was en-

tered into the cache and not replaced. Cache replacement

only replaces the content field and retains the sector-list

in the in-memory content-cache data structure. For read

requests, a sector-based lookup is first performed to de-

termine if there is a cache hit. For write requests, a

content-hash based look-up is performed to determine

a hit and the sector information from the write request

is added to the sector-list. Figure 6 describes the data

structure used to manage the content-based cache. A

write to a sector that is present in a sector-list indexed

by content-hash is simply removed from the sector list

and inserted into a new list based on the sector’s new

content hash. It is important to also point out that our

design uses a write-through cache to preserve the seman-

tics of the block layer. Next, we discuss some practical

considerations for our design.

Since the content cache is a second-level cache placed

below the file system page cache or, in case of a virtual-

ized environment, within the virtualization mechanism,

typically observed recency patterns in first level caches

are lost at this caching layer. An appropriate replace-

ment algorithm for this cache level is therefore one that

captures frequency as well. We propose using Adaptive

Replacement Cache (ARC) [24] or CLOCK-Pro [18] as

good candidates for a second-level content-based cache

and evaluate our system with ARC and LRU for contrast.

Another concern is that there can be a substantial

amount of duplicated content across the cache levels.

There are two ways to address this. Ideally, the content-

based cache should be integrated into a higher level

cache (e.g., VFS page cache) implementations if possi-

ble. However, this might not be feasible in virtualized

environments where page caches are managed indepen-

dently within individual virtual machines. In such cases,

techniques that help make in-memory cache content

across cache levels exclusive such as cache hints [21],

demotions [38], and promotions [10] may be used. An

alternate approach is to employ memory deduplication

techniques such as those proposed in the VMware ESX

server [36], Difference Engine [13], and Satori [25]. In

these solutions, duplicate pages within and across vir-

tual machines are made to point to the same machine

frame with use of an extra level of indirection such as

the shadow page tables. In memory duplicate content

across multiple levels of caches is indeed an orthogonal

problem and any of the referenced techniques could be

used as a solution directly within I/O Deduplication.

3.3 Dynamic replica retrieval

The design of dynamic replica retrieval is based on the

rationale that better I/O schedules can be constructed

with more options for servicing I/O requests. A storage

system with high disk static similarity (i.e., duplicated

content) creates such options naturally. With dynamic

replica retrieval in such a system, read I/O requests are

optionally indirected to alternate locations before enter-

ing the I/O scheduler queue. Choosing alternate loca-

tions for write requests is complicated due to the need for

ensuring up-to-date block content; while we do not con-

6
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sider this possibility further in our work, investigating

alternate mechanisms for optimizing write operations to

utilize content similarity is certainly a promising area of

future work. The content-addressed cache data structure

that we explored earlier supports look-up based on sector

(contained within a read request) and returns a sector-list

that contain replicas of the requested content, thus pro-

viding alternate locations to retrieve the data from.

To help decide if and to where a read I/O request should

be redirected, the dynamic replica retriever continuously

maintains an estimate of the disk head position by mon-

itoring I/O completion events. For estimating head posi-

tion, we use read I/O completion events only and ignore

I/O completion events for write requests since writes

may be reported as complete as soon as they are writ-

ten to the disk cache. Consequently, the head position as

computed by the dynamic replica retriever is an approx-

imation, since background write flushes inside the disk

are not accounted for. To implement the head-position

estimator, the last head position is updated during the ex-

ecution of the I/O completion handler of each read re-

quest. Additionally, the direction of the disk arm man-

aged by the scheduler is also maintained for elevator-

based I/O schedulers.

One complication with redirection of an I/O request be-

fore a possible merge operation (done by the I/O sched-

uler later) is that this optimization can reduce the chances

for merging the request with another request already

awaiting service in the I/O scheduler queue. For each of

the workloads we experimented with, we did indeed ob-

serve reduction in merging negatively affecting perfor-

mance when using redirection purely based on current

head-position estimates. Request merging should gain

priority over any other operation since it eliminates me-

chanical overhead altogether. One means to prioritize

request merging is performing the indirection of requests

below the I/O scheduler which performs merging within

its mechanisms. Although this is an acceptable and cor-

rect solution, it is substantially more complex compared

to implementation at the block layer above the I/O sched-

uler because there are typically multiple dispatch points

for I/O scheduler implementations inside the operating

system. The second option, and the one used in our sys-

tem, is to evaluate whether or not to redirect the I/O re-

quest to a more opportune location, based on the an ac-

tively maintained digest of outstanding requests at the

I/O scheduler – these are requests that have been dis-

patched to the I/O scheduler but not yet reported as com-

pleted by the device. If an outstanding request to a lo-

cation adjacent to the current request exists in the digest,

redirection is avoided to allow for merging.

read(.....)

head

Legend

Exported

Space

Mapped

Space
Scratch
Space

Figure 7: Transparent replica management for selec-

tive duplication. The read request to the solid block in

the exported space can either be retrieved from its origi-

nal location in the mapped space or from any of the repli-

cas in the scratch space that reduce head movement.

3.4 Selective duplication

Figure 4 revealed that the overlap in longer-time frame

working sets can be substantial in workloads, more than

80% in some cases. While such overlapping content are

the perfect choice for content to be cached, such content

was found to be too big to fit in memory.

A complementary optimization to dynamic replica re-

trieval based on this observation is that an increase in the

number of duplicates for popular content on the disk can

create even greater opportunities for optimizing the I/O

schedule. A basic question then is what to duplicate and

when. We implemented selective duplication to run ev-

ery day during periods of low disk activity based on the

observed diurnal patterns in the I/O workloads that we

experimented with. The question of what to duplicate

can be rephrased as what is the content accessed in the

previous days that is likely to be accessed in the future?

Our analysis of the workloads revealed that the content

overlap between the most frequently used content of the

previous days was found to be a good predictor of fu-

ture accesses to content. The selective duplicator kernel

component calculates the list of frequently used content

across multiple days by extending the ARC replacement

algorithm used for the content-addressed cache.

A list of sectors to duplicate is then forwarded to the

user-space replicator process which creates the actual

replicas during periods of low activity. The periodic na-

ture of this process ensures that the most relevant con-

tent is replicated in the scratch space while older repli-

cas of content that have either been overwritten or are no

longer important are discarded. To make the replication

process seamless to file system, we implemented trans-

7
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parent replica management that implements the scratch

space used to store replicas transparently. The scratch

space is provisioned by creating additional physical stor-

age volumes/partitions interspersed within the file sys-

tem data. Figure 7 depicts the transparent replica man-

agement wherein the storage is interspersed with five

scratch space volumes interspersed between file system

mapped space. For file system transparency, a single log-

ically contiguous volume is presented to the file system

by the I/O Deduplication extension. The scratch space

is used to create one or more replicas of data in the ex-

ported space. Since the I/O operations issued during the

selective duplication process are themselves routed via

the in-kernel I/O Deduplication components, the addi-

tional content similarity information due to replication is

automatically recorded into the content cache.

3.5 Persistence of metadata

A final issue is the persistence of the in-memory data

structure so that the system can retain intelligence about

content similarity across system restart operations. Per-

sistence is important for retaining the locations of on-

disk intrinsic and artificially created duplicate content so

that this information can be restored and used immedi-

ately upon a system restart event. We note that while

persistence is useful to retain intelligence that is acquired

over a period of time, “continuous persistence” of meta-

data in I/O Deduplication is not necessary to guarantee

the reliability of the system, unlike other systems such as

the eager writing disk array [40] or doubly distorted mir-

roring [29]. In this sense, selective duplication is similar

to the opportunistic replication as performed by FS2 [15]

because it tracks updates to replicated data in memory

and only guarantees that the primary copy of data blocks

are up-to-date at any time. While persistence of the in-

memory data is not implemented in our prototype yet,

guaranteeing such persistence is relatively straightfor-

ward. Before the I/O Deduplication kernel module is

unloaded (occuring at the same time the managed file

system is unmounted), all in-memory data structure en-

tries can be written to a reserved location of the managed

scratch-space. These can then be read back to populate

the in-memory metadata upon a system restart operation

when the kernel module is loaded into the operating sys-

tem.

4 Experimental Evaluation

In this section, we evaluate each mechanism in I/O Dedu-

plication separately first and then evaluate their cumula-

tive performance impact. We also evaluate the CPU and

memory overhead incurred by an I/O Deduplication sys-

tem. We used the block level traces for the three systems

that were described in detail in § 2 for our evaluation.

The traces were replayed as block traces in a similar way
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Figure 8: Per-day page cache hit ratio for content- and

sector- addressed caches for read operations. The to-

tal number of pages read are 0.18, 2.3, and 0.23 million

respectively for the web-vm, mail and homes workloads.

The numbers in the legend next to each type of address-

ing represent the cache size.

as done by blktrace [2]. Blktrace could not be used as-

is since it does not record content information; we used

a custom Linux kernel module to record content-hashes

for each block read/written in addition to other attributes

of each I/O request. Additionally, the blktrace tool btre-

play was modified to include traces in our format and

replay them using provided content. Replay was per-

formed at a maximum acceleration of 100x with care

being taken in each case to ensure that block access pat-

terns were not modified as a result of the speedup. Mea-

surements for actual disk I/O times were obtained with

per-request block-level I/O tracing using blktrace and the

results reported by it. Finally, all trace playback exper-

iments were performed on a single Intel(R) Pentium(R)

4 CPU 2.00GHz machine with 1 GB of memory and a

Western Digital disk WD5000AAKB-00YSA0 running

Ubuntu Linux 8.04 with kernel 2.6.20.

4.1 Content based cache

In our first experiment, we evaluated the effectiveness

of a content-addressed cache against a sector-addressed

one. The primary difference in implementation between

the two is that for the sector-addressed cache, the same

content for two distinct sectors will be stored twice. We

fixed the cache size in both variants to one of two differ-

ent sizes, 1000 pages (4MB) and 50000 pages (200MB).

We replayed two weeks of the traces for each of the three

workloads; the first week warmed up the cache and mea-

surements were taken during the second week. Figure 8

shows the average per-day cache hit counts for read I/O

operations during the second week when using an adap-

tive replacement cache (ARC) in two modes, content and

sector addressed.

This experiment shows that there is a large increase in

per-day cache hit counts for the web and the home work-

8
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Figure 9: Comparison of ARC and LRU content based

caches for pages read only (top) and pages read/write

operations (bottom). A single day trace (0.18 million

page reads and 2.09 million page read/writes) of the web

workload was used as the workload.

loads when a content-addressed cache is used (relative to

a sector-addressed cache). The first observation is that

improvement trends are consistent across the two cache

sizes. Both caches implementations benefit substantially

from a larger cache size except for the mail workload,

indicating that mail is not a cache-friendly workload val-

idated by its substantially larger working set and work-

load I/O intensity (as observed in Section 2). The web-

vm workload shows the biggest increase with an almost

10X increase in cache hits with a cache of 200MB com-

pared to the home workload which has an increase of 4X.

The mail workload has the least improvement of approx-

imately 10%.

We performed additional experiments to compare an

LRU implementation with the ARC cache implementa-

tion (used in the previous experiments) using a single

day trace of the web-vm workload. Figure 9 provides a

performance comparison of both replacement algorithms

when used for a content-addressed cache. For small and

large cache sizes, we observe that ARC is either as good

or more effective than LRU with ARC’s improvement

over LRU increasing substantially for write operations

at small to moderate cache sizes. More generally, this

experiment suggests that the performance improvements

for a content-addressed cache are sensitive to the cache

replacement mechanism which should be chosen with

care.

 0

 0.005

 0.01

 0.015

 0.02

web-vm mail homes

P
e
r-

re
q
u
e
s
t 

d
is

k
 I

/O
 t

im
e
 (

s
e
c
)

Figure 10: Improvement in disk read I/O times with

dynamic replica retrieval. Box and whisker plots de-

picting median and quartile values of the per-request

disk I/O times are shown. For each workload, the val-

ues to the left represent the vanilla system and that on

the right is with dynamic replica retrieval.

4.2 Dynamic replica retrieval

To evaluate the effectiveness of dynamic replica retrieval,

we replayed a one week trace for each workload with

and without using I/O Deduplication. When using I/O

Deduplication, prior to replaying the trace workload, in-

formation about duplicates was loaded into the kernel

module’s data structures, as would have been accumu-

lated by I/O Deduplication over the lifetime of all data on

the disk. Content-based caching and selective duplica-

tion were turned-off. In each case, we measured the per-

request disk I/O time per request. A lower per-request

disk I/O time informs us of a more efficient storage sys-

tem.

Figure 10 shows the results of this experiment. For all

the workloads there is a decrease in median per-request

disk I/O time of at least 10% and up to 20% for the homes

workload. These findings indicate that there is room for

optimizing I/O operations simply by using pre-existing

duplicate content on the storage system.

4.3 Selective duplication

Given the improvements offered by dynamic replica re-

trieval, we now evaluate the impact of selective duplica-

tion, a mechanism whose goal is to further increase the

opportunities for dynamic replica retrieval. The work-

loads and metric used for this experiment were the same

as the ones in the previous experiment.

To perform selective duplication, for each workload,

ten copies of the predicted popular content were created

on scratch space distributed across the entire disk drive.

The set of popular data blocks to replicate is determined

by the kernel module during the day and exported to user

space after a time threshold is reached. A user space pro-

gram logs the information about the popular content that

are candidates for selective duplication and creates the

copies on disk based on the information gathered during

periods of little or no disk activity. As in the previous

9
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Figure 11: Improvement in disk read I/O times with

selective duplication and dynamic replica retrieval

optimizations. Other details are the same as Figure 10.

experiment, prior to replaying the trace workload, all the

information about duplicates on disk was loaded into the

kernel module’s data structures.

Figure 11 (when compared with the numbers in Fig-

ure 10) shows how selective duplication improves upon

the previous results using pure dynamic replica retrieval.

Figure 4 showed that the web workload had more than

80% in content reuse overlap and the effect of duplicat-

ing this information can be observed immediately. Over-

all, the reduction in per-request disk I/O time was im-

proved substantially for the web-vm and homes work-

loads, and to a lesser extent for the homes workload us-

ing this additional technique when compared to using dy-

namic replica retrieval alone. Overall reductions in me-

dian disk I/O times when compared to the vanilla sys-

tem were 33% for the web workload, 35% for the homes

workload, and 23% for mail.

4.4 Putting it all together

We now examine the impact of using all the three mech-

anisms of I/O Deduplication at once for each workload.

We use a sector-addressed cache for the baseline vanilla

system and a content-addressed one for I/O Deduplica-

tion. We set the cache size to 200 MB in both cases.

Since sector- or content-based caching is the first mech-

anism encountered by the I/O request stream, the results

of the caching mechanism remain unaffected because of

the other two, and the cache hit counts remain as with

the independent measurements reported in Section 4.1.

However, cache hits do modify the request stream pre-

sented to the remaining two optimizations. While there is

a reduction in the improvements to per-request disk read

I/O times with all three mechanisms (not shown) when

compared to using the combination of dynamic replica

retrieval and selective duplication alone, the total num-

ber of I/O requests is different in each case. Thus the

average disk I/O time is not a robust metric to measure

relative performance improvement. The total disk read

I/O time for a given I/O workload, on the other hand, pro-

vides an accurate comparative evaluation by taking into

account both the reduced number of I/O read operations

Workload Vanilla (sec) I/O dedup (sec) Improvement

web-vm 3098.61 1641.90 47%

mail 4877.49 3467.30 28%

home 1904.63 1160.40 39%

Table 3: Reduction in total disk read I/O times.
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Figure 12: Overhead of content and sector lookup

operations with increasing size of the content-based

cache.

due to content-based caching and the improvements in

disk latencies of the latter two optimizations, and effec-

tively measures the true increase in disk I/O efficiency.

When comparing total disk read I/O time for these

three workloads, substantial reductions were observed

when compared to a vanilla system as shown on Table 3.

These uniformly large improvements (28-47% across the

three workloads) are a clear indication of the effective-

ness of I/O Deduplication in improving I/O performance

for a range of different storage workloads.

4.5 Evaluating Overhead

While the gains due to I/O Deduplication are promis-

ing, it incurs resource overhead. Specifically, the im-

plementation uses content- and sector- addressed hash-

tables to simplify lookup and insert operations into the

content based cache. We evaluate the CPU overhead for

insert/lookup operations and memory overhead required

for managing hash-table metadata in I/O Deduplication.

4.5.1 CPU Overhead

To evaluate the overhead of I/O Deduplication, we mea-

sured the average number of CPU cycles required for

lookup/insert operations as we vary the number of unique

pages (i.e., size) in the content-based cache (i.e., cache

size) for a day of the web workload. Figure 13 de-

picts these overheads for two cache configurations, one

configured with 225 buckets in the hash tables and the

other with 25 buckets. Read operations perform a sector

lookup and additionally content lookup in case of a miss

10
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Figure 13: Overhead of sector and content lookup op-

erations with increasing hash-table bucket entries.

for insertion. Write operations always perform a sector

and content lookup due to our write-through cache de-

sign. Content lookups need to first compute the hash

for the page contents which takes around 100000 CPU

cycles for MD5. With few buckets (25) lookup times

approach O(N) where N is the size of the hash-table.

However, given enough hash-table buckets (225), lookup

times are O(1).

Next, we examined the sensitivity to the hash-table

bucket entries. As the number of buckets are increased,

the lookup times decrease as expected due to reduction

in collisions, but beyond 220 buckets, there is an in-

crease. We attribute this to L2 cache and TLB misses due

to memory fragmentation, under-scoring that hash-table

bucket sizes should be configured with care. In the sweet

spot of bucket entries, the lookup overhead for both sec-

tor and content reduces to 1K CPU cycles or less than

1µs for our 2GHz machine. Note that the content lookup

operation includes a hash computation which inflates its

cycles requirement by at least 100000.

4.6 Memory Overhead

The management of I/O Deduplication’s content-based

cache introduces memory overhead for managing meta-

data for the content-based cache. Specifically, the mem-

ory overhead is dictated by the size of the cache mea-

sured in pages (P ), the degree of Workload static simi-

larity (WSS), and the configured number of buckets in

the hash tables (HTB) which also determine the lookup

time as we saw earlier. In our current unoptimized im-

plementation, the memory overhead in bytes (assuming

4 bytes pointers and 4096 bytes pages) :

mem(P, WSS, HTB) = 13 ∗ P + 36 ∗ P ∗ WSS + 8 ∗ HTB (1)

These overheads include 13 bytes per-page to store the

metadata for a a specific page content (vc page), 36 bytes

per page per duplicated entry (vc entry), and 8 bytes per

hash-table entry for the corresponding linked list. For a

1GB content cache (256K pages), a static similarity of 4,

and a hash-table of size 1 million entries, the metadata

overhead is ∼48MB or approximately 4.6%.

5 Related Work

In this section, we examine research literature related

to workload-based I/O performance optimization and re-

search related to the use of content similarity in mem-

ory and storage systems. While there is substantial work

done along both these directions, they are for the most

part explored as orthogonal techniques in the literature,

with the latter primarily being used for optimizing stor-

age capacity utilization using data deduplication.

5.1 I/O performance optimization

Workload-based I/O performance optimization has a

long history. The first class of optimizations is based

on creating optimized layouts for storage system data.

The early works of Wong [37], Vongsathorn et al. [35],

and Ruemmler and Wilkes [32], which argued for shuf-

fling on-disk data based on data access frequency. Later,

Akyurek and Salem [1] argued for copying over shuffling

of data with the observation that original layouts are of-

ten useful and data popularity and access patterns can

be temporary. More recently, ALIS [14] and BORG [3]

have employed a dedicated, reorganized area on the disk

to improve both locality and sequentiality of I/O access.

The second class of work is based on replicating data

and creating opportunities for reducing disk head move-

ment by increasing the number of choices for retriev-

ing data. These include the large body of work on mir-

roring systems [4]. The work on doubly distorted mir-

rors [33] creates multiple replicas on master and slave

disks to increase both write performance (using initial

write-anywhere and background updating of original lo-

cations) and read performance by dispatching read re-

quests to the nearest free arm. Zhang et al.’s work

on eager writing [40] extended this approach to mir-

rored/striped RAID configurations primarily for database

OLTP workload (which are characterized by little local-

ity or sequentiality). Yu et al. [39] propose an alternate

approach for trading disk capacity for performance in a

RAID system, by storing several rotational replicas of

each block and using a rotational latency sensitive disk

scheduler. FS2 [15] proposed replication in file system

free-space based on block-access frequency and the use

of such selective duplication of content to optimize head

movement during subsequent retrieval of replicated data.

Quite obviously, selective duplication is motivated by the

above works, but is different in two respects: (i) it targets

identifying replication candidates based on content pop-

ularity, rather than block address popularity, and (ii) du-

plication is performed in pre-configured dedicated space

transparently to the file system and/or other managers of

the storage system. To the best of our knowledge the

only work to use content-based optimization of I/O is the

work of Tolia et al. [34], where the authors use content

hashes to perform dynamic replica retrieval choosing be-
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tween multiple hosts in an extrinsically-duplicated dis-

tributed storage system. Our work, on the other hand,

uses intrinsic duplication within a single storage system.

5.2 Data deduplication

Content similarity in both memory and archival storage

have been investigated in the literature. Memory dedu-

plication has been explored before in the VMware ESX

server [36], Difference Engine [13], and Satori [25],

each aiming to eliminate duplicate in-memory content

both within and across virtual machines sharing a phys-

ical host. Of these, Satori has apparent similarities to

our work because it identifies candidates for in-memory

deduplication as data is read from storage. Satori runs

in two modes: content-based sharing and copy-on-write

disk sharing. For content-based sharing, Satori uses

content-hashes to track page contents in memory read

from disk. Since its goal is not I/O performance opti-

mization, it does not track duplicate sectors on disk and

therefore does not eliminate duplicated I/Os that would

read the same content from multiple locations. In copy-

on-write disk sharing, the disk is already configured to be

copy-on-write enabling the sharing of multiple VM disk

images on storage. In this mode, duplicated I/Os due to

multiple VMs retrieving the same sectors on the shared

physical disk would be eliminated in the same way as

a regular sector-addressed cache would do. In contrast,

our work targets I/O performance optimization by either

eliminating I/Os if it were to retrieve duplicate content

irrespective of where it may reside on storage or reduc-

ing head movement otherwise Thus, the contributions of

Satori are complementary to our work and can be used

simultaneously.

Data deduplication in archival storage has also gained

importance in both the research and industry communi-

ties. Current research on data deduplication uses sev-

eral techniques to optimize the I/O overheads incurred

due to data duplication. Venti [30] proposed by Quin-

lan and Dorward was the first to propose the use of a

content-addressed storage for performing data dedupli-

cation in an archival system. The authors suggested the

use of an in-memory content-addressed index of data to

speed up lookups for duplicate content. Similar content-

addressed caches were used in data backup solutions

such as Peabody [26] and Foundation [31]. Content-

based caching in I/O Deduplication is inspired by these

works. Recent work by Zhu and his colleagues [41] sug-

gests new approaches to alleviate the disk bottleneck via

the use of Bloom filters [5] and by further accounting

for locality in the content stream. The Foundation work

suggests additional optimizations using batched retrieval

and flushing of index entries and a log-based approach

to writing data and index entries to utilize temporal lo-

cality [31]. The work on sparse indexing [22] suggests

improvements to Zhu et al.’s general approach by ex-

ploiting locality in the chunk index lookup operations to

further mitigate the disk I/O bottleneck. I/O Dedupli-

cation addresses a orthogonal problem, that of improv-

ing I/O performance for foreground I/O workload based

on the use of duplicates, rather than their elimination.

Nevertheless, the above approaches do suggest interest-

ing techniques to optimize the management of a content-

addressed index and cache in main-memory that is com-

plementary to and can be used directly within I/O Dedu-

plication.

6 Discussion

Several aspects of I/O Deduplication from design, im-

plementation, and deployment standpoints warrant fur-

ther discussion. Some of these also suggest avenues for

future work.

Multi-disk deployment. In previous sections, we de-

signed and evaluated a single disk implementation of

I/O Deduplication. Multi-disk storage deployments in

the form of RAID or more complex NAS appliances are

common in enterprise data centers. One might ques-

tion both the utility and effectiveness of the single disk

head movement optimizations central to I/O Deduplica-

tion in such systems. We believe that head movement op-

timizations based on content similarity is viable and can

enable complementary optimizations by minimizing the

unavoidable mechanical delays in any disk-based stor-

age system. The dynamic replica retrieval and selective

duplication sub-techniques require further consideration

for multi-disk systems. First, these optimizations must

be implemented where information about individual disk

head positions is available. Such information is available

inside the driver for software RAID, in the RAID con-

troller for hardware RAID, and inside the firmware/OS

or internal hardware controllers for NAS appliances. Di-

gest information about the outstanding requests and I/O

completion events at each disk can then be utilized as in

the single disk design. While the optimal location within

each disk for each I/O request can be thus compiled, the

complementary issue of load balancing across multiple

disks must also be addressed. Apart from the well-known

queue depth based techniques for load-balancing, alter-

nate solutions such as simultaneous dispatching to mul-

tiple disks combined with just-in-time I/O cancellation

can also be envisioned where applicable.

Hash collisions. Our design and implementation of I/O

Deduplication makes the assumption that MD5 (128 bits)

is collision free. Specifically, this assumption is made

when the content-hash entry for a new page being writ-

ten is registered. A similar assumption, for SHA-1 is

made for deduplication in archival storage [30] and low-

bandwidth network file transfers [27]. While this as-
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sumption may be reasonable in several settings, deliv-

ering absolute correctness guarantees requires that this

assumption be removed. Systems like Foundation [31]

additionally include the provision to perform a byte-wise

comparison following a hit in the content cache by read-

ing the target location which potentially contains the du-

plicate data. This, of course, requires an additional I/O

operation. The use of a specific hash function or the

method of determining duplicate content is not decisive

in our design, and these alternatives can be employed if

found necessary within the target deployment scenario.

Variable-sized chunks. Our implementation of I/O

Deduplication uses fixed size blocks as the basic data unit

for determining content similarity. This choice was mo-

tivated by our goal of simplified deployment on a vari-

ety of block storage systems. Using variable size chunks

as units has been demonstrated to be more effective for

similarity detection for mostly similar content and simi-

lar content at different offsets within a file [6, 27]. This

capability is especially important for archival storage

where a single backup file is composed of multiple data

files stored at different offsets and possibly with partial

modifications. We believe that for online storage sys-

tems, this may be of lesser concern, except for very spe-

cific applications (e.g., a mail server where entire user

INBOXes or folders are managed as a single file). Nev-

ertheless, the use of variable sized chunks for I/O dedu-

plication provides an interesting avenue of future work.

7 Conclusions and Future work

System and storage consolidation trends are driving in-

creased duplication of data within storage systems. Past

efforts have been primarily directed towards the elimina-

tion of such duplication for improving storage capacity

utilization. With I/O Deduplication, we take a contrary

view that intrinsic duplication in a class of systems which

are not capacity-bound can be effectively utilized to im-

prove I/O performance – the traditional Achilles’ heel

for storage systems. Three techniques contained within

I/O Deduplication work together to either optimize I/O

operations or eliminate them altogether. An in-depth

evaluation of these mechanisms revealed that together

they reduced average disk I/O times by 28-47%, a large

improvement all of which can directly impact the over-

all application-level performance of disk I/O bound sys-

tems. The content-based caching mechanism increased

memory caching effectiveness by increasing cache hit

rates by 10% to 4x for read operations when compared

to traditional sector-based caching. Head-position aware

dynamic replica retrieval directed I/O operations to al-

ternate locations on-the-fly and additionally reduced I/O

times by 10-20%. And, selective duplication created ad-

ditional replicas of popular content during periods of low

foreground I/O activity and further improved the effec-

tiveness of dynamic replica retrieval by 23-35%.

I/O Deduplication opens up several directions for fu-

ture work. One avenue for future work is to explore

content-based optimizations for write I/O operations. A

possible future direction is to optionally coalesce or even

eliminate altogether write I/O operations for content that

are already duplicated elsewhere on the disk, or alter-

natively direct such writes to alternate locations in the

scratch space. While the first option might seem similar

to data deduplication at a high-level, we suggest a pri-

mary focus on the performance implications of such opti-

mizations rather than capacity improvements. Any opti-

mization for writes affects the read-side optimizations of

I/O Deduplication and a careful analysis and evaluation

of the trade-off points in this design space is important.
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Abstract

A content-addressable storage (CAS) system is a valuable

tool for building storage solutions, providing efficiency by

automatically detecting and eliminating duplicate blocks;

it can also be capable of high throughput, at least for

streaming access. However, the absence of a standardized

API is a barrier to the use of CAS for existing applica-

tions. Additionally, applications would have to deal with

the unique characteristics of CAS, such as immutability

of blocks and high latency of operations. An attractive

alternative is to build a file system on top of CAS, since

applications can use its interface without modification.

Mapping a file system onto a CAS system efficiently, so

as to obtain high duplicate elimination and high through-

put, requires a very different design than for a traditional

disk subsystem. In this paper, we present the design,

implementation, and evaluation of HydraFS, a file sys-

tem built on top of HYDRAstor, a scalable, distributed,

content-addressable block storage system. HydraFS pro-

vides high-performance reads and writes for streaming ac-

cess, achieving 82–100% of the HYDRAstor throughput,

while maintaining high duplicate elimination.

1 Introduction

Repositories that store large volumes of data are increas-

ingly common today. This leads to high capital expen-

diture for hardware and high operating costs for power,

administration, and management. A technique that of-

fers one solution for increasing storage efficiency is data

deduplication, in which redundant data blocks are identi-

fied, allowing the system to store only one copy and use

pointers to the original block instead of creating redundant

blocks. Deduplicating storage is ideally suited to backup

applications, since they store similar data repeatedly, and

with growing maturity is expected to become common in

the data center for general application use.

Data deduplication can be achieved in-line or off-line.

In both cases, data is eventually stored in an object store

where objects are referenced through addresses derived

from their contents. Objects can be entire files, blocks of

data of fixed size, or blocks of data of variable size.

In a CAS system with in-line deduplication, the data

blocks are written directly to the object store. Thus, they

are not written to disk if they are deemed duplicates; in-

stead, the address of the previously written block with the

same contents is used. A CAS system with off-line dedu-

plication first saves data to a traditional storage system,

and deduplication processing is done later. This incurs

extra I/O costs, as data has to be read and re-written, and

requires additional storage space for keeping data in non-

deduplicated form until the processing is complete.

While a CAS system with in-line deduplication does

not have these costs, using it directly has two disadvan-

tages: the applications have to be modified to use the

CAS-specific API, and use it in such a way that the best

performance can be obtained from the CAS system. To

avoid the inconvenience of rewriting many applications,

we can layer a file system on top of the object store. This

has the advantage that it presents a standard interface to

applications, permitting effective use of the CAS system

to many applications without requiring changes. Addi-

tionally, the file system can mediate between the access

patterns of the application and the ones best supported by

the CAS system.

Designing a file system for a distributed CAS system is

challenging, mainly because blocks are immutable, and

the I/O operations have high latency and jitter. Since

blocks are immutable, all data structures that hold ref-

erences to a block must be updated to refer to the new
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address of the block whenever it is modified, leading to

multiple I/O operations, which is inefficient. Distributed

CAS systems also impose high latencies in the I/O path,

because many operations must be done in the critical path.

While file systems have previously been built for CAS

systems, most have scant public information about their

design. One notable exception is LBFS [18], which fo-

cuses on nodes connected by low bandwidth, wide area

networks. Because of the low bandwidth, it is not tar-

geted at high-throughput applications, and poses different

challenges for the file system designers.

This paper describes the design, implementation,

and evaluation of HydraFS, a file system layered on

top of a distributed, content-addressable back end,

HYDRAstor [5] (also called Hydra, or simply the “block

store”). Hydra is a multi-node, content-addressable stor-

age system that stores blocks at configurable redundancy

levels and supports high-throughput reads and writes for

streams of large blocks. Hydra is designed to provide a

content-addressable block device interface that hides the

details of data distribution and organization, addition and

removal of nodes, and handling of disk and node failures.

HydraFS was designed for high-bandwidth streaming

workloads, because its first commercial application is as

part of a backup appliance. The combination of CAS

block immutability, high latency of I/O operations, and

high bandwidth requirements brings forth novel chal-

lenges for the architecture, design, and implementation of

the file system. To the best of our knowledge, HydraFS is

the first file system built on top of a distributed CAS sys-

tem that supports high sequential read and write through-

put while maintaining high duplicate elimination.

We faced three main challenges in achieving high

throughput with HydraFS. First, updates are more expen-

sive in a CAS system, as all metadata blocks that refer to a

modified block must be updated. This metadata comprises

mappings between an inode number and the inode data

structure, the inode itself, which contains file attributes,

and file index blocks (for finding data in large files). Sec-

ond, cache misses for metadata blocks have a significant

impact on performance. Third, the combination of high

latency and high throughput requires a large write buffer

and read cache. At the same time, if these data structures

are allowed to grow without bound, the system will thrash.

We overcome these challenges through three design

strategies. First, we decouple data and metadata pro-

cessing through the use of a log [10]. This split allows

the metadata modifications to be batched and applied ef-

ficiently. We describe a metadata update technique that

maintains consistency without expensive locking. Sec-

ond, we use fixed-size caches and use admission control

to limit the number of concurrent file system operations

such that their processing needs do not exceed the avail-

able resources. Third, we introduce a second-order cache

to reduce the number of misses for metadata blocks. This

cache also helps reduce the number of operations that are

performed in the context of a read request, thus reducing

the response time.

Our experimental evaluation confirms that HydraFS en-

ables high-throughput sequential reads and writes of large

files. In particular, HydraFS is able to support sequential

writes to a single file at 82–100% of the underlying Hydra

storage system’s throughput. Although HydraFS is op-

timized for high-throughput streaming file access, its per-

formance is good enough for directory operations and ran-

dom file accesses, making it feasible for bulk data transfer

applications to use HydraFS as a general-purpose file sys-

tem for workloads that are not metadata-intensive.

This paper makes the following contributions. First,

we present a description of the challenges in building a

file system on top of a distributed CAS system. Sec-

ond, we present the design of a file system, HydraFS, that

overcomes these challenges, focusing on several key tech-

niques. Third, we present an evaluation of the system that

demonstrates the effectiveness of these techniques.

2 Hydra Characteristics

HydraFS acts as a front end for the Hydra distributed,

content-addressable block store (Figure 1). In this sec-

tion, we present the characteristics of Hydra and describe

the key challenges faced when using it for applications,

such as HydraFS, that require high throughput.
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Node

Storage

Node

Storage

Node

Storage

Node

HYDRAstor Block Access Library

HydraFS

Hydra

Access Node

Single−System Content−Addressable Store

Figure 1: HYDRAstor Architecture.

2.1 Model

HydraFS runs on an access node and communicates with

the block store using a library that hides the distributed
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nature of the block store. Even though the block store is

implemented across multiple storage nodes, the API gives

the impression of a single system.

The HYDRAstor block access library presents a simple

interface:

Block write The caller provides a block to be written and

receives in return a receipt, called the content ad-

dress, for the block. If the system can determine that

a block with identical content is already stored, it can

return its content address instead of generating a new

one, thus eliminating duplicated data. Multiple re-

siliency levels are available to control the amount of

redundant information stored, thereby allowing con-

trol over the number of component failures that a

block can withstand.

The block access library used on the access node has

the option of querying the storage nodes for the ex-

istence of a block with the same hash key to avoid

sending the block over the network if it already ex-

ists. This is a block store feature, imposing only a

slight increase in the latency of the write operations,

that is already tolerated by the file system design.

Block read The caller provides the content address and

receives the data for the block in return.

Searchable block write Given a block and a label, the

block is stored and associated with the label. If a

block with the same label but different content is al-

ready stored, the operation fails. Labels can be any

binary data chosen by the client, and need not be de-

rived from the contents of the block.

Two types of searchable blocks are supported: re-

tention roots that cause the retention of all blocks

reachable from them, and deletion roots that mark

for deletion the retention roots with the same labels.

Periodically, a garbage collection process reclaims

all blocks that are unreachable from retention roots

not marked for deletion.

Searchable block read Given a label, the contents of the

associated retention root are returned.

The searchable block mechanism provides a way for

the storage system to be self-contained. In the absence

of a mechanism to retrieve blocks other than through their

content address, an application would have to store at least

one content address outside the system, which is undesir-

able.

2.2 Content Addresses

In HYDRAstor, content addresses are opaque to clients

(in this case, the filesystem). The block store is respon-

sible for calculating a block’s content address based on

a secure, one-way hash of the block’s contents and other

information that can be used to retrieve the block quickly.

For the same data contents, the block store can return

the same content address, although it is not obliged to do

so. For example, a block written at a higher resiliency

level would result in a different content address even if

an identical block were previously written at a lower re-

siliency level. The design also allows for a byte-by-byte

comparison of newly-written data blocks whose hashes

match existing blocks. Collisions (different block con-

tents hashing to the same value) would be handled by

generating a different content address for each block. For

performance reasons, and given that the hash function is

strong enough to make collisions statistically unlikely, the

default is to not perform the check.

Because the content address contains information that

the file system does not have, it is impossible for the file

system to determine the content address of a block in ad-

vance of submitting it to the block store. At first blush,

since the latency of the writes is high, this might seem like

a problem for performance, because it reduces the poten-

tial parallelism of writing blocks that contain pointers to

other blocks. However, this is not a problem for two rea-

sons. First, even if we were to write all blocks in parallel,

we still would have to wait for all child blocks to be per-

sistent before writing the searchable retention root. The

interface is asynchronous: write requests can complete in

a different order than that in which they were submitted.

If we were to write the searchable block without waiting

for the children and the system were to crash, the file sys-

tem would be inconsistent if the retention root made it to

disk before all of its children.

Second, the foreground processing, which has the

greatest effect on write performance, writes only shallow

trees of blocks; the trees of higher depth are written in the

background, so the reduction in concurrency is not signif-

icant enough to hurt the performance of streaming writes.

Thus, although the high latency of operations is a chal-

lenge for attaining good performance, the inability of the

file system to calculate content addresses on its own does

not present an additional problem.

2.3 Challenges

Hydra presents several challenges to implementing a file

system that are not encountered with conventional disk

subsystems. Some of the most notable are: (i) blocks are

immutable, (ii) the latency of the block operations is very

high, and (iii) a chunking algorithm must be used to deter-

mine the block boundaries that maximize deduplication,

and this results in blocks of unpredictable and varied sizes.
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2.3.1 Immutable Blocks

When a file system for a conventional disk subsystem

needs to update a block, the file system can simply re-

write it, since the block’s address is fixed. The new con-

tents become visible without requiring further writes, re-

gardless of how many metadata blocks need to be tra-

versed to reach it.

A CAS system, however, has to store a new block,

which may result in the new block’s address differing

from the old block’s address. Because we are no longer

interested in the contents of the old block, we will infor-

mally call this an “update.” (Blocks that are no longer

needed are garbage collected by Hydra.) But to reach the

new block, we need to update its parent, and so on re-

cursively up to the root of the file system. This leads to

two fundamental constraints on data structures stored in a

CAS system.

First, because the address of a block is derived from

a secure, one-way hash of the block’s contents, it is im-

possible for the file system to store references to blocks

not yet written. Since blocks can only contain pointers to

blocks written in the past, and more than one block can

contain the same block address, the blocks form directed

acyclic graphs (DAGs).

Second, the height of the DAG should be minimized

to reduce the overhead of modifying blocks. The cost to

modify a block in a file system based on a conventional

disk subsystem is limited to the cost to read and write

the block. In a CAS-based file system, however, the cost

to modify a block also includes the cost to modify the

chain of blocks that point to the original block. While this

problem also occurs in no-overwrite file systems, such as

WAFL [11], it is exacerbated by higher Hydra latencies,

as discussed in the next section.

2.3.2 High Latency

Another major challenge that Hydra poses is higher laten-

cies than conventional disk subsystems. In a conventional

disk subsystem, the primary task in reading or writing a

disk block is transferring the data. In Hydra however,

much more work must be done before an I/O operation

can be completed. This includes scanning the entire con-

tents of the block to compute its content address, com-

pressing or uncompressing the block, determining the lo-

cation where the block is (or will be) stored, fragmenting

or reassembling the blocks that are made up of smaller

fragments using error-correcting codes, and routing these

fragments to or from the nodes where they reside. While

conventional disk subsystems have latencies on the order

of milliseconds to tens of milliseconds, Hydra has laten-

cies on the order of hundreds of milliseconds to seconds.

An even higher contributor to the increased latency

comes from the requirement to support high-throughput

reads. With conventional disk subsystems, placing data in

adjacent blocks typically ensures high-throughput reads.

The file system can do that because there is a clear indica-

tion of adjacency: the block number. However, a CAS

system places data based on the block content’s hash,

which is unpredictable. If Hydra simply places data con-

tiguously based on temporal affinity, as the number of

streams written concurrently increases, the blocks of any

one stream are further and further apart, reducing the lo-

cality and thus causing low read performance.

To mitigate this problem, the block store API allows

the caller to specify a stream hint for every block write.

The block store will attempt to co-locate blocks with the

same stream hint by delaying the writes until a sufficiently

large number of blocks arrive with the same hint. The

decision of what blocks should be co-located is up to the

file system; in HydraFS all blocks belonging to the same

file are written with the same hint.

The write delay necessary to achieve good read per-

formance depends by the number of concurrent write

streams. The default value of the delay is about one sec-

ond, which is sufficient for supporting up to a hundred

concurrent streams. Thus, the write latency is sacrificed

for the sake of increased read performance. To cope with

the large latencies but still deliver high throughput, the file

system must be able to issue a large number of requests

concurrently.

2.3.3 Variable Block Sizes

The file system affects the degree of deduplication by how

it divides files into blocks, a process we call chunking.

Studies have shown that variable-size chunking provides

better deduplication than fixed-size chunking ([15], [20]).

Although fixed-size chunking can be sufficient for some

applications, backup streams often contain duplicate data,

possibly shifted in the stream by additions, removals, or

modifications of files.

Consider the case of inserting a few bytes into a file

containing duplicate contents, thereby shifting the con-

tents of the rest of the file. If fixed-size chunking is used,

and the number of bytes is not equal to the chunk size,

duplicate elimination would be defeated for the range of

file contents from the point of insertion through the end of

the file. Instead, we use a content-defined chunking algo-

rithm, similar to the one in [18], that produces chunks of

variable size between a given minimum and maximum.

This design choice affects the representation of files.

With a variable block size, an offset into a file cannot be

mapped to the corresponding block by a simple mathe-

matical calculation. This, along with the desire to have

DAGs of small height, led us to use balanced tree struc-

tures.
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Figure 2: HydraFS persistent layout.

3 File System Design

HydraFS design is governed by four key principles. First,

the primary concern is the high throughput of sequential

reads and writes. Other operations, such as metadata oper-

ations, file overwrites, and simultaneous reads and writes

to the same file, are supported, but are not the target for

optimization. Second, because of the high latencies of

the block store, the number of dependent I/O operations

must be minimized. At the same time, the system must

be highly concurrent to obtain high throughput. Third,

the data availability guarantees of HydraFS must be no

worse than those of the standard Unix file systems. That

is, while data acknowledged before an fsyncmay be lost

in case of system crash, once an fsync is acknowledged

to the application, the data must be persistent. Fourth, the

file system must efficiently support both local file system

access and remote access over NFS and CIFS.

3.1 File System Layout

Figure 2 shows a simplified view of the HydraFS file sys-

tem block tree. The file system layout is structured as a

DAG, with the root of the structure stored in a searchable

block. The searchable block contains the file system super

block, which holds the address of the inode map (called

the “imap”) together with the current file system version

number and some statistics. The imap is conceptually

similar to the inode map used in the Log-Structured File

File
Server

Commit
Server

File
Operations

Transaction Log

v1 v2 v3

Data Blocks

Super Blocks

Hydra

Figure 3: HydraFS Software Architecture.

System [23]. In HydraFS, the imap is a variable-length

array of content addresses and allocation status, stored as

a B-tree. It is used to translate inode numbers into inodes,

as well as to allocate and free inode numbers.

A regular file inode indexes data blocks with a B-tree

so as to accommodate very large files [27] with variable-

size blocks. Regular file data is split up into variable-

size blocks using a chunking algorithm that is designed

to increase the likelihood that the same data written to the

block store will generate a match. Thus, if a file is writ-

ten to the block store on one file system, and then written

to another file system using the same block store, the only

additional blocks that will be stored by the block store will

be the metadata needed to represent the new inode, and its

DAG ancestors: the imap and the superblock. The modifi-

cations of the last two are potentially amortized over many

inode modifications.

Although the immutable nature of Hydra’s blocks nat-

urally allows for filesystem snapshots, this feature is not

yet exposed to the applications that use HydraFS.

3.2 HydraFS Software Architecture

HydraFS is implemented as a pair of user-level processes

that cooperate to provide file system functionality (see

Figure 3). The FUSE file system module [8] provides the

necessary glue to connect the servers to the Linux kernel

file system framework. The file server is responsible for

managing the file system interface for clients; it handles

client requests, records file modifications in a persistent

transaction log stored in the block store, and maintains an

in-memory cache of recent file modifications. The commit

server reads the transaction log from the block store, up-

dates the file system metadata, and periodically generates

a new file system version.

This separation of functionality has several advantages.

First, it simplifies the locking of file system metadata

(discussed further in Section 3.3). Second, it allows the
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commit server to amortize the cost of updating the file sys-

tem’s metadata by batching updates to the DAG. Third,

the split allows the servers to employ different caching

strategies without conflicting with each other.

3.3 Write Processing

When an application writes data to a file, the file server

accumulates the data in a buffer associated with the file’s

inode and applies a content-defined chunking algorithm

to it. When chunking finds a block boundary, the data in

the buffer up to that point is used to generate a new block.

The remaining data is left in the buffer to form part of the

next block. There is a global limit on the amount of data

that is buffered on behalf of inodes, but not yet turned into

blocks, to prevent the memory consumption of the inode

buffers from growing without bound. When the limit is

reached, some buffers are flushed, their content written to

Hydra even though the chunk boundaries are no longer

content-defined.

Each new block generated by chunking is marked dirty

and immediately written to Hydra. It must be retained in

memory until Hydra confirms the write. The file server

must have it available in case the write is followed by

a read of that data, or in case Hydra rejects the block

write due to an overloaded condition (the operation is re-

submitted after a short delay). When Hydra confirms the

write, the block is freed, but its content address is added

to the uncommitted block table with a timestamp and the

byte range that corresponds to the block.

The uncommitted block table is a data structure used

for keeping modified file system metadata in memory.

Since there is no persistent metadata block pointing to the

newly-written data block, this block is not yet reachable

in a persistent copy of the file system.

An alternative is to update the persistent metadata im-

mediately, but this has two big problems. The first is that

each data block requires the modification of all metadata

blocks up to the root. This includes inode index blocks,

inode attribute block, and imap blocks. Updating all of

them for every data block modification creates substantial

I/O overhead. The second is that the modification to these

data structures would have to be synchronized with other

concurrent operations performed by the file server. Since

the metadata tree can only be updated one level at a time

(a parent can be written only after the writes of all chil-

dren complete), propagation up to the root has a very high

latency. Locking the imap for the duration of these writes

would reduce concurrency considerably, resulting in ex-

tremely poor performance. Thus, we chose to keep dirty

metadata structures in memory and delegate the writing of

metadata to the commit server.

When the commit server finally creates a new file sys-

tem super block, the file server can clean its dirty metadata

structures (see Section 3.4). To provide persistence guar-

antees, the metadata operations are written to a log which

is kept persistently in Hydra until they are executed by the

commit server.

Sequentially appending data to files exhibits the best

performance in HydraFS. Random writes in HydraFS in-

cur more overhead than appends because of the chunking

process that decides the boundaries of the blocks written

to Hydra. The boundaries depend on the content of the

current write operation, but also on the file data adjacent

to the current write range (if any). Thus, a random write

to the file system might generate block writes to the block

store that include parts of blocks already written, as well

as any data that was buffered but not yet written since it

was not a complete chunk.

3.4 Metadata Cleaning

The file server must retain dirty metadata as a conse-

quence of delegating metadata processing to the commit

server to avoid locking. This data can only be discarded

once it can be retrieved from the block store. For this to

happen, the commit server must sequentially apply the op-

erations it retrieves from the log written by the file server,

create a new file system DAG, and commit it to Hydra.

To avoid unpredictable delays, the commit server gen-

erates a new file system version periodically, allowing the

file server to clean its dirty metadata proactively. Instead,

if the file server waits until its cache fills up before ask-

ing the commit server to generate a new root, then the

file server would stall until the commit server completes

writing all the modified metadata blocks. As mentioned

before, this can take a long time, because of the sequen-

tial nature of writing content-addressable blocks along a

DAG path.

Metadata objects form a tree that is structurally simi-

lar to the block tree introduced in Section 3.1. To simplify

metadata cleaning, the file server does not directly modify

the metadata objects as they are represented on Hydra. In-

stead, all metadata modifications are maintained in sepa-

rate lookup structures, with each modification tagged with

its creation time. With this approach, the metadata that

was read from Hydra is always clean and can be dropped

from the cache at any time, if required.

When the file server sees that a new super block has

been created, it can clean the metadata objects in a top-

down manner. Cleaning a metadata object involves re-

placing its cached clean state (on-Hydra state) with a new

version, and dropping all metadata modification records

that have been incorporated into the new version.

The top-down restriction is needed to ensure that a dis-

carded object will not be re-fetched from Hydra using an

out-of-date content address. For example, if the file server

were to drop a modified inode before updating the imap
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Figure 4: Cleaning of In-Memory Metadata.

first, the imap would still refer to the old content address

and a stale inode would be fetched if the inode were ac-

cessed again.

Figure 4 shows an example of metadata cleaning. The

file server keeps an in-memory list of inode creation (or

deletion) records that modify the imap, as well as un-

committed block table records for the inodes, consisting

of content addresses with creation timestamps (and off-

set range, not shown). The file server might also have

cached blocks belonging to the old file system version

(not shown). Inode 3067 can be discarded, because all

of its modifications are included in the latest version of

the super block. Inode 3068 cannot be removed, but it can

be partially cleaned by dropping content addresses with

timestamps 801 and 802. Similarly, creation records up to

timestamp 802 can be dropped from the imap. Note that

in-memory inodes take precedence over imap entries; the

stale imap information for inode 3068 will not be used as

long as the inode stays in memory.

3.5 Admission Control

Both servers accept new events for processing after first

passing the events through admission control, a mecha-

nism designed to limit the amount of memory consumed.

Limits are determined by the amount of memory config-

ured for particular objects, such as disk blocks and inodes.

When an event arrives, the worst-case needed allocation

size is reserved for each object that might be needed to

process the event. If memory is available, the event is al-

lowed into the server’s set of active events for processing.

Otherwise, the event blocks.

During its lifetime, an event can allocate and free mem-

ory as necessary, but the total allocation cannot exceed the

reservation. When the event completes, it relinquishes the

reservation, but it might not have freed all the memory it

allocated. For example, a read event leaves blocks in the

cache. Exhaustion of the memory pool triggers a reclama-

tion function that frees cached objects that are clean.

Admission control solves two problems. First, it lim-

its the amount of active events, which in turn limits the

amount of heap memory used. This relieves us from hav-

ing to deal with memory allocation failures, which can be

difficult to handle, especially in an asynchronous system

where events are in various stages of completion. Sec-

ond, when the memory allocated for file system objects is

tuned with the amount of physical memory in mind, it can

prevent paging to the swap device, which would reduce

performance.

3.6 Read Processing

The file system cannot respond to a read request until the

data is available, making it harder to hide high CAS la-

tencies. To avoid I/O in the critical path of a read request,

HydraFS uses aggressive read-ahead for sequential reads

into an in-memory, LRU cache, indexed by content ad-

dress. The amount of additional data to be read is config-

urable with a default of 20MB.

To obtain the content addresses of the data blocks that

cover the read-ahead range, the metadata blocks that store

these addresses must also be read from the inode’s B-tree.

This may require multiple reads to fetch all blocks along

the paths from the root of the tree to the leaf nodes of

interest. To amortize the I/O cost, HydraFS caches both

metadata blocks and the data blocks, uses large leaf nodes,

and high fan-out for internal nodes.

Unfortunately, the access patterns for data and metadata

blocks differ significantly. For sequential reads, accesses

to data blocks are close together, making LRU efficient. In

contrast, because of the large fan-out, consecutive meta-

data block accesses might be separated by many accesses

to data blocks, making metadata eviction more likely. An

alternative is to use a separate cache for data and meta-

data blocks, but this does not work well in cases when the

ratio of data to metadata blocks differs from the ratio of

the two caches. Instead, we use a single weighted LRU

cache, where metadata blocks have a higher weight, mak-

ing them harder to evict.

To further reduce the overhead of translating offset-

length ranges to content addresses, we use a per-inode

look-aside buffer, called the fast range map (FRM), that

maintains a mapping from an offset range to the content

address of the block covering it. The FRM has a fixed

size, is populated when a range is first translated, and is

cleared when the corresponding inode is updated.

Finally, we also introduce a read-ahead mechanism for

metadata blocks to eliminate reads in the critical path of

the first access to these blocks. The B-tree read-ahead

augments the priming of the FRM for entries that are

likely to be needed soon.



232 FAST ’10: 8th USENIX Conference on File and Storage Technologies USENIX Association

3.7 Deletion

When a file is deleted in HydraFS, that file is removed

from the current version of the file system namespace.

Its storage space, however, remains allocated in the block

store until no more references to its blocks exist and the

back end runs its garbage collection cycle to reclaim un-

used blocks. The garbage collection is run as an adminis-

trative procedure that requires all modified cached data to

be flushed by HydraFS to Hydra to make sure that there

are no pointers to blocks that might be reclaimed.

Additional references to a file’s blocks can come from

two sources: other files that contain the same chunk of

data, and older versions of the file system that contain ref-

erences to the same file. References need not originate

from the same file system, however. Since all file systems

share the same block store, blocks can match duplicates

from other file systems.

When a new version of a file system is created, the old-

est version is marked for deletion by writing a deletion

root corresponding to its retention root. The file system

only specifies which super blocks are to be retained and

which are to be deleted, and Hydra manages the refer-

ence counts to decide which blocks are to be retained and

which are to be freed.

The number of file system versions retained is config-

urable. These versions are not currently exposed to users;

they are retained only to provide insurance should a file

system need to be recovered.

Active log blocks are written as shallow trees headed

by searchable blocks. Log blocks are marked for deletion

as soon as their changes are incorporated into an active

version of the file system.

4 Evaluation

HydraFS has been designed to handle sequential work-

loads operating under unique constraints imposed by the

distributed, content-addressable block store. In this sec-

tion, we present evidence that HydraFS supports high

throughput for these workloads while retaining the ben-

efits of block-level duplicate elimination. We first char-

acterize our block storage system, focusing on issues that

make it difficult to design a file system on top of it. We

then study HydraFS behavior under different workloads.

4.1 Experimental Setup

All experiments were run on a setup of five computers

similar to Figure 1. We used a 4-server configuration of

storage nodes, in which each server had two dual-core,

64-bit, 3.0 GHz Intel Xeon processors, 6GB of memory,

and six 7200 RPM MAXTOR 7H500F0 SATA disks, of

which five were used to store blocks, and one was used

for logging by Hydra. Its redundancy is given by an era-

sure coding scheme [1] using 9 original and 3 redundant

fragments. A similar hardware configuration was used for

the file server, but with 8GB of memory and an ext3 file

system on a logical volume split across two 15K RPM Fu-

jitsu MAX3073RC SAS disks using hardware RAID: this

file system was used for logging in HydraFS experiments,

and for storing data in ext3 experiments. All servers run a

2.6.9 Linux kernel, because this was the version that was

used in the initial product release. (It has since been up-

graded to a more recent version; regardless, the only local

disk I/O on the access node is for logging, so improve-

ments in the disk I/O subsystem won’t affect our perfor-

mance appreciably.)

4.2 HydraFS Efficiency

The goal in this section is to characterize the efficiency

of HydraFS and to demonstrate that it comes close to the

performance supported by our block store. Unfortunately,

since Hydra exports a non-standard API and HydraFS is

designed for this API, it is not possible for us to use a com-

mon block store for both HydraFS and a disk-based file

system, such as ext3. It is important to note that we are

not interested in the absolute performance of the two file

systems, but how much the performance degrades when

using a file system compared to a raw block device.

To compare the efficiencies of HydraFS and ext3, we

used identical hardware, configured as follows. We ex-

ported an ensemble of 6 disks on each storage node as an

iSCSI target using a software RAID5 configuration with

one parity disk. We used one access node as the iSCSI

initiator and used software RAID0 to construct an ensem-

ble that exposes one device node. We used a block size of

64KB for the block device and placed an ext3 file system

on it. The file system was mounted with the noatime

and nodiratime mount options. This configuration al-

lows ext3 access to hardware resources similar to Hydra,

although its resilience was lower than that of Hydra, as

it does not protect against node failure or more than one

disk failure per node.

Sequential Throughput: In this experiment, we use a

synthetic benchmark to generate a workload for both the

HydraFS and ext3 file systems. This benchmark generates

a stream of reads or writes with a configurable I/O size

using blocking system calls and issues a new request as

soon as the previous request completes. Additionally, this

benchmark generates data with a configurable fraction of

duplicate data, which allows us to study the behavior of

HydraFS with variable data characteristics. The through-

put of the block store is measured with an application that

uses the CAS API to issue in parallel as many block opera-

tions as accepted by Hydra, thus exhibiting the maximum

level of concurrency possible.
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Figure 5: Comparison of raw device and file system

throughput for iSCSI and Hydra

Figure 5 shows the read and write throughput achieved

by ext3 and HydraFS against the raw block device

throughput of the iSCSI ensemble and Hydra respectively.

We observe that while the read throughput of ext3 is com-

parable to that of its raw device, HydraFS read throughput

is around 82% of the Hydra throughput. For the write

experiment, while ext3 throughput degrades to around

80% of the raw device, HydraFS achieves 88% of Hydra

throughput, in spite of the block store’s high latency.

Therefore, we conclude that the HydraFS implementa-

tion is efficient and the benefits of flexibility and general-

ity of the file system interface do not lead to a significant

loss of performance. The performance difference comes

mostly from limitations on concurrency imposed by de-

pendencies between blocks, as well as by memory man-

agement in HydraFS, which do not exist in raw Hydra ac-

cess.

Metadata Intensive Workloads: To measure the perfor-

mance of our system with a metadata-intensive workload,

we used Postmark [12] configured with an initial set of

50,000 files in 10 directories, with file sizes between 512B

and 16KB. We execute 30,000 transactions for each run of

the benchmark. Postmark creates a set of files, followed

by a series of transactions involving read or write followed

by a create or delete. At the end of the run, the benchmark

deletes the entire file set.

Table 1 shows the file creation and deletion rate with

and without transactions, including the overall rate of

transactions for the experiment. A higher number of

transactions indicates better performance for metadata-

intensive workloads.

We observe that the performance of HydraFS is much

lower than that of ext3. Creating small files presents the

worst case for Hydra, as the synchronous metadata oper-

ations are amortized over far fewer reads and writes than

with large files. Moreover, creation and deletion are lim-

Create Delete
Overall

Alone Tx Alone Tx

ext3 1,851 68 1,787 68 136

HydraFS 61 28 676 28 57

Table 1: Postmark comparing HydraFS with ext3 on sim-

ilar hardware

ited by the number of inodes HydraFS creates without go-

ing through the metadata update in the commit server. We

keep this number deliberately low to ensure that the sys-

tem does not accumulate a large number of uncommitted

blocks that increase the turnaround times for the commit

server processing, increasing unpredictably the latency of

user operations. In contrast, ext3 has no such limitations

and all metadata updates are written to the journal.
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4.3 Write Performance

In the experiment, we write a 32GB file sequentially to

HydraFS using a synthetic benchmark. The benchmark

uses the standard file system API for the HydraFS experi-

ment and uses the custom CAS API for the Hydra experi-

ment.

We vary the ratio of duplicate data in the write stream

and report the throughput. For repeatability in the pres-

ence of variable block sizes and content-defined chunk-

ing, our benchmark is designed to generate a configurable

average block size, which we set to 64KB in all our ex-

periments.

Figure 6 shows the write throughput when varying the

fraction of duplicates in the write stream from no dupli-

cates (0%) to 80% in increments of 20%. We make two

observations from our results. First, the throughput in-

creases linearly as the duplicate ratio increases. This is
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as expected for duplicate data as the number of I/Os to

disk is correspondingly reduced. Second, for all cases, the

HydraFS throughput is within 12% of the Hydra through-

put. Therefore, we conclude that HydraFS meets the de-

sired goal of maintaining high throughput.

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 0  5  10  15  20

O
ff

s
e

t 
(G

B
)

Time (s)

Figure 7: Write completion order

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70

P
r(

t<
=

x
)

Time (ms)

Figure 8: Write event lifetimes

To support high-throughput streaming writes, HydraFS

uses a write-behind strategy and does not perform any

I/O in the critical path. To manage its memory resources

and to prevent thrashing, HydraFS uses a fixed size write

buffer and admission control to block write operations be-

fore they consume any resources.

Write Behind: Figure 7 shows the order of I/O comple-

tions as they arrive from Hydra during a 20-second win-

dow of execution of the sequential write benchmark. In an

ideal system, the order of completion would be the same

as the order of submission and the curve shown in the fig-

ure would be a straight line. We observe that in the worst

case the gap between two consecutive block completions

in this experiment can be as large as 1.5GB, a testament to

the high jitter exhibited by Hydra. Consequently, the la-
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Figure 9: Resource reservation and allocations

tency of an internal compound operation requiring many

block writes to the back end will experience a latency

higher than the average even if all blocks are written in

parallel.

To further understand the write behavior, we show

the Cumulative Distribution Function (CDF) of the write

event lifetimes in the system in Figure 8. The write event

is created when the write request arrives at HydraFS and

is destroyed when the response is sent to the client. Fig-

ure 8 shows that the 90th percentile of write requests take

less than 10 ms.

Admission control: In the experiments above, we show

that HydraFS is highly concurrent even when the under-

lying block store is bursty and has high latency. To pre-

vent the system from swapping under these conditions, we

use admission control (see Section 3.5). In an ideal sys-

tem, the allocations must be close to the size of the write

buffer and the unused resources must be small to avoid

wasting memory. Figure 9 shows the reservations and al-

locations in the system during a streaming write test. We

observe that with admission control, HydraFS is able to

maintain high memory utilization and only a fraction of

the reserved resources are unused.

Commit Server Processing: Commit server processing

overheads are much lower than file server overheads and

we observe its CPU utilization to be less than 5% of the

file server’s utilization for all the experiments above. This

allows the commit server to generate new versions well in

advance of the file server filling up with dirty metadata,

thus avoiding costly file server stalls.

4.4 Read Ahead Caching

In the following experiments, we generate a synthetic

workload where a client issues sequential reads for 64KB

blocks in a 32GB file. All experiments were performed

with a cold cache and the file system was unmounted be-
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Figure 10: Read throughput vs. average latency

tween runs. Unless otherwise specified, the read-ahead

window is fixed at 20MB.

To characterize the read behavior, we study how the

read latency varies at different throughput levels. Hydra

responds immediately to read requests when data is avail-

able. In this experiment we vary the offered load to Hydra

by limiting the number of outstanding read requests and

measure the time between submitting the request and re-

ceiving the response. We limit the number of outstanding

read requests by changing the read ahead window from

20MB to 140MB in increments of 15MB.

Figure 10 shows the variation of average latency of read

requests when the Hydra throughput is varied. From the

figure, we observe that the read latency at low throughput

is around 115 ms and increases linearly until the through-

put reaches 200MB/s. At higher throughput levels, the

latency increases significantly. These results show that

the read latencies with Hydra are much higher than other

block store latencies. This implies that aggressive read-

ahead is essential to maintain high read throughput.

Optimizations: As described in Section 3, to maintain

high throughput, we introduced two improvements - Fast

Range Map and B-tree Read Ahead (BTreeRA). For a se-

quential access pattern, once data blocks are read, they

are not accessed again. However, the metadata blocks

(B-tree blocks) are accessed multiple times, often with a

large inter-access gap. Both our optimizations, FRM and

BTreeRA, target the misses of metadata blocks.

Table 2 shows the evolution of the read performance

with introduction of these mechanisms. The FRM opti-

mization reduces multiple accesses to the metadata blocks

leading to a 23% improvement in throughput. BTreeRA

reduces cache misses for metadata blocks by issuing read

ahead for successive spines of the B-tree concurrently

with collecting index data from one spine. Without this

prefetch, the nodes populating the spine of the B-tree must

be fetched when initiating a read. Moreover, the address

Thrpt

(MB/s)
Accesses

Misses

Data Metadata

Base 134.3 486,966 1,577 1,011

FRM 166.1 210,480 871 1,593

FRM+BTreeRA 183.2 211,632 438 945

Table 2: Effect of read path optimizations

of the block at the next level is available only after the cur-

rent block is read from Hydra. For large files, with multi-

ple levels in the tree, this introduces a significant latency,

which would cause a read stall.

To confirm the hypothesis that the throughput improve-

ments are from reduced metadata accesses and cache

misses, Table 2 also shows the number of accesses and

the number of misses in the cache for all three cases. We

make the following observations: first, our assumption

that improving the metadata miss rate has significant im-

pact on read throughput is confirmed. Second, our opti-

mizations add a small memory and CPU overhead but can

improve the read throughput by up to 36%.

5 Related Work

Several existing systems use content-addressable storage

to support enterprise applications. Venti [21] uses fixed-

size blocks and provides archival snapshots of a file sys-

tem, but since it never deletes blocks, snapshots are made

at a low frequency to avoid overloading the storage system

with short-lived files. In contrast, HydraFS uses variable-

size blocks to improve duplicate elimination and creates

file system snapshots more frequently, deleting the oldest

version when a new snapshot is created; this is enabled

by Hydra providing garbage collection of unreferenced

blocks.

Centera [6] uses a cluster of storage nodes to pro-

vide expandable, self-managing archival storage for im-

mutable data records. It provides a file system interface

to the block store through the Centera Universal Access

(CUA), which is similar to the way an access node ex-

ports HydraFS file systems in HYDRAstor. The main

difference is that the entire HydraFS file system image

is managed in-line by storing metadata in the block store

as needed; the CUA keeps its metadata locally and makes

periodic backups of it to the block store in the background.

Data Domain [4, 31] is an in-line deduplicated storage

system for high-throughputbackup. Like HydraFS, it uses

variable-size chunking. An important difference is that

their block store is provided by a single node with RAID-

ed storage, whereas Hydra is composed of a set of nodes,

and uses erasure coding for configurable resilience at the

individual block level.
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Deep Store [29] is an architecture for archiving im-

mutable objects that can be indexed by searchable meta-

data tags. It uses variable-size, content-defined chunks

combined with delta compression to improve duplicate

elimination. A simple API allows objects to be stored and

retrieved, but no attempt is made to make objects accessi-

ble through a conventional file system interface.

Many file system designs have addressed provid-

ing high performance, fault-tolerant storage for clients

on a local area network. The Log-Structured File

System (LFS) [23] and Write-Anywhere File Layout

(WAFL) [11] make use of specialized file system layouts

to allow a file server to buffer large volumes of updates

and commit them to disk sequentially. WAFL also sup-

ports snapshots that allow previous file system versions to

be accessed. LFS uses an imap structure to cope with the

fact that block addresses change on every write. WAFL

uses an “inode file” containing all the inodes, and updates

the relevant block when an inode is modified; HydraFS

inodes might contain data and a large number of point-

ers, so they are stored in separate blocks. Neither LFS

nor WAFL support in-line duplicate elimination. Ele-

phant [24] creates new versions of files on every modifi-

cation and automatically selects “landmark versions,” in-

corporating major changes, for long-term retention. The

Low-Bandwidth File System [18] makes use of Rabin

fingerprinting [16, 22] to identify common blocks that

are stored by a file system client and server, to reduce

the amount of data that must be transferred over a low-

bandwidth link between the two when the client fetches

or updates a file.

The technique of building data structures using hash

trees [17] has been used in a number of file systems.

SFSRO [7] uses hash trees in building a secure read-

only file system. Venti [21] adds duplicate elimination to

make a content-addressable block store for archival stor-

age, which can be used to store periodic snapshots of a

regular file system. Ivy [19] and OceanStore [14] build

on top of wide-area content-addressable storage [26, 30].

While HydraFS is specialized for local-area network per-

formance, Ivy focuses on file system integrity in a multi-

user system with untrusted participants, and OceanStore

aims to provide robust and secure wide-area file access.

Pastiche [3] uses content hashes to build a peer-to-peer

backup system that exploits unused disk capacity on desk-

top computers.

To remove the bottleneck of a single file server, it is

possible to use a clustered file system in which several

file servers cooperate to supply data to a single client.

The Google File System [9] provides high availability and

scales to hundreds of clients by providing an API that is

tailored for append operations and permits direct com-

munication between a client machine and multiple file

servers. Lustre [2] uses a similar architecture in a general-

purpose distributed file system. GPFS [25] is a parallel

file system that makes use of multiple shared disks and

distributed locking algorithms to provide high throughput

and strong consistency between clients. In HYDRAstor,

multiple access nodes share a common block store, but

a file system currently can be modified by only a single

access node.

The Frangipani distributed file system [28] has a rela-

tionship with its storage subsystem, Petal, that is similar

to the relationship between HydraFS and Hydra. In both

cases, the file system relies on the block store to be scal-

able, distributed, and highly-available. However, while

HydraFS is written for a content-addressable block store,

Frangipani is written for a block store that allows block

modifications and does not offer duplicate elimination.

6 Future Work

While the back-end nodes in HYDRAstor operate as a co-

operating group of peers, the access nodes act indepen-

dently to provide file system services. If one access node

fails, another access node can recover the file system and

start providing access to it, but failover is neither auto-

matic nor transparent. We are currently implementing en-

hancements to allow multiple access nodes to cooperate

in the management of the same file system image, mak-

ing failover and load-balancing an automatic feature of

the front end.

Currently the file system uses a chunking algorithm

similar to Rabin fingerprinting [22]. We are working

on integrating other algorithms, such as bimodal chunk-

ing [13], that generate larger block sizes for compara-

ble duplicate elimination, thereby increasing performance

and reducing metadata storage overhead.

HydraFS does not yet expose snapshots to users. Al-

though multiple versions of each file system are main-

tained, they are not accessible, except as part of a disaster

recovery effort by system engineers. We are planning on

adding a presentation interface, as well as a mechanism

for allowing users to configure snapshot retention.

Although HydraFS is acceptable as a secondary stor-

age platform for a backup appliance, the latency of file

system operations makes it less suitable for primary stor-

age. Future work will focus on adapting HydraFS for use

as primary storage by using solid state disks to absorb the

latency of metadata operations and improve the perfor-

mance of small file access.

7 Conclusions

We presented HydraFS, a file system for a distributed

content-addressable block store. The goals of HydraFS

are to provide high throughput read and write access
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while achieving high duplicate elimination. We presented

the design and implementation of mechanisms that allow

HydraFS to achieve these goals and handle the unique

CAS characteristics of immutable blocks and high la-

tency.

Through our evaluation, we demonstrated that HydraFS

is efficient and supports up to 82% of the block device

throughput for reads and up to 100% for writes. We also

showed that HydraFS performance is acceptable for use

as a backup appliance or a data repository.

A content-addressable storage system, such as

HYDRAstor, provides an effective solution for support-

ing high-performance sequential data access and efficient

storage utilization. Support for a standard file system

API allows existing applications to take advantage of the

efficiency, scalability, and performance of the underlying

block store.
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Abstract

Data deduplication has become a popular technology
for reducing the amount of storage space necessary for
backup and archival data. Content defined chunking
(CDC) techniques are well established methods of sep-
arating a data stream into variable-size chunks such that
duplicate content has a good chance of being discov-
ered irrespective of its position in the data stream. Re-
quirements for CDC include fast and scalable operation,
as well as achieving good duplicate elimination. While
the latter can be achieved by using chunks of small av-
erage size, this also increases the amount of metadata
necessary to store the relatively more numerous chunks,
and impacts negatively the system’s performance. We
propose a new approach that achieves comparable du-
plicate elimination while using chunks of larger average
size. It involves using two chunk size targets, and mech-
anisms that dynamically switch between the two based
on querying data already stored; we use small chunks
in limited regions of transition from duplicate to non-
duplicate data, and elsewhere we use large chunks. The
algorithms rely on the block store’s ability to quickly de-
liver a high-quality reply to existence queries for already-
stored blocks. A chunking decision is made with limited
lookahead and number of queries. We present results of
running these algorithms on actual backup data, as well
as four sets of source code archives. Our algorithms typ-
ically achieve similar duplicate elimination to standard
algorithms while using chunks 2–4 times as large. Such
approaches may be particularly interesting to distributed
storage systems that use redundancy techniques (such
as error-correcting codes) requiring multiple chunk frag-
ments, for which metadata overheads per stored chunk
are high. We find that algorithm variants with more flex-
ibility in location and size of chunks yield better dupli-
cate elimination, at a cost of a higher number of existence
queries.

1 Introduction

Duplicate elimination (DE) is a means to save storage
space. CDC techniques [25, 27, 24, 15, 3, 5] are well-
established methods that use a local window (typically
12–48 bytes long) into data to reproducibly separate the
data stream into variable-size chunks that have good du-
plicate elimination properties. Such chunking is proba-
bilistic in the sense that one has some control over the
average output chunk size given random data input. A
“baseline” CDC algorithm has as primary parameters a
single set of minimum, average and maximum chunk
lengths, and it generates chunks of the desired size range
by inspecting only the input stream. A baseline algo-
rithm may also have less influential parameters, such as a
backup cut-point policy to deal with the situations when
the maximum chunk size has been reached without en-
countering a good cut point. In typical DE methods, one
simply breaks apart an input data stream reproducibly,
and then emits (stores, or transmits) only one copy of any
chunks that are identical to a previously emitted chunk.

As the average chunk size of such baseline CDC
schemes is reduced, the efficiency of deduplication in-
creases. CDC schemes with average chunk sizes of
around 8k have been used [25] and shown to result in
reasonable deduplication. However, in storage systems,
smaller chunk sizes come with costs:

• higher metadata overheads, as each chunk needs to
be indexed;

• higher processing cost, which is proportional to the
number of data packets processed;

• and lower compression ratio for each chunk, as
compression algorithms tend to perform better on
larger input.

For distributed deduplicating storage systems using er-
ror correcting codes (ECC) capable of protecting against
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disk and node failure [12], these drawbacks are signif-
icant. Metadata needs to be associated with each ECC
component of a chunk, and the indexing information
used to find a block given a content hash needs to be
stored redundantly; this results in higher per chunk over-
head than other systems. Additionally, network costs in-
crease as more chunks are processed. Thus, it is desirable
to produce large chunks without unduly lowering the du-
plicate elimination ratio (DER), which we define as the
ratio of the size of input data to the size of stored chunks.
Note that the DER as defined takes into account both
deduplication among chunks and individual chunk com-
pression, but excludes metadata storage costs. The effect
of the metadata costs can be trivially calculated; for a
given metadata overhead f ≡ metadatasize/averagechunksize ,
the DER is reduced to DER/(1+ f ).

In order to achieve our goal, we exploited the nature of
the data stream composition produced by repeated back-
ups. Policroniades et al. [26] noted that on real filesys-
tems most file accesses are read-only, files tend to be ei-
ther read-mostly or write-mostly, and that a small set of
files generates most block overwrites. During repeated
backups, entire files may be duplicated, and even when
changed, the changes may be localized to a relatively
small edit region. Here, a deduplication scheme must
deal effectively with long repeated data segments, where
our assumption for fresh data is that it have a high likeli-
hood of reoccurring in a future backup run. The nature of
the backup data led us to propose the following two prin-
ciples governing possible CDC improvements for such
streams:

P1. Long stretches of unseen data should be assumed to
be good candidates for appearing later on (i.e. at the
next backup run).

P2. Inefficiency around “change regions” straddling
boundaries between duplicate and unseen data can
be minimized by using shorter chunks.

In this paper, we propose algorithms that perform better
than baseline algorithms under the assumption that P1
and P2 hold, and the system provides an efficient exis-

tence query operation that allows one to check whether
a tentative chunk has been encountered in the past. By
a “better” duplicate elimination algorithm, we mean one
that produces a larger average chunk size than a baseline
CDC algorithm while obtaining comparable DER.

P1 is justified by the fact that the amount of data mod-
ified between two backups is a small percentage of the
total, and is concentrated in relatively few regions of
change. P1 may in fact not be justified for systems with
a high rollover of content. P1 implies that an algorithm
should produce chunks of large average size when in an
extended region of previously unseen data. The data is

in a change region if in some vicinity of it there ex-
ist both chunks that were encountered in the past, and
chunks that were not. Variations in vicinity sizes, and in
how small the unseen data in a change region is chunked
lead to different variants of the bimodal algorithms. Note
that P2 is somewhat counter-intuitive, since it involves
speculatively injecting undesirable small chunks into the
storage system while providing no guarantee of an even-
tual storage payoff. Nevertheless, we present real-world
evidence that this strategy may benefit scenarios storing
many versions of an evolving data set.

Note that our bimodal chunking algorithms avoid
problems with historical approaches that use resem-
blance detection [10, 11, 6, 4] or storage of sub-chunk
information [5], whose implementations can suffer from
slow speed and/or large amounts of metadata. We as-
sume that the existence queries can be answered accu-
rately, but discuss in Section 3.3 the effect of false posi-
tives (as could arise from the use of Bloom filters). Re-
cently, a promising approach for efficient deduplication
has been described [4] in which first a similar set of al-
ready stored chunks can be quickly selected, and then
deduplication is performed within that localized environ-
ment. From the point of view of the entire system, this
amounts to having a small rate of false negatives: chunks
that already exist may be stored again. However, their
results show that in practice the effect of these false neg-
atives is minimal, and that they retain sufficient stream
locality for good deduplication. We expect that our bi-
modal algorithms would also perform well in their set-
ting, since both the fast querying algorithm and our bi-
modal chunking algorithms are exploiting assumptions
about stream locality.

The paper is structured as follows. In Section 2 we de-
scribe baseline CDC algorithms and introduce two types
of bimodal chunking improvements: splitting-apart and
amalgamation algorithms. In Section 3 we begin by de-
scribing our data sets and testing tools, after which we
present the results of applying the algorithms and inter-
pret the results. We establish a performance limit for bi-
modal algorithms as well as briefly discussing engineer-
ing aspects. We also show that our assumptions P1 and
P2 do not quite hold for our data set, yet the algorithms
produced chunk sizes 2–4 times larger than those pro-
duced by a baseline algorithm with a comparable DER.
Section 4 contains related work and Section 5 presents
conclusions and future work.

2 Method

2.1 Using chunk existence information

Two approaches exist. In one, a breaking-apart algo-
rithm first chunks everything with large chunks, identi-
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fies change regions of new content, and then re-chunks
data near boundaries of this change region at a finer level.
In such an approach, a small insertion/modification of an
input stream likely renders an entire large chunk non-
duplicate. Were this large chunk re-chunked smaller,
later occurrences of a short region of repeated change
could be more efficiently bracketed.

In a slightly more flexible approach, a building-up al-
gorithm can initially chunk at a fine level, and combine
small chunks into larger ones. A building-up chunking
algorithm can query for candidate big chunks at more
positions, and more finely bracket such a single insert-
ed/modified chunk. In both cases, at any point in the
input stream, a decision must be made whether to emit
a small chunk or a big chunk, so we refer to these al-
gorithms as bimodal chunking algorithms, as opposed to
the (unimodal) baseline CDC approaches.

In either approach, it is always advantageous to emit
an already existing big chunk. If several big chunk emis-
sions are possible, we emit the first-most one. Small
chunks are then emitted only for non-duplicate big
chunks near (adjacent to, in measurements below) du-
plicate big chunks. Note that in both schemes, some data
may be stored in both small- and large-chunk format. In
principle, this loss may be mitigated by rewriting such
large chunks as two (or more) smaller chunks. However,
for systems with in-line deduplication, rewriting an al-
ready emitted big chunk as two or more chunks may be
impractical, so we will not consider chunk-rewriting ap-
proaches. Nevertheless, this might be possible to imple-
ment as a postprocessing step.

We target global duplicate elimination and assume that
the block store can be efficiently queried for existence of
chunks given a chunk content hash. Our algorithms oper-
ate in constant time per unit input, regardless of the num-
ber of stored chunks, since they require only a bounded
number of chunk existence queries per chunking deci-
sion. Implementations of bimodal chunking can vary in
the number and type of existence queries required before
making a chunking decision. In general, we will find that
the more flexibility one has in bracketing change regions
and in what boundaries are allowed for large chunks, the
better one’s performance can be in terms of increasing
chunk size.

Note that our approach does not require storing in-
formation about finer-grained blocks (e.g. non-emitted
small chunks), and thus works well with any block store
capable of answering whether a chunk with a given
hashkey has already been stored or not. More compli-
cated schemes, in which sub-block information is used,
are possible (e.g. fingerdiff [5]), but the higher amount of
metadata required likely leads to a higher cost of queries
and makes more difficult the task of dealing with query
latencies, impacting system performance

The heuristics behind our algorithms can be expected
to perform well only if the backup stream has properties
in line with P1 and P2. Indeed, without a similar-chunk
lookup and an indirect addressing method, the first time
a largely unmodified big chunk is re-chunked as small
chunks, one pays the price of speculatively storing many
small chunks that have no guarantee of ever being en-
countered again. If the small chunks re-occur sufficiently
frequently in later backups (i.e. a finer grained delimiting
of the duplication range), we can more than recoup the
initial loss. In Section 3 we show that although P1 and P2
don’t quite hold for our data set, the algorithms worked
well, resulting in an average chunk size 2–4 times higher
than baseline CDC for comparable DER.

2.2 Baseline rolling window cut-point se-

lection.

Content-defined chunking works by selecting a set of lo-
cations, called cut-points, to break apart an input stream,
where the chunking decision is based on the contents of
the data itself. Typically this involves evaluating a bit
scrambling function (say, a CRC) on a fixed-size sliding
window into the data stream. The result of the function
is compared at some number ℓ of bit locations with a
predefined value, and if equivalent the last byte of the
window is considered a cut-point. This generates an av-
erage chunk size of 2ℓ, following a geometric distribu-
tion. For terseness, we will refer to such a chunker as a
level-2ℓ chunker. The probability of identifying a unique
cut-point is maximized when the region searched is of
size 2ℓ.

Backup cut-points

For minimum chunk size m, the nominal average chunk
size is m + 2ℓ. For a maximum chunk size M, a plain
level-2ℓ chunker (i.e. chunking algorithm) will hit the
maximum with probability approximately e−(M−m)/2ℓ

,
which can be quite frequent. Since chunking at M is no
longer content-defined, the deduplication of two similar
streams is commonly improved by avoiding this situa-
tion. We have adopted a simple approach of choosing
a best content-defined “backup” cut-point, chunked at
a level 2ℓ−b, to decrease the use of these non content-
defined cut-points. The data we present here has used
a policy of taking the longest backup cut-point from the
highest of b =2–3 backup levels; otherwise, we emit a
non-content-defined chunk of maximal length. In prac-
tice, if one adopts the earliest backup cut-point, other pa-
rameters can be varied to increase the average chunk size
again. This may result in a small performance improve-
ment. More sophisticated approaches to dealing with
chunks of maximum size are also possible [15].
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1 f o r ( each b ig chunk ) {
2 i f ( isBigDup )
3 { emi t as b ig ; i sP revBigDup= t r u e }
4 e l s e i f ( i sP revBigDup | | isNextBigDup )
5 { rechunk as sma l l s ; i sP revBigDup= f a l s e }
6 e l s e { emi t as b ig ; i sP revBigDup= t r u e }
7 }

Figure 1: A simple breaking-apart algorithm.

2.3 Breaking-apart algorithms

An example of a simple breaking-apart algorithm that re-
chunks a nonduplicate big chunk either before or after a
duplicate big chunk is detected is shown in Figure 1.

Here the primary pass over the data is done with a
large average chunk size, emitting big duplicates in line
2–3. Otherwise, in lines 4–5, a single nonduplicate data
chunk after or before a duplicate big chunk is re-chunked
at smaller average block size and emitted. Remaining
chunks are emitted as big chunks in line 6. One can mod-
ify such an algorithm to detect more complicated defini-
tions of duplicate/nonduplicate transitions; e.g., when N

non-duplicates are adjacent to D duplicates, re-chunk R

big chunks with smaller average size. Here we present
results for N = R = D = 1, as in Fig. 1. When we varied
R we found that similar results for average chunk size and
DER could be obtained by simply varying the chunking
parameters {m,2ℓ,M} of the baseline algorithm instead.
Alternatively, one couldwork with the byte lengths of the
chunks to limit the nonduplicate region in which small
chunks are emitted adjacent to a nonduplicate/duplicate
transition point.

A lookahead buffer is used to support the is-
NextBigDup predicate. Querying work is bounded by
one query per large chunk. This is the fastest of the
proposed algorithms. In Fig. 2 we illustrate the opera-
tion on a simple example input 2(a). Big chunks (b) are
queried for existence (c) and we assume duplicate and
non-duplicate tags are assigned as shown. All duplicate
big chunks should be stored. Of the remaining chunks,
the transition regions (d) are re-chunked at smaller av-
erage chunk size. The remaining non-duplicate chunks
are re-emitted as big chunks (e). In the final (f) bimodal
chunking, chunks 2–6 and 9–11 are of small length. Of
these, note that with respect to the byte-level duplica-
tion boundaries of the input stream (a), small chunks 2, 3
and 11 are entirely within the duplicate bytes area, and
may possess enhanced probabilities of recurring later.
In essence, the small transition region chunks can allow
the extent of duplicate bytes to be more faithfully repre-
sented.

(Non−duplicate bytes)

(a) Input byte stream

(b) Big chunk locations identified

(c) Duplicate/Nonduplicate label

(dup bytes)(dup bytes)

D N N N N D

(d) Transition regions rechunked small

(e) Non−duplicate interior remains big

1 4 5 6 7 8 129 102 3 11

(f) Final bimodal chunking: 1,2,3,...

Figure 2: Breaking-apart algorithm steps.

2.4 Chunk amalgamation algorithms

Considerably more flexibility in generating variably-
sized chunks is afforded by running a smaller chunker
first, followed by chunk amalgamation into big chunks.
Consider a simple case where big chunks are only gen-
erated by concatenation of a fixed number k of small
chunks (Figure 3.) We will call these “fixed-size” big
chunks because they are formed from a constant num-
ber of variably-sized small chunks during the initial for-
ward search for big duplicates (lines 3–6). Their length
in bytes is variable and their chunk endpoints are content-
defined. We will call the above algorithms with fixed-
size big chunks “k-fixed” algorithms. When the forward
search for duplicates fails, lines 7–8 emit k chunks fol-
lowing a duplicate as small chunks when following a du-
plication region. Otherwise, those k chunks are amalga-
mated and emitted as a single big chunk in line 9.

A simple extension modifies lines 3–6 to allow
variably-sized big chunks (1–k or 2–k small chunks) to
be queried at every possible small chunk position during
this decision-making process. We will label such exten-
sions as “k-var” algorithms. With fixed-size big chunks
we make at most 1 query per small chunk, while for
variable-size big chunks we can make up to k− 1 (or k)
queries per small chunk.

To limit the possibility for two duplicate input streams
to remain out-of-synch for extended periods, it is pos-
sible to introduce resynchronization cut-points: when-
ever the cut-point level of a small chunk exceeds some
threshold (r higher than the normal chunking threshold
ℓ), a big chunk can terminate there, but may never con-
tain the resynchronization point in its interior. In this
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1 vo id p r o c e s s ( s m a l l chunks buf [0 t o 2k−1] ) {
2 f o r ( pos =0 ; pos <=k ; ++ pos ) { / / fwd s e a r c h
3 i f isBigDup ( buf [ pos t o pos+k−1]) {
4 emi t any s m a l l s buf [ 0 ] t o buf [ pos −1]
5 emi t b i g @ buf [ pos t o pos+k−1]
6 isP revDupBig = t r u e ; r e t u r n }
7 i f ( i sP revDupBig ) { emi t k s m a l l s
8 i sP revDupBig = f a l s e ; r e t u r n }
9 emi t b i g @ buf [0 t o k−1]; i sP revDupBig = t r u e

10 }

Figure 3: A simple chunk amalgamation algorithm, in
which k contiguous small chunks constitute a big chunk.
Big duplicate chunks are always desirable (lines 2–6).
Small chunks can only be emitted either in line 4, upon
detecting an ensuing transition to duplicate data, or in
line 7 when exiting a region of duplicate data. Regions
considered fresh data (line 9) are emitted as big chunks.

fashion, two duplicate input streams can be forcibly re-
synched after a resynchronization cut-point in algorithms
that do not have sufficient lookahead to do so sponta-
neously. This mechanism can protect against certain ma-
licious inputs, but will lower the average chunk size. A
second means to favor spontaneous resynchronization is
to use a hierarchy of backup cut-points (parameter b of
Section 2.2).

In our test code, we also allowed some algorithms
of theoretical interest. We maintained Bloom filters for
many different types of chunk emission separately: small
chunks and big chunks, both emitted and non-emitted.
One benefit (for example) is to allow the concept of ‘du-
plicate’ data region to include both previously emitted
small chunks as well as non-emitted small chunks (that
were emitted as part of some previous big chunk emis-
sion). An algorithm modified to query non-emitted small
chunks (i.e. the small chunks that were not emitted be-
cause they were part of some big chunk) can detect du-
plicate data at a more fine-grained level, at the cost of
additional storage for such sub-chunk metadata. Never-
theless, when resources are more plentiful, implementa-
tions such as fingerdiff adopt such an approach and ob-
tain substantial compression improvements [5].

Figure 3 shows the algorithm as applied in this paper.
The length of the lookahead buffer is of minimal size
and gives the behavior that transition regions are never
covered by more than k small chunks. It is also quite
reasonable to extend the lookahead to 3k−1 chunks, and
allow up to 2k−1 small chunks to precede an upcoming
duplicate big chunk, as depicted in Fig. 4

The logic of breaking apart and amalgamation algo-
rithms (Figs. 2 and 4) is highly similar. For amalgama-
tion input 4(a), small chunks (b) are used to form big
chunks that are defined here as exactly 3 consecutive

(dup bytes)(dup bytes)

(b) Small chunk locations identified

(d) Transition regions remain small

(e) non−duplicate interior big chunk

3 4 5 6 7 101 2

(Non−duplicate bytes)

(c) Duplicate/Nonduplicate label for big chunks

D
N
N
N
N

N
N
N
N
N

N
N

D
D

N

8 9

(f) Final bimodal chunking: 1,2,3,...

(a) Input byte stream

Figure 4: “k-fixed” amalgamation algorithm steps. We
assume fixed-size big chunks are constituted of precisely
three small chunks in this example.

small chunks. Big chunks are queried in 2/4(c) and first-
most-occurring duplicate big chunks are emitted. Of the
remaining chunks, transition regions 2/4(d) are emitted
as small chunks. The remaining non-duplicate interior
chunks are re-emitted as a series of big chunks inasmuch
as possible 2/4(e), with one straggling small chunk left
over at the end in 4(e). The final chunk emission 4(f)
has small chunks 2–4 and 6–9. With the byte-level du-
plication points as in 4(a), small chunks 2 and 9 lie en-
tirely within the span of duplicate bytes, and may have
enhanced potential for deduplication.

Querying work is larger for amalgamation algorithms
than for breaking-apart. Breaking apart uses one query
per big chunk, whereas k-fixed amalgamation uses up to
k queries per big chunk (one per small), and k-var amal-
gamation for big chunks consisting of 2–k small chunks
uses up to k(k−1) queries per big chunk. The increased
number of existence queries for k-var amalgamation may
be unattractive for practical implementations.

3 Results and Discussion

3.1 Test data

We used a data set for testing consisting of 1.16 Terabyte
of full Netware backups of hundreds of user directories
over a 4 month period. For privacy reasons, we had no
idea what the distribution of file types was, only that it
was a large set of real data, typical of what might be seen
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in practice. Some experiments were also conducted us-
ing an additional 400 GB of incremental backups during
this same period, but the results reported here include
only the data from the full backups.

In order to study the behavior of the algorithms on data
sets with characteristics different from our 1.16 TB data,
we also analyzed data sets similar to those of Bobbarjung
et al. [5], consisting of tar files for consecutive releases of
several large projects. Their work targeted improvements
for very small chunk sizes (< 1KB), while we target large
chunk sizes.

3.2 Simulation tools

We have developed a number of tools for offline,
anonymized, analysis of very large customer data sets.
The key idea was to generate a binary “summary” of the
input data, storing fine-grained information about poten-
tial chunk-points that could later be reused to generate
any coarser-grained re-chunking. For every small chunk
generated with expected size 512 bytes, we stored the
SHA-1 hash of the chunk, as well as the chunk size
and actual cut-point level ℓ (# of terminal zeroes in the
rolling window hash). The summary data was obtained
by running with minimum chunk size 1 byte and max-
imum chunk size 100k, with expected chunk size 512
bytes. This chunk data was sufficient to re-chunk our in-
put data sets. Data sets that generate no chunk-points at
all (e.g. all-zero inputs) are better handled by reducing
the maximum chunk size used for generating the sum-
mary stream.

Our utilities also stored local compression estimates,
generated by running every fixed-size chunks (ex. 4k, 8k,
16k, 32k) through LZO and storing a single byte with the
percent of original chunk size. Then, given the current
file offset and chunk size, we could estimate the com-
pression at arbitrary points in the stream. Using piece-
wise constant or linear approximations for the estimated
size of compressed chunks yielded under 1% errors in
compressed DER for our large dataset. In this fashion,
the 1.16 Terabyte input data could be analyzed as a more
portable 60 GB set of summary information (a sequence
of several billion summary chunks, involving over 400
million distinct chunks). Such re-analyses took hours
instead of days. We also stored, to a separate file, the
duplicate/nonduplicate status of every summary stream
chunk as it was encountered. This allowed us to inves-
tigate the size distribution of nonduplicate and duplicate
segments of input data, as well as efficiently ascertaining
which small-chunk decisions would later generate dupli-
cate chunks.

To answer existence queries we used in-memory
Bloom filters of up to 2 Gigabytes in length. The sum-
mary streams and Bloom filters allowed us to quickly

simulate a large number of chunking algorithms on up
to 1.5 Terabytes of original raw data using a single com-
puter. We were also interested in knowing the limits
of coalescing small chunks into large chunks. Since an
exact calculation is prohibitive, a simple approximation
was obtained by coalescing all always-together chunk
sequences into single chunks. Other tools allowed us
to consult an oracle in order to maintain statistics about
the future re-encounter probabilities of different types of
chunks.

Because of intended use at customer sites, the tools
were also used to evaluate faster alternatives to Rabin
Fingerprinting [7, 29] to select cut-points. Using a com-
bination of boxcar functions and CRC-32c hashes al-
lowing input streams to be chunked at memory band-
width and represented a considerable time savings when
generating chunking summaries. We verified that using
a faster rolling window (operating essentially at mem-
ory bandwidth) had no effect upon DER, corroborating
Thaker’s [31] observation that with typical data even a
plain boxcar sum generated a reasonably random-like
chunk size distribution. He explained this as a reflec-
tion of there being enough bit-level randomness in the
input data itself, making a high-quality randomizing hash
function unnecessary in practice. We verified that choice
of rolling window function had no little impact upon
DER measurements for our 1.16 TB dataset.

3.3 DER of different chunking algorithms

Within a given algorithm, there are several parameters,
such as minimum m and maximum M chunk size, and
trigger level ℓ, which can generate different behavior.
Breaking-apart and amalgamation algorithms also have
other parameters, such as k (the number of small chunks
in a big chunk) and an optional resynchronization pa-
rameter r (defining a coarser-grained chunking level 2ℓ+r

across which no big chunk may extend). When an algo-
rithm was run over the entire 1.16 Terabyte data set or
its summary, we measured the DER as the ratio of in-
put bytes to bytes within stored chunks. Bytes within
stored chunks could be reported raw, or as compressed
size estimates. We used an LZO compressor to derive
compression values; however, other compressors should
display qualitatively similar behavior. Compression is
relevant becausemost archival systems store data in com-
pressed format. We explored a wide space of parameters
for amalgamation (fixed- and variable-size big chunks)
and breaking-apart algorithms on this data set. We show
plots assuming zero metadata overhead initially and will
give an illustration of the effects of metadata upon the
DER later.
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Figure 5: Performance of two amalgamation chunking
algorithms, k-fixed and k-var, compared to a baseline
chunking algorithm “Base”, over a range of chunk sizes.
The top 3 “compr” curves are the same data as the lower
three traces, but DER and chunk sizes are reported as-
suming compressed chunk storage.

Performance of bimodal amalgamation chunking

Figure 5 compares two bimodal amalgamation algo-
rithms “k-fixed” and “k-var” with standard baseline
chunking algorithms “Base”. For each of these 3 chunk-
ing algorithms, raw DER values and chunk sizes are
in the bottom 3 traces, while corresponding DER using
stored compressed chunk sizes appears in the upper 3
traces. Comparing the two sets of three traces, we note
for compressed storage the traces are more highly sloped,
which reflects the rapid initial rise in compression effi-
ciency as chunk size is increased. Linearity in the raw
DER traces indicate some scale-independent statistical
behavior in our large archive dataset: this is not the case
for some small test datasets that we present later.

In this and later figures, precise parameter settings of
a particular algorithm are usually not influential, serving
to move measured points along the same general curve.
Since precise parameter settings are not crucial, the pa-
rameters we do describe should be viewed as examples
of reasonable settings.

The “Base” baseline chunking traces shown in Fig.
5 varied the minimum, nominal average and maximum
chunk sizes {m,m+2ℓ,M}, often maintaining a 1:2:3 ra-
tio for these values. We consulted b = 3 levels of backup
cut-points if maximum chunk size was encountered.

The “k-fixed” traces of Fig. 5 use an amalgamation

algorithm, running with fixed-size big chunks (i.e. a big
chunk consists always of k small chunks). Half these
runs maintained a 1:2:3 ratio for min:avg:max, with k = 8
and r = 4. Two used k = 4 instead, and two did not use
resynchronization points. Investigating more parameter
settings showed that minor variations in chunking param-
eters typically lay along the same curve: the algorithm
was robust to parameter choices. We found a broad opti-
mal region for k from 8 to 12, and suggest that resynchro-
nization points be either unused or maintained at r � 3.

The algorithm labelled “k-var” in Fig. 5, at an ad-
ditional querying cost, allows variable-sized big chunks
that use any number 1–k of small chunks. It also used
Bloom Filter queries for small chunks which were previ-
ously encountered but emitted only as part of a previous
big chunk as finer-grained delineators of change regions.
In spirit the “k-var” traces of Fig. 5 might be viewed
as a lower bound for what more sophisticated algorithms
using sub-chunk information (such as fingerdiff [5]) or
chunk rewriting approaches could achieve.

Later, we will show that the extensions to the “k-var”
algorithms provide only slightly better performance.
This suggests that the most important algorithmic differ-
ence between fixed- and variably-sized big chunks lay
in the increased flexibility of generating and recognizing
large chunks. Nevertheless, algorithms in this “k-var”
class require more existence queries so they are not algo-
rithms of choice.

Note that the “k-fixed” algorithm of Fig. 5 can already
maintain average compressed chunk sizes up to 3–4×
as large as a baseline chunker at small chunk sizes (e.g.
DER 6.1 at 16100 bytes using k = 4 and no resynchro-
nization, as compared to an interpolated 4700 bytes for
“Base compr”). For uncompressed storage systems, we
see that k-fixed bimodal amalgamation algorithms uni-
formly yielded ≈50% increase in average uncompressed
chunk size, even at the largest (96k) chunk sizes pre-
sented.

Our implementation used a look-ahead buffer of 2k

small chunks and in-memory Bloom filters for speed.
As noted before, a lookahead buffer of 3k − 1 chunks
is also a reasonable choice. In practice, however, to
maintain streaming performance very much larger look-
ahead buffers may be necessary, since answering exis-
tence queries is likely to require asynchronous network
or disk operations of high latency.

Our use of Bloom filters in answering existence
queries led us to question the impact of false positives.
For the “k-fixed” amalgamation algorithm, we found
all benefits of bimodal chunking over the baseline were
negated by ≈2.5% false positives. Falsely identified du-
plicate/nonduplicate transitions should be avoided. So
techniques such as a hierarchy of more accurate Bloom
filters [39] may be useful. Alternatively, in other work,
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Figure 6: Breaking-apart chunking algorithms compared
with baseline performance.

we have adapted efficient hash table implementations
[19, 16, 23] to take full advantage of SSD R/W char-
acteristics (possibly in conjunction with fingerprint ap-
proaches) to provide fast, exact answers to existence
queries.

Variants of amalgamation algorithms, that prioritize
equivalent choices of big chunk if they occurred, were
found to offer no significant performance improvement.
In fact, several such attempts work badly when run on
actual data, often for rather subtle reasons.

Small chunk statistics, using an oracle

Using knowledge of the full set of small chunk emissions
we investigated the statistics of the smaller transition re-
gion chunks, which bore out premise P2 for an amalga-
mation algorithm using fixed-size big chunks. For exam-
ple (not shown in figures), for k = 8 small chunks in a
transition region between two duplicate big chunks, the
bordering small chunks have around 88% chance of be-
ing encountered subsequently, dipping to 86% for cen-
tral small chunks. For one-sided duplication transitions,
we found that the small-chunk duplication chance de-
cayed from ~75% to ~67%. Bimodal chunking with
k = 32 showed small-chunk duplication probability de-
clining from 86% adjacent to the duplicate big chunk
to 65% at the furthest small chunk. These experimen-
tal results agree with earlier expectations based on Fig. 4
assuming good future duplication of byte-level duplica-
tion regions and, say, a uniform location for the start of

the byte-level non-duplicate region in 4(a) with respect
to the small chunk transition region 4(d).

Performance of bimodal breaking-apart chunking

In Figure 6 we present results with a breaking-apart al-
gorithm, which uses one query per large chunk, com-
pared to the baseline algorithm. Most runs retain base-
line m : m + 2ℓ : M settings in a 1:2:3 ratio. Beginning
with a baseline chunker we consecutively divided these
settings by two to generate a series of small chunkers,
which were used in the breaking apart algorithm of Fig.
1. A few additional points vary R, the size of transition
region that gets re-chunked, but do not depart substan-
tially from the breaking-apart curves for R = 1. We note
that reasonable performance is obtainable by choosing a
small chunker with average chunk size about 4–8 times
smaller than the original baseline chunker.

Comparing Figs. 5 and 6, we see that a carefully tuned
breaking apart algorithm can be competitive with the
performance of amalgamation algorithms with fixed-size
big chunks, particularly in the regime of chunk sizes
�40k. The practical benefit of breaking-apart over the
“k-fixed” amalgamations of Fig. 5 is a reduction in the
number of existence queries by a factor of k.

Effect of non-zero metadata overhead

One approach to accounting for metadata effects is to
pretend that it simply increases the average stored block
size by some number of bytes. Another instructive ap-
proach is to consider the the metadata effects on the
oft-reported DER values. For example, with a metadata
overhead of 800 bytes per chunk, we can use the known
total amount of input bytes (which is a constant 1.16 TB
in Figs. 5 and 6) to transform the DER value of each
measurement, while still reporting the average size of the
chunk.

In Figure 7, we have simply scaled the DER val-
ues of the empty symbols, which are traces taken from
Fig. 5, by reducing their DER by 1 + f . Here f ≡

metadatasize/averagechunksize is the metadata overhead, and
the transformed traces are plotted with solid symbols.
The DER reduction can be quite dramatic at low chunk
sizes where metadata overhead is a substantial fraction
of the stored chunk size. We see that including metadata
magnifies the DER improvement relative to a baseline
chunker of equivalent average chunk size. The figure
motivates maintaining average chunk sizes much larger
(preferably � 20×) than the per-chunk metadata over-
head.



USENIX Association  FAST ’10: 8th USENIX Conference on File and Storage Technologies 247

Data # of
versions

Baseline
chunk size /

bytes

Baseline
DER

Amalgamation
chunk size /

bytes

Amalgamation
DER

Compressed
size of 16k

records / 16k

gcc source 20 4952 4.68 13742 4.59 0.37
gdb source 10 6184 4.14 15225 4.05 0.35

linux source 10 6921 3.51 16804 3.52 0.40
emacs source 10 7525 3.23 17265 2.95 0.46

Table 1: Comparison of DER (w/ LZO) achieved by baseline chunkers and amalgamation algorithms. The average
input chunk size of the baseline chunker was 16k with allowed sizes 8k–24k and two backup levels. The amalgamation
used large chunks composed of exactly k = 8 small chunks. Values of chunk size and DER reflect chunks stored in
compressed LZO format. The average compressibility of fixed-length 16k records of input data (no deduplication) are
in the last column.
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Figure 7: Two baseline and one “k-fixed” amalgama-
tion algorithm curves (open symbols) from Fig. 5 have
been transformed (solid symbols) to reflect 800 metadata
bytes per chunk.

Performance using source code archives

We also analyzed data sets consisting of tar files for con-
secutive releases of several large projects. The com-
pressed chunk size and DER under one set of baseline
conditions and an amalgamation algorithm based upon
these small chunks is shown in Table 1. We see that
amalgamation has increased the average chunk size of
stored chunks by a factor of around 2.5, with a worst
case decrease in DER of 8%.

A picture of the performance of baseline and “k-fixed”
amalgamation on these source archives is offered by
Fig. 8, which shows DER curves with compression (top
curves) and without (bottom). Corresponding to various

baseline chunkers, we ran “k-fixed” amalgamate algo-
rithms as in Fig. 5 for k values between 2 and 20. Recall
that k = 8 was suggested to be a reasonable value for the
large dataset. Improvements in DER and chunk size are
much worse for these small archive datasets, when com-
pared with the 1.16 TB dataset of Fig. 5.

The baseline chunkers all display uncompressed DER
that approaches 1.0 as average chunk size rises, showing
that at large chunk sizes, DER can be obtained primarily
by using compression. These data sets have small file
sizes and quite scattered change sections (i.e. property
P1 for filesystems may not apply well when the density
of changes is large and somewhat uniform). The DER
(w/o LZO) points are usually above (better) the smooth
Baseline curve, but do not show significant improvement.
The improvement is better when storage of compressed
chunks is considered. The emacs data set consistently
shows the smallest improvements from amalgamation, as
well as the least duplicate elimination (2.0 at 4k average
chunk size, 4.12 compressed) and least compressibility
(fixed-size 16k chunks were compressed to 46% of their
original length).

Even though there is no reason that tar files of source
code releases should concentrate most change regions
into a small subset of files, amalgamation still shows
modest DER vs. chunk size improvement with respect
to baseline CDC chunking. Lightly degraded DER was
achieved with average chunk sizes larger by factors of
2.5× (see Table 1) in these data sets, as compared to a
factor of 3–4× in the actual 1.16 TB archival data set.

Optimal “always-together” chunks

For our 1.16 TB data set, it is also interesting to consider
what a good theoretical amalgamation of small chunks
would be. A simple set of optimization moves is to
always amalgamate consecutive chunks that always oc-
curred together. This will not affect the DER at all, but
will increase the average chunk size. Iterating this pro-
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(a) DER vs. chunk size: gcc dataset
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(b) DER vs. chunk size: gdb dataset
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(c) DER vs. chunk size: linux dataset
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Figure 8: Duplicate elimination versus stored chunk size measurements on consecutive source code releases. Baseline
and bimodal k-fixed chunking were performed, yielding results for uncompressed storage (lower traces, open symbols)
and compressed storage (upper traces, solid symbols). Chunk compression used the default LZO settings. Bimodal
series denoted in the legends as “k1,k2, ... x Nk” amalgamate a fixed number, k, of chunks output from the baseline
chunker with Nk average chunk length.
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Figure 9: Baseline and k-var amalgamation are compared
with theoretical chunk size limits determined by amalga-
mating every set of chunks which always co-occurred in
our 1.16 Terabyte data set. k-var amalgamation results
(triangles) cover a wide range of parameters chunking
parameters. Solid triangles in Figs. 5 and 9, using exten-
sions to the basic algorithm, are included here for com-
parison.

duces that longest possible strings of chunks that always
co-occurred and increases the average chunk size. This
parallelized calculation is lengthy and non-scalable.

Using “future knowledge” to amalgamate all always-
together chunks was done for input chunk sequences of
512 and 8192 average size to produce two isolated points
in Fig. 9. Analyzing the raw summary stream, with
chunks 512 bytes long on average, increased the average
uncompressed stored chunk size from 576 to 5855 bytes
(i.e. the average number of always-co-occurring small
chunks was around 10 for this data set). Similarly, the
other theoretical calculation increase the average chunk
size from around 8k to 75k bytes, once again nearly a
factor of 10× improvement in uncompressed chunk size.

In practice, amalgamating often- or always-together
chunks opportunistically may be a useful background
task to optimizing storage. This experiment provides
an easily-defined theoretical bound against which we
can judge how well our simple algorithms based on du-
plicate/nonduplicate transition regions were performing:
10× improvement can be achieved, with such an oracle.

For comparison, Fig. 9 also presents a number of
amalgamation results with variable-size big chunks (k-1
queries per small chunk). Such amalgamation algorithms
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Figure 10: Histogram of number of contiguous duplicate
chunks vs. number of subsequent contiguous nondupli-
cate chunks at the 512-byte expected chunk size. Raw
counts have been scaled by the number of chunks to pro-
duce histogram values representing the total amount of
input data. Note the logarithmic scales: the overwhelm-
ingly most frequent (and still most important with regard
to total amount of input data involved) occurrence is one
duplicate chunk followed by one nonduplicate chunk.

come almost half-way from the baseline curve to this
particular theoretical limit. These runs had a haphazard
selection of m, ℓ and M small chunk size settings, use
0–4 resynchronization cut-points (usually zero or 4), and
mostly have k = 8. Again, noting that the results lie more
or less along a common line we conclude that precise val-
ues of parameter settings are not vitally important. We
also note that performance is on par with the traces la-
beled “k-var” in Fig. 5 (reproduced here in Fig. 9 as solid
triangles). This indicates that the additional complica-
tion of using sub-chunk information to delineate change
regions was not particularly useful.

3.4 Data characteristics

Size-of-modification distribution

Although originally formulated based on considerations
of simple principles P1 and P2, it is important to judge
how much our real data departs from such a simplistic
data model. We found that the actual data deviated quite
substantially from an “ideal” data set adhering to P1 and
P2. A simplest-possible data set adhering to P1 might be
expected to have long sequences of contiguous nondupli-
cate data during a first backup session, followed by long
stretches of duplicate data during subsequent runs.

We interrogated the anonymized summary stream, as
chunked at the 512-byte expected chunk size, using a bit-
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stream summary of the “current” duplication status of the
chunk. The actual histograms of number of contiguous
nonduplicate chunks vs. number of contiguous dupli-
cate following chunks (and vice-versa) showed an over-
whelming and smoothly varying preference to having a
single nonduplicate chunk followed by a single duplicate
chunk. A 2-dimensional histogram of the final contigu-
ous numbers of duplicate/nonduplicate chunks (after 14
full backup sessions) is in Figure 10. The histograms af-
ter the first “full” backup was of similar character. Such
histograms do not suffice for estimating DER since du-
plication counts are absent. This analysis found no naive
adherence to P1 and P2.

Only a minor fraction of the input stream was data oc-
curring as long stretches of unseen data. Only the earlier
oracular results provided direct evidence for P2: small
chunks close to duplicate big chunks did indeed have sig-
nificantly augmented re-emission probabilities. This ef-
fect can be predicted simply by assuming a uniform loca-
tion of the transition region from duplicate to nondupli-
cate bytes within the large chunk being stored as smaller
chunks in Figs. 2(d) and 4(d), and may be the dominant
reason why bimodal chunking works for archival data.

This suggests that for input data sets showing such
high interspersal of duplicate with nonduplicate chunks,
alternate approaches may be able to come closer to the
theoretical limit than the algorithms presented in this pa-
per. Nevertheless, even for such data, even simple bi-
modal chunking heuristics were able to increase average
chunk size by a factor of 3 or more.

4 Related Work

For our purposes, the speed of blocking (chunking) was
a consideration because we target throughputs of several
hundred MB/s. The simplest and fastest approach is to
break apart the input stream into fixed-size chunks. This
is the approach taken in the rsync file synchronization
tool [34, 33]. However, consider what happens when an
insertion or deletion edit is made near that beginning of
a file: after a single chunk is changed, the entire subse-
quent chunking will be changed. A new version of a file
will likely have very few duplicate chunks. Pratt [26]
provides good comparison of fixed- and variable-sized
chunking for real data. Lufei et al. [22] provides an in-
troduction to options such as gzip, delta-encoding, fixed-
size blocking and variable-size chunking. For filesys-
tems, You et al. [36] compares chunking and delta-
encoding. Delta-encoding is particularly good for things
like log files and email, which are characterized by fre-
quent small changes.

CDC produces chunks of variable size that are bet-
ter able to restrain changes from a localized edit to a
limited number of chunks. Applications of CDC in-

clude network filesystems of several types [2, 27], space-
optimized archival of collections of reference files [9, 14,
37], as well as file synchronization [32, 15]. By using
special rolling window functions in innermost loops, the
baseline CDC algorithms can operate very quickly.

Mazières’ Low-Bandwidth File System (LBFS) [25,
31] was influential in establishing CDC as a widely
used technique. Usually, the basic chunking algorithm
is typically only augmented with limits on the mini-
mum and maximum chunk size. More complex deci-
sions can be made if one reaches the maximum chunk
size [30, 13, 15] (see Section 2.2).

Alternatives to CDC for compressing data exist and
typically have higher cost. An often used technique in
more aggressive compression schemes is resemblance
detection and some form of delta encoding. Unfortu-
nately, finding maximally-long duplicates [17, 18, 1] or
finding similar (or identical) files in small [5] or large
(gigabyte) [8, 10, 20, 11, 28] collections is a nontrivial
task.

In HYDRAstor [12] and DEBAR [35], existence
queries (and global deduplication) can be addressed ef-
ficiently by consulting a scalable, distributed data struc-
ture. Our approach has been to tackle the small chunk
size problem directly. A noted in the introduction, a
recent alternative approach is to reduce metadata re-
quirements by practicing only local duplicate elimination
within a suitably large local basin of data. For example,
the approach of Brin et al. [6] has been revived in an
elegant “extreme binning” approach that distributes in-
formation at a large-block level (file-level representative
hash) to detect near-similarity, and has been shown to
achieve near-optimal deduplication at small-chunk level
[4]. Another recent approach describes a sparse indexing
approach to determining similar segments of an stream
[21].

Bimodal chunking presumes only an existence query
for already-stored chunks, and has the potential to pro-
vide system improvements of several types. The increase
in average chunk size (roughly 2.5× in these data sets,
and 3–4× in the 1.16 TB archival data set) decreases the
storage cost for metadata describing these chunks. By
reducing the number of disk accesses, there are potential
increases in read and write speeds as fewer transactions
with the storage units are involved. Furthermore, the ex-
istence query information can be used in some backup
systems to entirely elide network transmission of existing
duplicates, which may result in additional write speed
improvements or decreased system cost.

5 Conclusion and Future Work

In this paper, we proposed bimodal algorithms that vary
the expected chunk-size dynamically. They are able to
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perform content-defined chunking in a scalable manner,
involving a constant number of chunk existence queries
per unit of input. Significantly, these algorithms re-
quire no special-purposemetadata to be stored. We show
that these algorithms increased average chunk size while
maintaining a reasonable duplication elimination ratio.
We demonstrated the benefits of the algorithms when ap-
plied to 1.16 Terabyte of actual backup data as well as to
four sets of source code archives.

Although the statistics of these data sets suggest that
they do not conform to our expectations based on princi-
ples P1 and P2, the algorithms still perform well, leading
us to conjecture that they are robust (applicable to many
types of archival inputs). We expect the proposed algo-
rithms will behave best for storage of versioned data in
block stores with high metadata cost, but we plan to eval-
uate them for other data sets.

Under a wide variety of chunking parameters, chunk
amalgamation algorithms performed well. They present
more flexibility in querying for duplicate chunks than al-
gorithms involving breaking apart chunks within a pre-
liminary large chunking. We also plan to investigate al-
gorithms that use compressibility to govern chunking de-
cisions based on fast entropy estimation.

This work has targeted evaluating a prospective bi-
modal chunking algorithm that has potential to address
real issues in the HYDRAstor storage system and other
systems that require large per-chunk storage overhead.
The simple algorithms of Figs. 1 and 3 used in the eval-
uation are in the process of being adapted for inclusion
and evaluation in HYDRAstor. Because of the latency of
answering existence queries, this requires a larger looka-
head buffer and issuing (in a straightforward approach)
all possible existence queries. Additionally, current stor-
age systems go to great lengths to avoid disk accesses .
For example, both HYDRAstor and Data Domain prod-
ucts address disk access reduction and locality of access
issues and both have used Bloom filters to reduce disk the
number of disk accesses [38]. Because of the disk bottle-
neck, efficient mechanisms to reply to existence queries
with minimal impact of streaming read and write perfor-
mance is desired. Implementation, currently underway
for the HYDRAstor storage product, may eventually in-
volve new data structures, or even new hardware (partic-
ularly SSDs) before bimodal chunking becomes a com-
mercial offering.
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Abstract

Recently, power has emerged as a critical factor in de-
signing components of storage systems, especially for
power-hungry data centers. While there is some research
into power-aware storage stack components, there are no
systematic studies evaluating each component’s impact
separately. This paper evaluates the file system’s impact
on energy consumption and performance. We studied
several popular Linux file systems, with various mount
and format options, using the FileBench workload gen-
erator to emulate four server workloads: Web, database,
mail, and file server. In case of a server node con-
sisting of a single disk, CPU power generally exceeds
disk-power consumption. However, file system design,
implementation, and available features have a signifi-
cant effect on CPU/disk utilization, and hence on perfor-
mance and power. We discovered that default file system
options are often suboptimal, and even poor. We show
that a careful matching of expected workloads to file sys-
tem types and options can improve power-performance
efficiency by a factor ranging from 1.05 to 9.4 times.

1 Introduction
Performance has a long tradition in storage research. Re-
cently, power consumption has become a growing con-
cern. Recent studies show that the energy used inside all
U.S. data centers is 1–2% of total U.S. energy consump-
tion [42], with more spent by other IT infrastructures
outside the data centers [44]. Storage stacks have grown
more complex with the addition of virtualization layers
(RAID, LVM), stackable drivers and file systems, vir-
tual machines, and network-based storage and file sys-
tem protocols. It is challenging today to understand the
behavior of storage layers, especially when using com-
plex applications.

Performance and energy use have a non-trivial, poorly
understood relationship: sometimes they are opposites
(e.g., spinning a disk faster costs more power but im-
proves performance); but at other times they go hand in
hand (e.g., localizing writes into adjacent sectors can im-
prove performance while reducing the energy). Worse,
the growing number of storage layers further perturb ac-
cess patterns each time applications’ requests traverse
the layers, further obfuscating these relationships.

Traditional energy-saving techniques use right-sizing.
These techniques adjust node’s computational power to
fit the current load. Examples include spinning disks
down [12, 28, 30], reducing CPU frequencies and volt-
ages [46], shutting down individual CPU cores, and
putting entire machines into lower power states [13, 32].
Less work has been done on workload-reduction tech-

niques: better algorithms and data-structures to improve
power/performance [14, 19, 24]. A few efforts focused
on energy-performance tradeoffs in parts of the storage
stack [8, 18, 29]. However, they were limited to one
problem domain or a specific workload scenario.

Many factors affect power and performance in the
storage stack, especially workloads. Traditional file sys-
tems and I/O schedulers were designed for generality,
which is ill-suited for today’s specialized servers with
long-running services (Web, database, email). We be-
lieve that to improve performance and reduce energy
use, custom storage layers are needed for specialized
workloads. But before that, thorough systematic stud-
ies are needed to recognize the features affecting power-
performance under specific workloads.

This paper studies the impact of server work-
loads on both power and performance. We used the
FileBench [16] workload generator due to its flexibil-
ity, accuracy, and ability to scale and stress any server.
We selected FileBench’s Web, database, email, and file
server workloads as they represent most common server
workloads, yet they differ from each other. Modern stor-
age stacks consist of multiple layers. Each layer inde-
pendently affects the performance and power consump-
tion of a system, and together the layers make such in-
teraction rather complex. Here, we focused on the file
system layer only; to make this study a useful stepping
stone towards understanding the entire storage stack, we
did not use LVM, RAID, or virtualization. We experi-
mented with Linux’s four most popular and stable local
file systems: Ext2, Ext3, XFS, and Reiserfs; and we var-
ied several common format- and mount-time options to
evaluate their impact on power/performance.

We ran many experiments on a server-class ma-
chine, collected detailed performance and power mea-
surements, and analyzed them. We found that different
workloads, not too surprisingly, have a large impact on
system behavior. No single file system worked best for
all workloads. Moreover, default file system format and
mount options were often suboptimal. Some file system
features helped power/performance and others hurt it.
Our experiments revealed a strong linearity between the
power efficiency and performance of a file system. Over-
all, we found significant variations in the amount of use-
ful work that can be accomplished per unit time or unit
energy, with possible improvements over default config-
urations ranging from 5% to 9.4×. We conclude that
long-running servers should be carefully configured at
installation time. For busy servers this can yield signifi-
cant performance and power savings over time. We hope
this study will inspire other studies (e.g., distributed file
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systems), and lead to novel storage layer designs.
The rest of this paper is organized as follows. Sec-

tion 2 surveys related work. Section 3 introduces our
experimental methodology. Section 4 provides useful
information about energy measurements. The bulk of
our evaluation and analysis is in Section 5. We conclude
in Section 6 and describe future directions in Section 7.

2 Related Work
Past power-conservation research for storage focused on
portable battery-operated computers [12, 25]. Recently,
researchers investigated data centers [9, 28, 43]. As our
focus is file systems’ power and performance, we dis-
cuss three areas of related work that mainly cover both
power and performance: file system studies, lower-level
storage studies, and benchmarks commonly used to eval-
uate systems’ power efficiency.

File system studies. Disk-head seeks consume a large
portion of hard-disk energy [2]. A popular approach to
optimize file system power-performance is to localize
on-disk data to incur fewer head movements. Huang et
al. replicated data on disk and picked the closest replica
to the head’s position at runtime [19]. The Energy-
Efficient File System (EEFS) groups files with high tem-
poral access locality [24]. Essary and Amer developed
predictive data grouping and replication schemes to re-
duce head movements [14].

Some suggested other file-system—level techniques
to reduce power consumption without degrading perfor-
mance. BlueFS is an energy-efficient distributed file sys-
tem for mobile devices [29]. When applications request
data, BlueFS chooses a replica that best optimizes en-
ergy and performance. GreenFS is a stackable file sys-
tem that combines a remote network disk and a local
flash-based memory buffer to keep the local disk idling
for as long as possible [20]. Kothiyal et al. examined file
compression to improve power and performance [23].

These studies propose new designs for storage soft-
ware, which limit their applicability to existing systems.
Also, they often focus on narrow problem domains. We,
however, focus on servers, several common workloads,
and use existing unmodified software.

Lower-level storage studies. A disk drive’s platters
usually keep spinning even if there are no incoming I/O
requests. Turning the spindle motor off during idle pe-
riods can reduce disk energy use by 60% [28]. Sev-
eral studies suggest ways to predict or prolong idle peri-
ods and shut the disk down appropriately [10, 12]. Un-
like laptop and desktop systems, idle periods in server
workloads are commonly too short, making such ap-
proaches ineffective. This was addressed using I/O
off-loading [28], power-aware (sometimes flash-based)
caches [5, 49], prefetching [26, 30], and a combination

of these techniques [11, 43]. Massive Array of Idle
Disks (MAID) augments RAID technology with auto-
matic shut down of idle disks [9]. Pinheiro and Bian-
chini used the fact that regularly only a small subset of
data is accessed by a system, and migrated frequently
accessed data to a small number of active disks, keeping
the remaining disks off [31]. Other approaches dynami-
cally control the platters’ rotation speed [35] or combine
low- and high-speed disks [8].

These approaches depend primarily on having or pro-
longing idle periods, which is less likely on busy servers.
For those, aggressive use of shutdown, slowdown, or
spin-down techniques can have adverse effects on per-
formance and energy use (e.g., disk spin-up is slow and
costs energy); such aggressive techniques can also hurt
hardware reliability. Whereas idle-time techniques are
complementary to our study, we examine file systems’
features that increase performance and reduce energy
use in active systems.

Benchmarks and systematic studies. Researchers
use a wide range of benchmarks to evaluate the per-
formance of computer systems [39, 41] and file systems
specifically [7, 16, 22, 40]. Far fewer benchmarks exist
to determine system power efficiency. The Standard Per-
formance Evaluation Corporation (SPEC) proposed the
SPECpower ssj benchmark to evaluate the energy effi-
ciency of systems [38]. SPECpower ssj stresses a Java
server with standardized workload at different load lev-
els. It combines results and reports the number of Java
operations per second per watt. Rivoire et al. used a large
sorting problem (guaranteed to exceed main memory) to
evaluate a system’s power efficiency [34]; they report
the number of sorted records per joule. We use similar
metrics, but applied for file systems.

Our goal was to conduct a systematic power-
performance study of file systems. Gurumurthi et al.
carried out a similar study for various RAID configu-
rations [18], but focused on database workloads alone.
They noted that tuning RAID parameters affected power
and performance more than many traditional optimiza-
tion techniques. We observed similar trends, but for file
systems. In 2002, Bryant et al. evaluated Linux file sys-
tem performance [6], focusing on scalability and concur-
rency. However, that study was conducted on an older
Linux 2.4 system. As hardware and software change
so rapidly, it is difficult to extrapolate from such older
studies—another motivation for our study here.

3 Methodology
This section details the experimental hardware and soft-
ware setup for our evaluations. We describe our testbed
in Section 3.1. In Section 3.2 we describe our bench-
marks and tools used. Sections 3.3 and 3.4 motivate our
selection of workloads and file systems, respectively.
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3.1 Experimental Setup
We conducted our experiments on a Dell Pow-
erEdge SC1425 server consisting of 2 dual-core Intel R�

XeonTM CPUs at 2.8GHz, 2GB RAM, and two
73GB internal SATA disks. The server was run-
ning the CentOS 5.3 Linux distribution with kernel
2.6.18-128.1.16.el5.centos.plus. All the benchmarks
were executed on an external 18GB, 15K RPM AT-
LAS15K 18WLS Maxtor SCSI disk connected through
Adaptec ASC-39320D Ultra320 SCSI Card.

As one of our goals was to evaluate file systems’
impact on CPU and disk power consumption, we con-
nected the machine and the external disk to two separate
WattsUP Pro ES [45] power meters. This is an in-line
power meter that measures the energy drawn by a device
plugged into the meter’s receptacle. The power meter
uses non-volatile memory to store measurements every
second. It has a 0.1 Watt-hour (1 Watt-hour = 3,600
Joules) resolution for energy measurements; the accu-
racy is ±1.5% of the measured value plus a constant er-
ror of ±0.3 Watt-hours. We used a wattsup Linux util-
ity to download the recorded data from the meter over a
USB interface to the test machine. We kept the temper-
ature in the server room constant.

3.2 Software Tools and Benchmarks
We used FileBench [16], an application level workload
generator that allowed us to emulate a large variety of
workloads. It was developed by Sun Microsystems and
was used for performance analysis of Solaris operating
system [27] and in other studies [1, 17]. FileBench can
emulate different workloads thanks to its flexible Work-
load Model Language (WML), used to describe a work-
load. A WML workload description is called a per-
sonality. Personalities define one or more groups of file
system operations (e.g., read, write, append, stat), to be
executed by multiple threads. Each thread performs the
group of operations repeatedly, over a configurable pe-
riod of time. At the end of the run, FileBench reports
the total number of performed operations. WML allows
one to specify synchronization points between threads
and the amount of memory used by each thread, to em-
ulate real-world application more accurately. Personal-
ities also describe the directory structure(s) typical for
a specific workload: average file size, directory depth,
the total number of files, and alpha parameters govern-
ing the file and directory sizes that are based on a gamma
random distribution.

To emulate a real application accurately, one needs
to collect system call traces of an application and con-
vert them to a personality. FileBench includes several
predefined personalities—Web, file, mail and database
servers—which were created by analyzing the traces
of corresponding applications in the enterprise environ-

ment [16]. We used these personalities in our study.
We used Auto-pilot [47] to drive FileBench. We built

an Auto-pilot plug-in to communicate with the power
meter and modified FileBench to clear the two watt
meters’ internal memory before each run. After each
benchmark run, Auto-Pilot extracts the energy readings
from both watt-meters. FileBench reports file system
performance in operations per second, which Auto-pilot
collects. We ran all tests at least five times and com-
puted the 95% confidence intervals for the mean opera-
tions per second, and disk and CPU energy readings us-
ing the Student’s-t distribution. Unless otherwise noted,
the half widths of the intervals were less than 5% of the
mean—shown as error bars in our bar graphs. To reduce
the impact of the watt-meter’s constant error (0.3 Watt-
hours) we increased FileBench’s default runtime from
one to 10 minutes. Our test code, configuration files,
logs, and results are available at www.fsl.cs.sunysb.
edu/docs/fsgreen-bench/.

3.3 Workload Categories
One of our main goals was to evaluate the impact of dif-
ferent file system workloads on performance and power
use. We selected four common server workloads: Web
server, file server, mail server, and database server. The
distinguishing workload features were: file size distribu-
tions, directory depths, read-write ratios, meta-data vs.
data activity, and access patterns (i.e., sequential vs. ran-
dom vs. append). Table 1 summarizes our workloads’
properties, which we detail next.

Web Server. The Web server workload uses a read-
write ratio of 10:1, and reads entire files sequentially
by multiple threads, as if reading Web pages. All the
threads append 16KB to a common Web log, thereby
contending for that common resource. This workload
not only exercises fast lookups and sequential reads of
small-sized files, but it also considers concurrent data
and meta-data updates into a single, growing Web log.

File Server. The file server workload emulates a server
that hosts home directories of multiple users (threads).
Users are assumed to access files and directories be-
longing only to their respective home directories. Each
thread picks up a different set of files based on its thread
id. Each thread performs a sequence of create, delete,
append, read, write, and stat operations, exercising both
the meta-data and data paths of the file system.

Mail Server. The mail server workload (varmail) emu-
lates an electronic mail server, similar to Postmark [22],
but it is multi-threaded. FileBench performs a sequence
of operations to mimic reading mails (open, read whole
file, and close), composing (open/create, append, close,
and fsync) and deleting mails. Unlike the file server and
Web server workloads, the mail server workload uses a
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Workload Average Average Number I/O sizes Number of R/W Ratiofile size directory depth of files read write append threads
Web Server 32KB 3.3 20,000 1MB - 16KB 100 10:1
File Server 256KB 3.6 50,000 1MB 1MB 16KB 100 1:2
Mail Server 16KB 0.8 50,000 1MB - 16KB 100 1:1
DB Server 0.5GB 0.3 10 2KB 2KB - 200 + 10 20:1

Table 1: FileBench workload characteristics. The database workload uses 200 readers and 10 writers.
flat directory structure, with all the files in one directory.
This exercises large directory support and fast lookups.
The average file size for this workload is 16KB, which
is the smallest amongst all other workloads. This initial
file size, however, grows later due to appends.

Database Server. This workload targets a specific
class of systems, called online transaction processing
(OLTP). OLTP databases handle real-time transaction-
oriented applications (e.g., e-commerce). The database
emulator performs random asynchronous writes, ran-
dom synchronous reads, and moderate (256KB) syn-
chronous writes to the log file. It launches 200 reader
processes, 10 asynchronous writers, and a single log
writer. This workload exercises large file management,
extensive concurrency, and random reads/writes. This
leads to frequent cache misses and on-disk file ac-
cess, thereby exploring the storage stack’s efficiency for
caching, paging, and I/O.

3.4 File System and Properties
We ran our workloads on four different file systems:
Ext2, Ext3, Reiserfs, and XFS. We evaluated both the
default and variants of mount and format options for
each file system. We selected these file systems for their
widespread use on Linux servers and the variation in
their features. Distinguishing file system features were:
• B+/S+ Tree vs. linear fixed sized data structures
• Fixed block size vs. variable-sized extent
• Different allocation strategies
• Different journal modes
• Other specialized features (e.g., tail packing)
For each file system, we tested the impact of vari-

ous format and mount options that are believed to affect
performance. We considered two common format op-
tions: block size and inode size. Large block sizes im-
prove I/O performance of applications using large files
due to fewer number of indirections, but they increase
fragmentation for small files. We tested block sizes of
1KB, 2KB, and 4KB. We excluded 8KB block sizes due
to lack of full support [15, 48]. Larger inodes can im-
prove data locality by embedding as much data as possi-
ble inside the inode. For example, large enough inodes
can hold small directory entries and small files directly,
avoiding the need for disk block indirections. Moreover,
larger inodes help storing the extent file maps. We tested
the default (256B and 128B for XFS and Ext2/Ext3, re-

spectively) and 1KB inode size for all file systems except
Reiserfs, as it does not explicitly have an inode object.

We evaluated various mount options: noatime,
journal vs. no journal, and different journalling modes.
The noatime option improves performance in read-
intensive workloads, as it skips updating an inode’s last
access time. Journalling provides reliability, but incurs
an extra cost in logging information. Some file systems
support different journalling modes: data, ordered, and
writeback. The data journalling mode logs both data and
meta-data. This is the safest but slowest mode. Ordered
mode (default in Ext3 and Reiserfs) logs only meta-data,
but ensures that data blocks are written before meta-
data. The writeback mode logs meta-data without or-
dering data/meta-data writes. Ext3 and Reiserfs support
all three modes, whereas XFS supports only the write-
back mode. We also assessed a few file-system specific
mount and format options, described next.

Ext2 and Ext3. Ext2 [4] and Ext3 [15] have been
the default file systems on most Linux distributions for
years. Ext2 divides the disk partition into fixed sized
blocks, which are further grouped into similar-sized
block groups. Each block group manages its own set
of inodes, a free data block bitmap, and the actual files’
data. The block groups can reduce file fragmentation
and increase reference locality by keeping files in the
same parent directory and their data in the same block
group. The maximum block group size is constrained by
the block size. Ext3 has an identical on-disk structure as
Ext2, but adds journalling. Whereas journalling might
degrade performance due to extra writes, we found cer-
tain cases where Ext3 outperforms Ext2. One of Ext2
and Ext3’s major limitations is their poor scalability to
large files and file systems because of the fixed num-
ber of inodes, fixed block sizes, and their simple array-
indexing mechanism [6].

XFS. XFS [37] was designed for scalability: support-
ing terabyte sized files on 64-bit systems, an unlimited
number of files, and large directories. XFS employs
B+ trees to manage dynamic allocation of inodes, free
space, and to map the data and meta-data of files/di-
rectories. XFS stores all data and meta-data in variable
sized, contiguous extents. Further, XFS’s partition is di-
vided into fixed-sized regions called allocation groups
(AGs), which are similar to block groups in Ext2/3, but
are designed for scalability and parallelism. Each AG
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manages the free space and inodes of its group inde-
pendently; increasing the number of allocation groups
scales up the number of parallel file system requests, but
too many AGs also increases fragmentation. The default
AG count value is 16. XFS creates a cluster of inodes in
an AG as needed, thus not limiting the maximum num-
ber of files. XFS uses a delayed allocation policy that
helps in getting large contiguous extents, and increases
the performance of applications using large-sized files
(e.g., databases). However, this increases memory uti-
lization. XFS tracks AG free space using two B+ trees:
the first B+ tree tracks free space by block number and
the second tracks by the size of the free space block.
XFS supports only meta-data journalling (writeback).
Although XFS was designed for scalability, we evaluate
all file systems using different file sizes and directory
depths. Apart from evaluating XFS’s common format
and mount options, we also varied its AG count.

Reiserfs. The Reiserfs partition is divided into blocks
of fixed size. Reiserfs uses a balanced S+ tree [33] to
optimize lookups, reference locality, and space-efficient
packing. The S+ tree consists of internal nodes, for-
matted leaf nodes, and unformatted nodes. Each inter-
nal node consists of key-pointer pairs to its children.
The formatted nodes pack objects tightly, called items;
each item is referenced through a unique key (akin to
an inode number). These items include: stat items (file
meta-data), directory items (directory entries), indirect
items (similar to inode block lists), and direct items (tails
of files less than 4K). A formatted node accommodates
items of different files and directories. Unformatted
nodes contain raw data and do not assist in tree lookup.
The direct items and the pointers inside indirect items
point to these unformatted nodes. The internal and for-
matted nodes are sorted according to their keys. As a
file’s meta-data and data is searched through the com-
bined S+ tree using keys, Reiserfs scales well for a large
and deep file system hierarchy. Reiserfs has a unique
feature we evaluated called tail packing, intended to re-
duce internal fragmentation and optimize the I/O perfor-
mance of small sized files (less than 4K). Tail-packing
support is enabled by default, and groups different files
in the same node. These are referenced using direct
pointers, called the tail of the file. Although the tail op-
tion looks attractive in terms of space efficiency and per-
formance, it incurs an extra cost during reads if the tail is
spread across different nodes. Similarly, additional ap-
pends to existing tail objects lead to unnecessary copy
and movement of the tail data, hurting performance. We
evaluated all three journalling modes of Reiserfs.

4 Energy Breakdown
Active vs. passive energy. Even when a server does
not perform any work, it consumes some energy. We

call this energy idle or passive. The file system selec-
tion alone cannot reduce idle power, but combined with
right-sizing techniques, it can improve power efficiency
by prolonging idle periods. The active power of a node
is an additional power drawn by the system when it per-
forms useful work. Different file systems exercise the
system’s resources differently, directly affecting active
power. Although file systems affect active energy only,
users often care about total energy used. Therefore, we
report only total power used.

Hard disk vs. node power. We collected power con-
sumption readings for the external disk drive and the test
node separately. We measured our hard disk’s idle power
to be 7 watts, matching its specification. We wrote a tool
that constantly performs direct I/O to distant disk tracks
to maximize its power consumption, and measured a
maximum power of 22 watts. However, the average disk
power consumed for our experiments was only 14 watts
with little variations. This is because the workloads ex-
hibited high locality, heavy CPU/memory use, and many
I/O requests were satisfied from caches. Whenever the
workloads did exercise the disk, its power consumption
was still small relative to the total power. Therefore, for
the rest of this paper, we report only total system power
consumption (disk included).

A node’s power consumption consists of its compo-
nents’ power. Our server’s measured idle-to-peak power
is 214–279W. The CPU tends to be a major contribu-
tor, in our case from 86–165W (i.e., Intel’s SpeedStep
technology). However, the behavior of power consump-
tion within a computer is complex due to thermal ef-
fects and feedback loops. For example, our CPU’s core
power use can drop to a mere 27W if its temperature is
cooled to 50 ◦C, whereas it consumes 165W at a normal
temperature of 76 ◦C. Motherboards today include dy-
namic system and CPU fans which turn on/off or change
their speeds; while they reduce power elsewhere, the
fans consume some power themselves. For simplicity,
our paper reports only total system power consumption.

FS vs. other software power consumption. It is rea-
sonable to question how much energy does a file sys-
tem consume compared to other software components.
According to Almeida et al., a Web server saturated by
client requests spends 90% of the time in kernel space,
invoking mostly file system related system calls [3]. In
general, if a user-space program is not computationally
intensive, it frequently invokes system calls and spends
a lot of time in kernel space. Therefore, it makes sense
to focus the efforts on analyzing energy efficiency of file
systems. Moreover, our results in Section 5 support this
fact: changing only the file system type can increase
power/performance numbers up to a factor of 9.
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5 Evaluation
This section details our results and analysis. We abbrevi-
ated the terms Ext2, Ext3, Reiserfs, and XFS as e2, e3,
r, and x, respectively. File systems formatted with block
size of 1K and 2K are denoted blk1k and blk2k, re-
spectively; isz1k denotes 1K inode sizes; bg16k de-
notes 16K block group sizes; dtlg and wrbck denote
data and writeback journal modes, respectively; nolog
denotes Reiserfs’s no-logging feature; allocation group
count is abbreviated as agc followed by number of
groups (8, 32, etc.), no-atime is denoted as noatm.

Section 5.1 overviews our metrics and terms. We de-
tail the Web, File, Mail, and DB workload results in Sec-
tions 5.2–5.5. Section 5.6 provides recommendations for
selecting and designing efficient file systems.

5.1 Overview
In all our tests, we collected two raw metrics: perfor-
mance (from FileBench), and the average power of the
machine and disk (from watt-meters). FileBench reports
file system performance under different workloads in
units of operations per second (ops/sec). As each work-
load targets a different application domain, this metric
is not comparable across workloads: A Web server’s
ops/sec are not the same as, say, the database server’s.
Their magnitude also varies: the Web server’s rates num-
bers are two orders of magnitude larger than other work-
loads. Therefore, we report Web server performance in
1,000 ops/sec, and just ops/sec for the rest.

Electrical power, measured in Watts, is defined as the
rate at which electrical energy is transferred by a circuit.
Instead of reporting the raw power numbers, we selected
a derived metric called operations per joule (ops/joule),
which better explains power efficiency. This is defined
as the amount of work a file system can accomplish in 1
Joule of energy (1Joule = 1watt × 1sec). The higher
the value, the more power-efficient the system is. This
metric is similar to SPEC’s ( ssj ops

watt
) metric, used by

SPECPower ssj2008 [38]. Note that we report the Web
server’s power efficiency in ops/joule, and use ops/kilo-
joule for the rest.

A system’s active power consumption depends on
how much it is being utilized by software, in our case
a file system. We measured that the higher the sys-
tem/CPU utilization, the greater the power consumption.
We therefore ran experiments to measure the power con-
sumption of a workload at different load levels (i.e., op-
s/sec), for all four file systems, with default format and
mount options. Figure 1 shows the average power con-
sumed (in Watts) by each file system, increasing Web
server loads from 3,000 to 70,000 ops/sec. We found
that all file systems consumed almost the same amount
of energy at a certain performance levels, but only a few
could withstand more load than the others. For example,
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Figure 1: Webserver: Mean power consumption by Ext2, Ext3,
Reiserfs, and XFS at different load levels. The y-axis scale
starts at 220 Watts. Ext2 does not scale above 10,000 ops/sec.

Figure 2: Average CPU utilization for the Webserver workload
Ext2 had a maximum of only 8,160 Web ops/sec with an
average power consumption of 239W, while XFS peaked
at 70,992 ops/sec, with only 29% more power consump-
tion. Figure 2 shows the percentages of CPU utilization,
I/O wait, and idle time for each file system at its maxi-
mum load. Ext2 and Reiserfs spend more time waiting
for I/O than any other file system, thereby performing
less useful work, as per Figure 1. XFS consumes al-
most the same amount of energy as the other three file
systems at lower load levels, but it handles much higher
Web server loads, winning over others in both power ef-
ficiency and performance. We observed similar trends
for other workloads: only one file system outperformed
the rest in terms of both power and performance, at all
load levels. Thus, in the rest of this paper we report only
peak performance figures.

5.2 Webserver Workload
As we see in Figures 3(a) and 3(b), XFS proved to be
the most power- and performance-efficient file system.
XFS performed 9 times better than Ext2, as well as 2
times better than Reiserfs, in terms of both power and
performance. Ext3 lagged behind XFS by 22%. XFS
wins over all the other file systems as it handles con-
current updates to a single file efficiently, without incur-
ring a lot of I/O wait (Figure 2), thanks to its journal
design. XFS maintains an active item list, which it uses
to prevent meta-data buffers from being written multiple
times if they belong to multiple transactions. XFS pins
a meta-data buffer to prevent it from being written to the
disk until the log is committed. As XFS batches multiple
updates to a common inode together, it utilizes the CPU
better. We observed a linear relationship between power-
efficiency and performance for the Web server workload,
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Figure 3: File system performance and energy efficiency under the Webserver workload

so we report below on the basis of performance alone.

Ext2 performed the worst and exhibited inconsistent
behavior. Its standard deviation was as high as 80%,
even after 30 runs. We plotted the performance val-
ues on a histogram and observed that Ext2 had a non-
Gaussian (long-tailed) distribution. Out of 30 runs, 21
runs (70%) consumed less than 25% of the CPU, while
the remaining ones used up to 50%, 75%, and 100%
of the CPU (three runs in each bucket). We wrote
a micro-benchmark which ran for a fixed time period
and appended to 3 common files shared between 100
threads. We found that Ext3 performed 13% fewer
appends than XFS, while Ext2 was 2.5 times slower
than XFS. We then ran a modified Web server work-
load with only reads and no log appends. In this case,
Ext2 and Ext3 performed the same, with XFS lagging
behind by 11%. This is because XFS’s lookup oper-
ation takes more time than other file systems for deeper
hierarchy (see Section 5.3). As XFS handles concur-
rent writes better than the others, it overcomes the per-
formance degradation due to slow lookups and outper-
forms in the Web server workload. OSprof results [21]
revealed that the average latency of write super for
Ext2 was 6 times larger than Ext3. Analyzing the
file systems’ source code helped explain this inconsis-
tency. First, as Ext2 does not have a journal, it com-
mits superblock and inode changes to the on-disk im-
age immediately, without batching changes. Second,
Ext2 takes the global kernel lock (aka BKL) while call-
ing ext2 write super and ext2 write inode,
which further reduce parallelism: all processes using
Ext2 which try to sync an inode or the superblock to
disk will contend with each other, increasing wait times
significantly. On the contrary, Ext3 batches all updates
to the inodes in the journal and only when the JBD
layer calls journal commit transaction are all

the metadata updates actually synced to the disk (af-
ter committing the data). Although journalling was de-
signed primarily for reliability reasons, we conclude that
a careful journal design can help some concurrent-write
workloads akin to LFS [36].

Reiserfs exhibits poor performance for different rea-
sons than Ext2 and Ext3. As Figures 3(a) and 3(b) show,
Reiserfs (default) performed worse than both XFS and
Ext3, but Reiserfs with the notail mount option out-
performed Ext3 by 15% and the default Reiserfs by 2.25
times. The reason is that by default the tail option
is enabled in Reiserfs, which tries to pack all files less
than 4KB in one block. As the Web server has an aver-
age file size of just 32KB, it has many files smaller than
4KB. We confirmed this by running debugreiserfs
on the Reiserfs partition: it showed that many small files
had their data spread across the different blocks (packed
along with other files’ data). This resulted in more than
one data block access for each file read, thereby increas-
ing I/O, as seen in Figure 2. We concluded that unlike
Ext2 and Ext3, the default Reiserfs experienced a per-
formance hit due to its small file read design, rather than
concurrent appends. This demonstrates that even simple
Web server workload can still exercise different parts of
file systems’ code.

An interesting observation was that the noatime
mount option improved the performance of Reiserfs by
a factor of 2.5 times. In other file systems, this op-
tion did not have such a significant impact. The reason
is that the reiserfs dirty inode function, which
updates the access time field, acquires the BKL and then
searches for the stat item corresponding to the inode in
its S+ tree to update the atime. As the BKL is held
while updating each inode’s access time in a path, it
hurts parallelism and reduces performance significantly.
Also, noatime boosts Reiserfs’s performance by this
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Figure 4: Performance and energy efficiency of file systems under the file server workload

much only in the read-intensive Web server workload.

Reducing the block-size during format generally hurt
performance, except in XFS. XFS was unaffected thanks
to its delayed allocation policy that allocates a large con-
tiguous extent, irrespective of the block size; this sug-
gests that modern file systems should try to pre-allocate
large contiguous extents in anticipation of files’ growth.
Reiserfs observed a drastic degradation of 2–3× after
decreasing the block size from 4KB (default) to 2KB and
1KB, respectively. We found from debugreiserfs
that this led to an increase in the number of internal and
formatted nodes used to manage the file system names-
pace and objects. Also, the height of the S+ tree grew
from 4 to 5, in case of 1KB. As the internal and for-
matted nodes depend on the block size, a smaller block
size reduces the number of entries packed inside each
of these nodes, thereby increasing the number of nodes,
and increasing I/O times to fetch these nodes from the
disk during lookup. Ext2 and Ext3 saw a degradation of
2× and 12%, respectively, because of the extra indirec-
tions needed to reference a single file. Note that Ext2’s
2× degradation was coupled with a high standard varia-
tion of 20–49%, for the same reasons explained above.

Quadrupling the XFS inode size from 256B to 1KB
improved performance by only 8%. We found using
xfs db that a large inode allowed XFS to embed more
extent information and directory entries inside the inode
itself, speeding lookups. As expected, the data jour-
nalling mode hurt performance for both Reiserfs and
Ext3 by 32% and 27%, respectively. The writeback
journalling mode of Ext3 and Reiserfs degraded perfor-
mance by 2× and 7%, respectively, compared to their
default ordered journalling mode. Increasing the block
group count of Ext3 and the allocation group count of
XFS had a negligible impact. The reason is that the Web
server is a read-intensive workload, and does not need to

update the different group’s metadata as frequently as a
write-intensive workload would.

5.3 File Server Workload
Figures 4(a) and 4(b) show that Reiserfs outperformed
Ext2, Ext3, XFS by 37%, 43%, and 91%, respectively.
Compared to the Web server workload, Reiserfs per-
formed better than all others, even with the tail op-
tion on. This is because the file server workload has
an average file size of 256KB (8 times larger than the
Web server workload): it does not have many small files
spread across different nodes, thereby showing no differ-
ence between Reiserfs’s (tail) and no-tail options.

Analyzing using OSprof revealed that XFS consumed
14% and 12% more time in lookup and create, re-
spectively, than Reiserfs. Ext2 and Ext3 spent 6% more
time in both lookup and create than Reiserfs. To ex-
ercise only the lookup path, we executed a simple micro-
benchmark that only performed open and close opera-
tions on 50,000 files by 100 threads, and we used the
same fileset parameters as that of the file server work-
load (see Table 1). We found that XFS performed 5%
fewer operations than Reiserfs, while Ext2 and Ext3 per-
formed close to Reiserfs. As Reiserfs packs data and
meta-data all in one node and maintains a balanced tree,
it has faster lookups thanks to improved spatial local-
ity. Moreover, Reiserfs stores objects by sorted keys,
further speeding lookup times. Although XFS uses B+
trees to maintain its file system objects, its spatial local-
ity is worse than that of Reiserfs, as XFS has to perform
more hops between tree nodes.

Unlike the Web server results, Ext2 performed bet-
ter than Ext3, and did not show high standard devia-
tions. This was because in a file server workload, each
thread works on an independent set of files, with little
contention to update a common inode.
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Figure 5: Performance and energy efficiency of file systems under the varmail workload

We discovered an interesting result when varying
XFS’s allocation group (AG) count from 8 to 128, in
powers of two (default is 16). XFS’s performance in-
creased from 4% to 34% (compared to AG of 8). But,
XFS’s power efficiency increased linearly only until the
AG count hit 64, after which the ops/kilojoule count
dropped by 14% (for AG count of 128). Therefore, XFS’
AG count exhibited a non-linear relationship between
power-efficiency and performance. As the number of
AGs increases, XFS’s parallelism improves too, boost-
ing performance even when dirtying each AG at a faster
rate. However, all AGs share a common journal: as the
number of AGs increases, updating the AG descriptors
in the log becomes a bottleneck; we see diminishing re-
turns beyond AG count of 64. Another interesting obser-
vation is that AG count increases had a negligible effect
of only 1% improvement for the Web server, but a signif-
icant impact in file server workload. This is because the
file server has a greater number of meta-data activities
and writes than the Web server (see Section 3), thereby
accessing/modifying the AG descriptors frequently. We
conclude that the AG count is sensitive to the work-
load, especially read-write and meta-data update ratios.
Lastly, the block group count increase in Ext2 and Ext3
had a small impact of less than 1%.

Reducing the block size from 4KB to 2KB improved
the performance of XFS by 16%, while a further reduc-
tion to 1KB improved the performance by 18%. Ext2,
Ext3, and Reiserfs saw a drop in performance, for the
reasons explained in Section 5.2. Ext2 and Ext3 experi-
enced a performance drop of 8% and 3%, respectively,
when going from 4KB to 2KB; reducing the block size
from 2KB to 1KB degraded their performance further
by 34% and 27%, respectively. Reiserfs’s performance
declined by a 45% and 75% when we reduced the block
size to 2KB and 1KB, respectively. This is due to the in-

creased number of internal node lookups, which increase
disk I/O as discussed in Section 5.2.

The no-atime options did not affect performance or
power efficiency of any file system because this work-
load is not read-intensive and had a ratio of two writes
for each read. Changing the inode size did not have an
effect on Ext2, Ext3, or XFS. As expected, data jour-
nalling reduced the performance of Ext3 and Reiserfs
by 10% and 43%, respectively. Writeback-mode jour-
nalling also showed a performance reduction by 8% and
4% for Ext3 and Reiserfs, respectively.

5.4 Mail Server

As seen in Figures 5(a) and 5(b), Reiserfs performed
the best amongst all, followed by Ext3 which differed
by 7%. Reiserfs beats Ext2 and XFS by 43% and 4×,
respectively. Although the mail server’s personality in
FileBench is similar to the file server’s, we observed dif-
ferences in their results, because the mail server work-
load calls fsync after each append, which is not in-
voked in the file server workload. The fsync operation
hurts the non-journalling version of file systems: hurting
Ext2 by 30% and Reiserfs-nolog by 8% as compared to
Ext3 and default Reiserfs, respectively. We confirmed
this by running a micro-benchmark in FileBench which
created the same directory structure as the mail server
workload and performed the following sequence of op-
erations: create, append, fsync, open, append, and fsync.
This showed that Ext2 was 29% slower than Ext3. When
we repeated this after removing all fsync calls, Ext2 and
Ext3 performed the same. Ext2’s poor performance with
fsync calls is because its ext2 sync file call ulti-
mately invokes ext2 write inode, which exhibits a
larger latency than the write inode function of other
file systems. XFS’s poor performance was due to its
slower lookup operations.
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Figure 6: Performance and energy efficiency of file systems for the OLTP workload

Figure 5(a) shows that Reiserfs with no-tail beats
all the variants of mount and format options, improving
over default Reiserfs by 29%. As the average file size
here was 16KB, the no-tail option boosted the per-
formance similar to the Web server workload.

As in the Web server workload, when the block size
was reduced from 4KB to 1KB, the performance of Ext2
and Ext3 dropped by 41% and 53%, respectively. Reis-
erfs’s performance dropped by 59% and 15% for 1KB
and 2KB, respectively. Although the performance of
Reiserfs decreased upon reducing the block size, the per-
centage degradation was less than seen in the Web and
file server. The flat hierarchy of the mail server attributed
to this reduction in degradation; as all files resided in
one large directory, the spatial locality of the meta data
of these files increases, helping performance a bit even
with smaller block sizes. Similar to the file server work-
load, reduction in block size increased the overall per-
formance of XFS.

XFS’s allocation group (AG) count and the block
group count of Ext2 and Ext3 had minimal effect within
the confidence interval. Similarly, the no-atime op-
tion and inode size did not impact the efficiency of
file server significantly. The data journalling mode de-
creased Reiserfs’s performance by 20%, but had a mini-
mal effect on Ext3. Finally, the writeback journal mode
decreased Ext3’s performance by 6%.

5.5 Database Server Workload (OLTP)
Figures 6(a) and 6(b) show that all four file systems
perform equally well in terms of both performance and
power-efficiency with the default mount/format options,
except for Ext2. It experiences a performance degrada-
tion of about 20% as compared to XFS. As explained in
Section 5.2, Ext2’s lack of a journal makes its random
write performance worse than any other journalled file

system, as they batch inode updates.
In contrast to other workloads, the performance of all

file systems increases by a factor of around 2× if we
decrease the block size of the file system from the default
4KB to 2KB. This is because the 2KB block size better
matches the I/O size of OLTP workload (see Table 1),
so every OLTP write request fits perfectly into the file
system’s block size. But, a file-system block size of 4KB
turns a 2KB write into a read-modify-write sequence,
requiring an extra read per I/O request. This proves an
important point that keeping the file system block size
close to the workload’s I/O size can impact the efficiency
of the system significantly. OLTP’s performance also
increased when using a 1KB block size, but was slightly
lower than that obtained by 2KB block size, due to an
increased number of I/O requests.

An interesting observation was that on decreasing the
number of blocks per group from 32KB (default) to
16KB, Ext2’s performance improved by 7%. Moreover,
increasing the inode size up to 1KB improved perfor-
mance by 15% as compared to the default configuration.
Enlarging the inode size in Ext2 has an indirect effect on
the blocks per group: the larger the inode size, the fewer
the number of blocks per group. A 1KB inode size re-
sulted in 8KB blocks per group, thereby doubling the
number of block groups and increasing the performance
as compared to the e2-bg16K case. Varying the AG
count had a negligible effect on XFS’s numbers. Unlike
Ext2, the inode size increase did not affect any other file
system.

Interestingly, we observed that the performance of
Reiserfs increased by 30% on switching from the de-
fault ordered mode to the data journalling mode. In data
journalling mode as all the data is first written to the log,
random writes become logically sequential and achieve
better performance than the other journalling modes.
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FS Option Webserver Fileserver Varmail Database
Type Name Perf. Pow. Perf. Pow. Perf. Pow. Perf. Pow.

Ext2

mount noatime -37% † -35% - - - - - -
format blk1k -64% † -65% -34% -35% -41% -41% +98% +100%

blk2k -65% -65% -8% -9% -17% -18% +136% +137%
isz1k -34% † -35% - - - - +15% +16%
bg16k +60% † +53% - - +6% +5% +7% +7%

Ext3

mount noatime +4% +5% - - - - - -
dtlg -27% -23% -10% -5% - - -11% -13%

wrbck -63% -57% -8% -9% -6% -5% -5% -5%
format blk1k -34% -30% -27% -28% -53% -53% +81% +81%

blk2k -12% -11% - - -30% -31% +98% +97%
isz1k - - - - +8% +8% - -
bg16k - - - - -4% -5% -8% -9%

Reiserfs

mount noatime +149% +119% - - +5% +5% - -
notail +128% +96% - - +29% +28% - -
nolog - - - - -8% -8% - -
wrbck -7% -7% -4% -7% - - - -
dtlg -32% -29% -43% -42% -20% -21% +30% +29%

format blk1k -73% -70% -74% -74% -59% -58% +80% +80%
blk2k -51% -47% -45% -45% -15% -16% +92% +91%

XFS

mount noatime - - - - - - - -
format blk1k - - +18% +17% +27% +17% +101% +100%

blk2k - - +16% +15% +18% +17% +101% +99%
isz1k +8% +6% - - - - - -

agcnt8 - - -4% -5% - - - -
agcnt32 - - - - - - - -
agcnt64 - - +23% +25% - - - -

agcnt128 - - +29% +8% - - - -
Table 2: File systems’ performance and power, varying options, relative to the default ones for each file system. Improvements are
highlighted in bold. A † denotes the results with coefficient of variation over 40%. A dash signifies statistically indistinguishable
results.

In contrast to the Web server workload, the
no-atime option does not have any effect on the per-
formance of Reiserfs, although the read-write ratio is
20:1. This is because the database workload consists
of only 10 large files and hence the meta-data of these
small number of files (i.e., stat items) accommodate in
a few formatted nodes as compared to the Web server
workload which consists of 20,000 files with their meta-
data scattered across multiple formatted nodes. Reiserfs’
no-tail option had no effect on the OLTP workload
due to the large size of its files.

5.6 Summary and Recommendations
We now summarize the combined results of our study.
We then offer advice to server operators, as well as de-
signers of future systems.

Staying within a file system type. Switching to a dif-
ferent file system type can be a difficult decision, es-
pecially in enterprise environments where policies may
require using specific file systems or demand exten-
sive testing before changing one. Table 2 compares the

power efficiency and performance numbers that can be
achieved while staying within a file system; each cell is
a percentage of improvement (plus sign and bold font),
or degradation (minus sign) compared to the default for-
mat and mount options for that file system. Dashes de-
note results that were statistically indistinguishable from
default. We compare to the default case because file sys-
tems are often configured with default options.

Format and mount options represent different levels of
optimization complexity. Remounting a file system with
new options is usually seamless, while reformatting ex-
isting file systems requires costly data migration. Thus,
we group mount and format options together.

From Table 2 we conclude that often there is a better
selection of parameters than the default ones. A careful
choice of file system parameters cuts energy use in half
and more than doubles the performance (Reiserfs with
no-tail option). On the other hand, a careless se-
lection of parameters may lead to serious degradations:
up to 64% drop in both energy and performance (e.g.,
legacy Ext2 file systems with 1K block size). Until Oc-
tober 1999, mkfs.ext2 used 1KB block sizes by default.
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File systems formatted prior to the time that Linux ven-
dors picked up this change, still use small block sizes:
performance-powernumbers of a Web-server running on
top of such a file system are 65% lower than today’s de-
fault and over 4 times worse than best possible.

Given Table 2, we feel that even moderate improve-
ments are worth a costly file system reformatting, be-
cause the savings accumulate for long-running servers.

Selecting the most suitable file system. When users
can change to any file system, or choose one initially,
we offer Table 3. For each workload we present the
most power-performance efficient file system and its pa-
rameters. We also show the range of improvements in
both ops/sec and ops/joule as compared to the best and
worst default file systems. From the table we conclude
that it is often possible to improve the efficiency by at
least 8%. For the file server workload, where the de-
fault Reiserfs configuration performs the best, we ob-
serve a performance boost of up to 2× as compared to
the worst default file system (XFS). As seen in Figure 5,
for mail server workload Reiserfs with no-tail im-
proves the efficiency by 30% over default Reiserfs (best
default), and by 5× over default XFS (worst default).
For the database workload, XFS with a block size of
2KB improved the efficiency of the system by at least
two-fold. Whereas in most cases, performance and en-
ergy improved by nearly the same factor, in XFS they
did not: for the Webserver workload, XFS with 1K in-
ode sizes increased performance by a factor of 9.4 and
energy improved by a factor of 7.5.

Some file system parameters listed in Table 2 can be
combined, possibly yielding cumulative improvements.
We analyzed several such combinations and concluded
that each case requires careful investigation. For ex-
ample, Reiserfs’s notail and noatime options, in-
dependently, improved the Webserver’s performance by
149% and 128%, respectively; but their combined effect
only improved performance by 155%. The reason for
this was that both parameters affected the same perfor-
mance component—wait time—either by reducing BKL
contention slightly or by reducing I/O wait time. How-
ever, the CPU’s utilization remained high and dominated
overall performance. On the other hand, XFS’s blk2k
and agcnt64 format options, which improved perfor-
mance by 18% and 23%, respectively—combined to-
gether to yield a cumulative improvement of 41%. The
reason here is that these were options which affected dif-
ferent code paths without having other limiting factors.

Selecting file system features for a workload. We of-
fer recommendations to assist in selecting the best file
system feature(s) for specific workloads. These guide-
line can also help future file system designers.

Server Recom. FS Ops/Sec Ops/Joule
Web x-isz1k 1.08–9.4× 1.06–7.5×
File r-def 1.0–1.9× 1.0–2.0×
Mail r-notail 1.3–5.8× 1.3–5.7×
DB x-blk2k 2–2.4× 2–2.4×

Table 3: Recommended file systems and their parameters for
our workloads. We provide the range of performance and
power-efficiency improvements achieved compared to the best
and the worst default configured file systems.

• File size: If the workload generates or uses files
with an average file size of a few 100KB, we rec-
ommend to use fixed sized data blocks, addressed
by a balanced tree (e.g., Reiserfs). Large sized
files (GB, TB) would benefit from extent-based bal-
anced trees with delayed allocation (e.g., XFS).
Packing small files together in one block (e.g.,
Reiserfs’s tail-packing) is not recommended, as it
often degrades performance.

• Directory depth: Workloads using a deep direc-
tory structure should focus on faster lookups using
intelligent data structures and mechanisms. One
recommendation is to localize as much data to-
gether with inodes and directories, embedding data
into large inodes (XFS). Another is to sort all in-
odes/names and provide efficient balanced trees
(e.g., XFS or Reiserfs).

• Access pattern and parallelism: If the work-
load has a mix of read, write, and metadata oper-
ations, it is recommended to use at least 64 allo-
cation groups, each managing their own group and
free data allocation independently, to increase par-
allelism (e.g., XFS). For workloads having multi-
ple concurrent writes to the same file(s), we rec-
ommend to switch on journalling, so that updates
to the same file system objects can be batched to-
gether. We recommend turning off atime updates
for read-intensive operations, if the workload does
not care about access-times.

6 Conclusions
Proper benchmarking and analysis are tedious, time-
consuming tasks. Yet their results can be invaluable for
years to come. We conducted a comprehensive study
of file systems on modern systems, evaluated popular
server workloads, and varied many parameters. We col-
lected and analyzed performance and power metrics.

We discovered and explained significant variations in
both performance and energy use. We found that there
are no universally good configurations for all workloads,
and we explained complex behavior that go against com-
mon conventions. We concluded that default file sys-
tem types and options are often suboptimal: simple
changes within a file system, like mount options, can im-
prove power/performance from 5% to 149%; and chang-
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ing format options can boost the efficiency from 6% to
136%. Switching to a different file system can result in
improvements ranging from 2 to 9 times.

We recommend that servers be tested and optimized
for expected workloads before used in production. En-
ergy technologies lag far behind computing speed im-
provements. Given the long-running nature of busy In-
ternet servers, software-based optimization techniques
can have significant, cumulative long-term benefits.

7 Future Work
We plan to expand our study to include less mature file
systems (e.g., Ext4, Reiser4, and BTRFS), as we be-
lieve they have greater optimization opportunities. We
are currently evaluating power-performance of network-
based and distributed file systems (e.g., NFS, CIFS, and
Lustre). Those represent additional complexity: proto-
col design, client vs. server implementations, and net-
work software and hardware efficiency. Early experi-
ments comparing NFSv4 client/server OS implementa-
tions revealed performance variations as high as 3×.

Computer hardware changes constantly—e.g., adding
more cores, and supporting more energy-saving fea-
tures. As energy consumption outside of the data cen-
ter exceeds that inside [44], we are continually repeating
our studies on a range of computers spanning several
years of age. We also plan to conduct a similar study
on faster solid-state disks, and machines with more ad-
vanced DVFS support.

Our long-term goal is to develop custom file systems
that best match a given workload. This could be bene-
ficial because many application designers and adminis-
trators know their data set and access patterns ahead of
time, allowing storage stacks designs with better cache
behavior and minimal I/O latencies.
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Abstract

We investigate the problem of creating an energy pro-

portional storage system through power-aware dynamic

storage consolidation. Our proposal, Sample-Replicate-

Consolidate Mapping (SRCMap), is a storage virtual-

ization layer optimization that enables energy propor-

tionality for dynamic I/O workloads by consolidating

the cumulative workload on a subset of physical vol-

umes proportional to the I/O workload intensity. Instead

of migrating data across physical volumes dynamically

or replicating entire volumes, both of which are pro-

hibitively expensive, SRCMap samples a subset of blocks

from each data volume that constitutes its working set

and replicates these on other physical volumes. Dur-

ing a given consolidation interval, SRCMap activates a

minimal set of physical volumes to serve the workload

and spins down the remaining volumes, redirecting their

workload to replicas on active volumes. We present both

theoretical and experimental evidence to establish the

effectiveness of SRCMap in minimizing the power con-

sumption of enterprise storage systems.

1 Introduction

Energy Management has emerged as one of the most

significant challenges faced by data center operators.

The current power density of data centers is estimated

to be in the range of 100 W/sq.ft. and growing at

the rate of 15-20% per year [22]. Barroso and Hölzle

have made the case for energy proportional computing

based on the observation that servers in data centers to-

day operate at well below peak load levels on an aver-

age [2]. A popular technique for delivering energy pro-

portional behavior in servers is consolidation using vir-

tualization [4, 24, 26, 27]. These techniques (a) utilize

heterogeneity to select the most power-efficient servers

at any given time, (b) utilize low-overhead live Virtual

Machine (VM) migration to vary the number of active

servers in response to workload variation, and (c) pro-

vide fine-grained control over power consumption by al-

lowing the number of active servers to be increased or

decreased one at a time.

Storage consumes roughly 10-25% of the power

within computing equipment at data centers depending

on the load level, consuming a greater fraction of the

power when server load is lower [3]. Energy proportion-

ality for the storage subsystem thus represents a critical

gap in the energy efficiency of future data centers. In

this paper, we the investigate the following fundamental

question: Can we use a storage virtualization layer to

design a practical energy proportional storage system?

Storage virtualization solutions (e.g., EMC Invista [7],

HP SVSP [6], IBM SVC [12], NetApp V-Series [19])

provide a unified view of disparate storage controllers

thus simplifying management [13]. Similar to server vir-

tualization, storage virtualization provides a transparent

I/O redirection layer that can be used to consolidate frag-

mented storage resource utilization. Similar to server

workloads, storage workloads exhibit significant varia-

tion in workload intensity, motivating dynamic consoli-

dation [16]. However, unlike the relatively inexpensive

VM migration, migrating a logical volume from one de-

vice to another can be prohibitively expensive, a key fac-

tor disrupting storage consolidation solutions.

Our proposal, Sample-Replicate-Consolidate Map-

ping (SRCMap), is a storage virtualization layer op-

timization that makes storage systems energy propor-

tional. The SRCMap architecture leverages storage vir-

tualization to redirect the I/O workload without any

changes in the hosts or storage controllers. SRCMap ties

together disparate ideas from server and storage power

management (namely caching, replication, transparent

live migration, and write off-loading) to minimize the

power drawn by storage devices in a data center. It con-

tinuously targets energy proportionality by dynamically

increasing or decreasing the number of active physical

volumes in a data center in response to variation in I/O

workload intensity.

SRCMap is based on the following observations in

production workloads detailed in §3: (i) the active data

set in storage volumes is small, (ii) this active data set

is stable, and (iii) there is substantial variation in work-

load intensity both within and across storage volumes.

1



268 FAST ’10: 8th USENIX Conference on File and Storage Technologies USENIX Association

Thus, instead of creating full replicas of data volumes,

SRCMap creates partial replicas that contain the working

sets of data volumes. The small replica size allows cre-

ating multiple copies on one or more target volumes or

analogously allowing one target volume to host replicas

of multiple source volumes. Additional space is reserved

on each partial replica to offload writes [18] to volumes

that are spun down.

SRCMap enables a high degree of flexibility in spin-

ning down volumes because it activates either the pri-

mary volume or exactly one working set replica of each

volume at any time. Based on the aggregate workload

intensity, SRCMap changes the set of active volumes in

the granularity of hours rather than minutes to address

the reliability concerns related to the limited number of

disk spin-up cycles. It selects active replica targets that

allow spinning down the maximum number of volumes,

while serving the aggregate storage workload. The vir-

tualization layer remaps the virtual to physical volume

mapping as required thereby replacing expensive data

migration operations with background data synchroniza-

tion operations. SRCMap is able to create close to N
power-performance levels on a storage subsystem with

N volumes, enabling storage energy consumption pro-

portional to the I/O workload intensity.

In the rest of this paper, we propose design goals for

energy proportional storage systems and examine exist-

ing solutions (§2), analyze storage workload characteris-

tics (§3) that motivate design choices (§4), provide de-

tailed system design, algorithms, and optimizations (§5
and §6), and evaluate for energy proportionality (§7). We

conclude with a fairly positive view on SRCMap meet-

ing its energy proportionality goals and some directions

for future work (§8).

2 On Energy Proportional Storage

In this section, we identify the goals for a practical and

effective energy proportional storage system. We also

examine existing work on energy-aware storage and the

extent to which they deliver on these goals.

2.1 Design Goals

1. Fine-grained energy proportionality: Energy pro-

portional storage systems are uniquely characterized by

multiple performance-power levels. True energy propor-

tionality requires that for a system with a peak power of

Ppeak for a workload intensity ρmax, the power drawn

for a workload intensity ρi would be Ppeak × ρi

ρmax

.

2. Low space overhead: Replication-based strategies

could achieve energy proportionality trivially by repli-

cating each volume on all the otherN − 1 volumes. This

would require N copies of each volume, representing an

unacceptable space overhead. A practical energy propor-

Design Write Caching Singly Geared

Goal offloading systems Redundant RAID

Proportionality ∼ � � ∼

Space overhead � � � �

Reliability � � � �

Adaptation � � � �

Heterogeneity ∼ ∼ ∼ �

Table 1: Comparison of Power Management Tech-

niques. ∼ indicates the goal is partially addressed.

tional system should incur minimum space overhead; for

example, 25% additional space is often available.

3. Reliability: Disk drives are designed to survive a lim-

ited number of spin-up cycles [14]. Energy conservation

based on spinning down the disk must ensure that the

additional number of spin-up cycles induced during the

disks’ expected lifetime is significantly lesser than the

manufacturer specified maximum spin-up cycles.

4. Workload shift adaptation: The popularity of data

changes, even if slowly over time. Power management

for storage systems that rely on caching popular data

over long intervals should address any shift in popular-

ity, while ensuring energy proportionality.

5. Heterogeneity support: A data center is typically

composed of several substantially different storage sys-

tems (e.g., with variable numbers and types of drives).

An ideal energy proportional storage system should ac-

count for the differences in their performance-power ra-

tios to provide the best performance at each host level.

2.2 Examining Existing Solutions

It has been shown that the idleness in storage workload

is quite low for typical server workloads [31]. We ex-

amine several classes of related work that represent ap-

proaches to increase this idleness for power minimization

and evaluate the extent to which they address our design

goals. We next discuss each of them and summarize their

relative strengths in Table 1.

Singly redundant schemes. The central idea used by

these schemes is spinning down disks with redundant

data during periods of low I/O load [9, 21, 28]. RI-

MAC [28] uses memory-level and on-disk redundancy to

reduce passive spin ups in RAID5 systems, enabling the

spinning down of one out of the N disks in the array.

The Diverted Accesses technique [21] generalizes this

approach to find the best redundancy configuration for

energy, performance, and reliability for all RAID levels.

Greenan et al. propose generic techniques for manag-

ing power-aware erasure coded storage systems [9]. The

above techniques aim to support two energy levels and

do not address fine-grained energy proportionality.

Geared RAIDs. PARAID [30] is a gear-shifting mech-

anism (each disk spun down represents a gear shift) for

a parity-based RAID. To implement N − 1 gears in a

N disk array with used storage X , PARAID requires

2
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O(X logN) space, even if we ignore the space required

for storing parity information. DiskGroup [17] is a mod-

ification of RAID-1 that enables a subset of the disks

in a mirror group to be activated as necessary. Both

techniques incur large space overhead. Further, they do

not address heterogeneous storage systems composed of

multiple volumes with varying I/O workload intensities.

Caching systems. This class of work is mostly based

on caching popular data on additional storage [5, 15, 25]

to spin down primary data drives. MAID [5], an archival

storage system, optionally uses additional cache disks for

replicating popular data to increase idle periods on the

remaining disks. PDC [20] does not use additional disks

but rather suggests migrating data between disks accord-

ing to popularity, always keeping the most popular data

on a few active disks. EXCES [25] uses a low-end flash

device for caching popular data and buffering writes to

increase idle periods of disk drives. Lee et al. [15] sug-

gest augmenting RAID systems with an SSD for a simi-

lar purpose. A dedicated storage cache does not provide

fine-grained energy proportionality; the storage system

is able to save energy only when the I/O load is low and

can be served from the cache. Further, these techniques

do not account for the reliability impact of frequent disk

spin-up operations.

Write Offloading. Write off-loading is an energy sav-

ing technique based on redirecting writes to alternate

locations. The authors of write-offloading demonstrate

that idle periods at a one minute granularity can be sig-

nificantly increased by off-loading writes to a different

volume. The reliability impact due to frequent spin-up

cycles on a disk is a potential concern, which the au-

thors acknowledge but leave as an open problem. In con-

trast, SRCMap increases the idle periods substantially by

off-loading popular data reads in addition to the writes,

and thus more comprehensively addressing this impor-

tant concern. Another important question not addressed

in the write off-loading work is: with multiple volumes,

which active volume should be treated as a write off-

loading target for each spun down volume? SRCMap

addresses this question clearly with a formal process for

identifying the set of active disks during each interval.

Other techniques. There are orthogonal classes of

work that can either be used in conjunction with SR-

CMap or that address other target environments. Hiber-

nator [31] uses DRPM [10] to create a multi-tier hierar-

chy of futuristic multi-speed disks. The speed for each

disk is set and data migrated across tiers as the workload

changes. Pergamum is an archival storage system de-

signed to be energy-efficient with techniques for reduc-

ing inter-disk dependencies and staggering rebuild oper-

ations [23]. Gurumurthi et al. propose intra-disk par-

allelism on high capacity drives to improve disk band-

Workload Size Reads [GB] Writes [GB] Volume

Volume [GB] Total Uniq Total Uniq accessed

mail 500 62.00 29.24 482.10 4.18 6.27%

homes 470 5.79 2.40 148.86 4.33 1.44%

web-vm 70 3.40 1.27 11.46 0.86 2.8%

Table 2: Summary statistics of one week I/O work-

load traces obtained from three different volumes.
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Figure 1: Variability in I/O workload intensity.

width without increasing power consumption [11]. Fi-

nally, Ganesh et al. propose log-structured striped writ-

ing on a disk array to increase the predictability of ac-

tive/inactive spindles [8].

3 Storage Workload Characteristics

In this section, we characterize the nature of I/O access

on servers using workloads from three production sys-

tems, specifically looking for properties that help us in

our goal of energy proportional storage. The systems in-

clude an email server (mail workload), a virtual machine

monitor running two web servers (web-vm workload),

and a file server (homes workload). The mail workload

serves user INBOXes for the entire Computer Science

department at FIU. The homes workload is that of a

NFS server that serves the home directories for our re-

search group at FIU; activities represent those of a typical

researcher consisting of software development, testing,

and experimentation, the use of graph-plotting software,

and technical document preparation. Finally, the web-vm

workload is collected from a virtualized system that hosts

two CS department web-servers, one hosting the depart-

ment’s online course management system and the other

hosting the department’s web-based email access portal.

In each system, we collected I/O traces downstream

of an active page cache for a duration of three weeks.

Average weekly statistics related to these workloads are

summarized in Table 2. The first thing to note is that the

weekly working sets (unique accesses during a week) is

a small percentage of the total volume size (1.5-6.5%).

This trend is consistent across all volumes and leads to

our first observation.

Observation 1 The active data set for storage volumes

is typically a small fraction of total used storage.

Dynamic consolidation utilizes variability in I/O

workload intensity to increase or decrease the number of

3
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Figure 2: Overlap in daily working sets for the mail

(m), homes (h), and web-vm (w) workloads. (i) Reads

and writes against working set , (ii) Reads against work-

ing set and (iii) Reads against working set, recently of-

floaded writes, and recent missed reads.

active devices. Figure 1 depicts large variability in I/O

workload intensity for each of the three workloads over

time, with as much as 5-6 orders of magnitude between

the lowest and highest workload intensity levels across

time. This highlights the potential of energy savings if

the storage systems can be made energy proportional.

Observation 2 There is a significant variability in I/O

workload intensity on storage volumes.

Based on our first two observations, we hypothe-

size that there is room for powering down physical vol-

umes that are substantially under-utilized by replicating

a small active working-set on other volumes which have

the spare bandwidth to serve accesses to the powered

down volumes. This motivates Sample and Replicate in

SRCMap. Energy conservation is possible provided the

corresponding working set replicas can serve most re-

quests to each powered down volume. This would be

true if working sets are largely stable.

We investigate the stability of the volume working sets

in Fig. 2 for three progressive definitions of the working

set. In the first scenario, we compute the classical work-

ing set based on the last few days of access history. In

the second scenario, we additionally assume that writes

can be offloaded and mark all writes as hits. In the third

scenario, we further expand the working set to include re-

cent writes and past missed reads. For each scenario, we

compute the working set hits and misses for the follow-

ing day’s workload and study the hit ratio with change

in the length of history used to compute the working set.

We observe that the hit ratio progressively increases both

across the scenarios and as we increase the history length

leading us to conclude that data usage exhibits high tem-

poral locality and that the working set after including re-

cent accesses is fairly stable. This leads to our third ob-

servation (also observed earlier by Leung et al. [16]).

Observation 3 Data usage is highly skewed with more

than 99% of the working set consisting of some ’really

popular’ data and ’recently accessed’ data.

The first three observations are the pillars behind the

Sample, Replicate and Consolidate approach whereby

we sample each volume for its working set, replicate
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these working sets on other volumes, and consolidate

I/O workloads on proportionately fewer volumes dur-

ing periods of low load. Before designing a new system

based on the above observations, we study the suitabil-

ity of a simpler write-offloading technique for building

energy proportional storage systems. Write off-loading

is based on the observation that I/O workloads are write

dominated and simply off-loading writes to a different

volume can cause volumes to be idle for a substantial

fraction (79% for workloads in the original study) of

time [18]. While write off-loading increases the fraction

of idle time of volumes, the distribution of idle time du-

rations due to write off-loading raises an orthogonal, but

important, concern. If these idle time durations are short,

saving power requires frequent spinning down/up of the

volumes which degrades reliability of the disk drives.

Figure 3 depicts the read-idle time distributions of the

three workloads. It is interesting to note that idle time

durations for the homes and mail workloads are all less

than or equal to 2 minutes, and for the web-vm the ma-

jority are less than or equal to 5 minutes are all are less

than 30 minutes.

Observation 4 The read-idle time distribution (periods

of writes alone with no intervening read operations) of

I/O workloads is dominated by small durations, typically

less than five minutes.

This observation implies that exploiting all read-

idleness for saving power will necessitate spinning up

the disk at least 720 times a day in the case of homes and

mail and at least 48 times in the case of web-vm. This

can be a significant hurdle to reliability of the disk drives

which typically have limited spin-up cycles [14]. It is

therefore important to develop new techniques that can

substantially increase average read-idle time durations.

4 Background and Rationale

Storage virtualization managers simplify storage man-

agement by enabling a uniform view of disparate stor-

age resources in a data center. They export a storage

controller interface allowing users to create logical vol-

umes or virtual disks (vdisks) and mount these on hosts.

The physical volumes managed by the physical storage

controllers are available to the virtualization manager

as managed disks (mdisks) entirely transparently to the

4
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hosts which only view the logical vdisk volumes. A use-

ful property of the virtualization layer is the complete

flexibility in allocation ofmdisk extents to vdisks.

Applying server consolidation principles to storage

consolidation using virtualization would activate only the

most energy-efficient mdisks required to serve the ag-

gregate workload during any period T . Data from the

othermdisks chosen to be spun down would first need to

be migrated to activemdisks to effect the change. While

data migration is an expensive operation, the ease with

which virtual-to-physical mappings can be reconfigured

provides an alternative approach. A naı̈ve strategy fol-

lowing this approach could replicate data for each vdisk
on all the mdisks and adapt to workload variations by

dynamically changing the virtual-to-physical mappings

to use only the selectedmdisks during T . Unfortunately,

this strategy requires N times additional space for a N
vdisk storage system, an unacceptable space overhead.

SRCMap intelligently uses the storage virtualization

layer as an I/O indirection mechanism to deliver a practi-

cally feasible, energy proportional solution. Since it op-

erates at the storage virtualization manager, it does not

alter the basic redundancy-based reliability properties of

the underlying physical volumes which is determined by

the respective physical volume (e.g., RAID) controllers.

To maintain the redundancy level, SRCMap ensures that

a volume is replicated on target volumes at the same

RAID level. While we detail SRCMap’s design and al-

gorithms in subsequent sections (§ 5 and § 6), here we list

the rationale behind SRCMap’s design decisions. These

design decisions together help to satisfy the design goals

for an ideal energy proportional storage system.

I. Multiple replica targets. Fine-grained energy propor-

tionality requires the flexibility to increase or decrease

the number of active physical volumes one at a time.

Techniques that activate a fixed secondary device for

each data volume during periods of low activity cannot

provide the flexibility necessary to deactivate an arbi-

trary fraction of the physical volumes. In SRCMap, we

achieve this fine-grained control by creating a primary

mdisk for each vdisk and replicating only the working

set of each vdisk on multiple secondary mdisks. This

ensures that (a) every volume can be offloaded to one

of multiple targets and (b) each target can serve the I/O

workload for multiple vdisks. During peak load, each

vdisk maps to its primarymdisk and allmdisks are ac-

tive. However, during periods of low activity, SRCMap

selects a proportionately small subset ofmdisks that can

support the aggregate I/O workload for all vdisks.

II. Sampling. Creating multiple full replicas of vdisks
is impractical. Drawing from Observation 1 (§ 3), SR-

CMap substantially reduces the space overhead of main-

taining multiple replicas by sampling only the working

set for each vdisk and replicating it. Since the working

set is typically small , the space overhead is low.

III. Ordered replica placement. While sampling helps

to reduce replica sizes substantially, creating multiple

replicas for each sample still induces space overhead.

In SRCMap, we observe that all replicas are not created

equal; for instance, it is more beneficial to replicate a

lightly loaded volume than a heavily loaded one which is

likely to be active anyway. Similarly, a large working set

has greater space overhead; SRCMap chooses to create

fewer replicas aiming to keep it active, if possible. As we

shall formally demonstrate, carefully ordering the replica

placement helps to minimize the number of active disks

for fine-grained energy proportionality.

IV. Dynamic source-to-target mapping and dual data

synchronization. From Observation 2 (§ 3), we know

that workloads can vary substantially over a period of

time. Hence, it is not possible to pre-determine which

volumes need to be active. Target replica selection for

any volume being powered down therefore needs to be

a dynamic decision and also needs to take into account

that some volumes have more replicas (or target choices)

than others. We use two distinct mechanisms for updat-

ing the replica working sets. The active replica lies in the

data path and is immediately synchronized in the case of

a read miss. This ensures that the active replica contin-

uously adapts with change in workload popularity. The

secondary replicas, on the other hand, use a lazy, incre-

mental data synchronization in the background between

the primary replica and any secondary replicas present

on active mdisks. This ensures that switching between

replicas requires minimal data copying and can be per-

formed fairly quickly.

V. Coarse-grained power cycling. In contrast to most

existing solutions that rely on fine-grained disk power-

mode switching, SRCMap implements coarse-grained

consolidation intervals (of the order of hours), during

each of which the set of active mdisks chosen by SR-

CMap does not change. This ensures normal disk life-

times are realized by adhering to the disk power cycle

specification contained within manufacturer data sheets.

5 Design Overview

SRCMap is built in a modular fashion to directly inter-

face with storage virtualization managers or be integrated

into one as shown in Figure 4. The overall architecture

supports the following distinct flows of control:

(i) the replica generation flow (Flow A) identifies the

working set for each vdisk and replicates it on multiple

mdisks. This flow is orchestrated by the Replica Place-

ment Controller and is triggered once when SRCMap

5
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Figure 4: SRCMap integrated into a Storage Vir-

tualization Manager. Arrows depict control flow.

Dashed/solid boxes denote existing/new components.

is initialized and whenever a configuration change (e.g.,

addition of a new workload or new disks) takes place.

Once a trigger is generated, the Replica Placement Con-

troller obtains a historical workload trace from the Load

Monitor and computes the working set and the long-term

workload intensity for each volume (vdisk). The work-

ing set is then replicated on one or more physical vol-

umes (mdisks). The blocks that constitute the working

set for the vdisk and the target physical volumes where

these are replicated are managed using a common data

structure called the Replica Disk Map (RDM).

(ii) the active disk identification flow (Flow B) identifies,

for a period T , the active mdisks and activated repli-

cas for each inactive mdisk. The flow is triggered at

the beginning of the consolidation interval T (e.g., every

2 hours) and orchestrated by the Active Disk Manager.

In this flow, the Active Disk Manager queries the Load

Monitor for expected workload intensity of each vdisk
in the period T . It then uses the workload information

along with the placement of working set replicas on tar-

getmdisks to compute the set of active primarymdisks

and a active secondary replica mdisk for each inactive

primarymdisk. It then directs the Consistency Manager

to ensure that the data on any selected active primary

or active secondary replica is current. Once consistency

checks are made, it updates the Virtual to Physical Map-

ping to redirect the workload to the appropriatemdisk.

(iii) the I/O redirection flow (Flow C) is an extension of

the I/O processing in the storage virtualization manager

and utilizes the built-in virtual-to-physical re-mapping

support to direct requests to primaries or active repli-

cas. Further, this flow ensures that the working-set of

each vdisk is kept up-to-date. To ensure this, whenever

a request to a block not available in the active replica is

made, a Replica Miss event is generated. On a Replica

Miss, the Replica Manager spin-ups the primary mdisk
to fetch the required block. Further, it adds this new

block to the working set of the vdisk in the RDM. We

next describe the key components of SRCMap.

5.1 Load Monitor

The Load Monitor resides in the storage virtualization

manager and records access to data on any of the vdisks

exported by the virtualization layer. It provides two inter-

faces for use by SRCMap – long-term workload data in-

terface invoked by the Replica Placement Controller and

predicted short-term workload data interface invoked by

the Active Disk Manager.

5.2 Replica Placement Controller

The Replica Placement Controller orchestrates the pro-

cess of Sampling (identifying working sets for each

vdisk) and Replicating on one or more target mdisks.

We use a conservative definition of working set that in-

cludes all the blocks that were accessed during a fixed

duration, configured as the minimum duration beyond

which the hit ratio on the working set saturates. Conse-

quently, we use 20 days formail, 14 days for homes and

5 days for web-vm workload (Fig. 2). The blocks that

capture the working set for each vdisk and the mdisks
where it is replicated are stored in the RDM. The details

of the parameters and methodology used within Replica

Placement are described in Section 6.1.

5.3 Active Disk Manager

The Active Disk Manager orchestrates the Consolidate

step in SRCMap. The module takes as input the work-

load intensity for each vdisk and identifies if the primary

mdisk can be spun down by redirecting the workload to

one of the secondary mdisks hosting its replica. Once

the target set of activemdisks and replicas are identified,

the Active Disk Manager synchronizes the identified ac-

tive primaries or active secondary replicas and updates

the virtual-to-physical mapping of the storage virtualiza-

tion manager, so that I/O requests to a vdisk could be

redirected accordingly. The Active Disk Manager uses a

Consistency Manager for the synchronization operation.

Details of the algorithm used by Active Disk Manager for

selecting activemdisks are described in Section 6.2.

5.4 Consistency Manager

The Consistency Manager ensures that the primary

mdisk and the replicas are consistent. Before anmdisk
is spun down and a new replica activated, the new active

replica is made consistent with the previous one. In order

to ensure that the overhead during the re-synchronization

is minimal, an incremental point-in-time (PIT) relation-

ship (e.g., Flash-copy in IBM SVC [12]) is maintained

between the active data (either the primary mdisk or

one of the active replicas) and all other copies of the

same data. A go-to-sync operation is performed periodi-

cally between the active data and all its copies on active

mdisks. This ensures that when anmdisk is spun up or

down, the amount of data to be synchronized is small.

6
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5.5 Replica Manager

The Replica Manager ensures that the replica data set

for a vdisk is able to mimic the working set of the vdisk
over time. If a data block unavailable at the active replica

of the vdisk is read causing a replica miss, the Replica

Manager copies the block to the replica space assigned to

the active replica and adds the block to the Replica Meta-

data accordingly. Finally, the Replica Manager uses a

Least Recently Used (LRU) policy to evict an older block

in case the replica space assigned to a replica is filled

up. If the active data set changes drastically, there may

be a large number of replica misses. All these replica

misses can be handled by a single spin-up of the pri-

mary mdisk. Once all the data in the new working set

is touched, the primary mdisk can be spun-down as the

active replica is now up-to-date. The continuous updat-

ing of the Replica Metadata enables SRCMap to meet

the goal of Workload shift adaptation, without re-running

the expensive replica generation flow. The replica gener-

ation flow needs to re-run only when a disruptive change

occurs such as addition of a new workload or a new vol-

ume or new disks to a volume.

6 Algorithms and Optimizations

In this section, we present details about the algorithms

employed by SRCMap. We first present the long-term

replica placement methodology and subsequently, the

short-term active disk identification method.

6.1 Replica Placement Algorithm

The Replica Placement Controller creates one or more

replicas of the working set of each vdisk on the available

replica space on the target mdisks. We use the insight

that all replicas are not created equal and have distinct

associated costs and benefits. The space cost of creating

the replica is lower if the vdisk has a smaller working

set. Similarly, the benefit of creating a replica is higher

if the vdisk (i) has a stable working set (lower misses

if the primary mdisk is switched off), (ii) has a small

average load making it easy to find spare bandwidth for

it on any targetmdisk, and (iii) is hosted on a less power-

efficient primarymdisk. Hence, the goal of both Replica

Placement and Active Disk Identification is to ensure that

we create more replicas for vdisks that have a favorable

cost-benefit ratio. The goal of the replica placement is

to ensure that if the Active Disk Manager decides to spin

down the primarymdisk of a vdisk, it should be able to

find at least one active targetmdisk that hosts its replica,

captured in the following Ordering Property.

Definition 1 Ordering Property: For any two vdisks Vi

and Vj , if Vi is more likely to require a replica target than

Vj at any time t during Active Disk Identification, then

Vi is more likely than Vj to find a replica target amongst
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Figure 5: Replica Placement Model

activemdisks at time t.

The replica placement algorithm consists of (i) creat-

ing an initial ordering of vdisks in terms of cost-benefit

tradeoff (ii) a bipartite graph creation that reflects this

ordering (iii) iteratively creating one source-target map-

ping respecting the current order and (iv) re-calibration

of edge weights to ensure the Ordering Property holds

for the next iteration of source-target mapping.

6.1.1 Initial vdisk ordering

The Initial vdisk ordering creates a sorted order amongst

vdisks based on their cost-benefit tradeoff. For each

vdisk Vi, we compute the probability Pi that its primary

mdisk Mi would be spun down as

Pi =
w1WSmin

WSi

+
w2PPRmin

PPRi

+
w3ρmin

ρi
+
wfmmin

mi

(1)
where the wk are tunable weights,WSi is the size of the

working set of Vi, PPRi is the performance-power ratio

(ratio between the peak IO bandwidth and peak power)

for the primary mdisk Mi of Vi, ρi is the average long-

term I/O workload intensity (measured in IOPS) for Vi,

and mi is the number of read misses in the working set

of Vi, normalized by the number of spindles used by its

primary mdisk Mi. The corresponding min subscript

terms represent the minimum values across all the vdisks

and provide normalization. The probability formulation

is based on the dual rationale that it is relatively easier to

find a target mdisk for a smaller workload and switch-

ing off relatively more power-hungry disks saves more

power. Further, we assign a higher probability for spin-

ning downmdisks that host more stable working sets by

accounting for the number of times a read request can-

not be served from the replicated working set, thereby

necessitating the spinning up of the primarymdisk.

6.1.2 Bipartite graph creation

Replica Placement creates a bipartite graph G(V →M)
with each vdisk as a source node Vi, its primary mdisk
as a target nodeMi, and the edge weights e(Vi,Mj) rep-

resenting the cost-benefit trade-off of placing a replica

of Vi on Mj (Fig. 5). The nodes in the bipartite graph

are sorted using Pi (disks with larger Pi are at the top).

We initialize the edge weights wi,j = Pi for each edge

e(Vi,Mj) (source-target pair). Initially, there are no

7
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replica assignments made to any target mdisk. The

replica placement algorithm iterates through the follow-

ing two steps, until all the available replica space on the

targetmdisks have been assigned to source vdisk repli-

cas. In each iteration, exactly one targetmdisk’s replica

space is assigned.

6.1.3 Source-Target mapping

The goal of the replica placement method is to achieve a

source target mapping that achieves the Ordering prop-

erty. To achieve this goal, the algorithm takes the top-

most target mdisk Mi whose replica space is not yet

assigned and selects the set of highest weight incident

edges such that the combined replica size of the source

nodes in this set fills up the replica space available inMi

(e.g, the working sets of V1 and VN are replicated in the

replica space of M2 in Fig. 5). When the replica space

on a targetmdisk is filled up, we mark the targetmdisk
as assigned. One may observe that this procedure always

gives preference to source nodes with a larger Pi. Once

an mdisk finds a replica, the likelihood of it requiring

another replica decreases and we factor this using a re-

calibration of edge weights, which is detailed next.

6.1.4 Re-calibration of edge weights

We observe that the initial assignments of weights en-

sure the Ordering property. However, once the work-

ing set of a vdisk Vi has been replicated on a set of tar-

getmdisks Ti = M1, . . . ,Mleast (Mleast is themdisk
with the least Pi in Ti) s.t. Pi > Pleast, the probability

that Vi would require a new target mdisk during Active

Disk Identification is the probability that both Mi and

Mleast would be spun down. Hence, to preserve the Or-

dering property, we re-calibrate the edge weights of all

outgoing edges of any primary mdisks Si assigned to

target mdisks Tj as

∀k wi,k = PjPi (2)

Once the weights are recomputed, we iterate from the

Source-Target mapping step until all the replicas have

been assigned to target mdisks. One may observe that

the re-calibration succeeds in achieving the Ordering

property because we start assigning the replica space for

the top-most target mdisks first. This allows us to in-

crease the weights of source nodes monotonically as we

S = set of disks to be spun down

A = set of disks to be active

Sort S by reverse of Pi

Sort A by Pi

For each Di ∈ S

For each Dj ∈ A

If Dj hosts a replica Ri of Di AND

Dj has spare bandwidth for Ri

Candidate(Di) = Dj , break

End-For

If Candidate(Di)==null return Failure

End-for

∀i, Di ∈ S return Candidate(Di)

Figure 7: Active Replica Identification algorithm

place more replicas of its working set. We formally prove

the following result in the appendix.

Theorem 1 The Replica Placement Algorithm ensures

ordering property.

6.2 Active Disk Identification

We now describe the methodology employed to identify

the set of active mdisks and replicas at any given time.

For ease of exposition, we define the probability Pi of

a primary mdisk Mi equal to the probability Pi of its

vdisk Vi. Active disk identification consists of:

I: Activemdisk Selection: We first estimate the expected

aggregate workload to the storage subsystem in the next

interval. We use the workload to a vdisk in the previ-

ous interval as the predicted workload in the next interval

for the vdisk. The aggregate workload is then estimated

as sum of the predicted workloads for all vdisks in the

storage system. This aggregate workload is then used to

identify the minimum subset of mdisks (ordered by re-

verse of Pi) such that the aggregate bandwidth of these

mdisks exceeds the expected aggregate load.

II: Active Replica Identification: This step elaborated

shortly identifies one (of the many possible) replicas on

an active mdisk for each inactive mdisk to serve the

workload redirected from the inactivemdisk.

III: Iterate: If the Active Replica Identification step suc-

ceeds in finding an active replica for all the inactive

mdisks, the algorithm terminates. Else, the number of

active mdisks are increased by 1 and the algorithm re-

peats the Active Replica Identification step.

One may note that since the number of active disks

are based on the maximum predicted load in a consoli-

dation interval, a sudden increase in load may lead to an

increase in response times. If performance degradation

beyond user-defined acceptable levels persists beyond a

user-defined interval (e.g, 5 mins), the Active Disk Iden-

tification is repeated for the new load.

6.2.1 Active Replica Identification

Fig. 6 depicts the high-level goal of Active Replica

Identification, which is to have the primary mdisks for

8
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vdisks with larger Pi spun down, and their workload

directed to few mdisks with smaller Pi. To do so, it

must identify an active replica for each inactive primary

mdisk, on one of the activemdisks. The algorithm uses

two insights: (i) The Replica Placement process creates

more replicas for vdisks with a higher probability of be-

ing spun down (Pi) and (ii) primary mdisks with larger

Pi are likely to be spun down for a longer time.

To utilize the first insight, we first allow primary

mdisks with small Pi, which are marked as inactive, to

find an active replica, as they have fewer choices avail-

able. To utilize the second insight, we force inactive pri-

mary mdisks with large Pi to use a replica on active

mdisks with small Pi. For example in Fig. 6, vdisk Vk

has the first choice of finding an activemdisk that hosts

its replica and in this case, it is able to select the first

active mdisk Mk+1. As a result, inactive mdisks with

larger Pi are mapped to active mdisks with the smaller

Pi (e.g, V1 is mapped toMN ). Since anmdisk with the

smallest Pi is likely to remain active most of the time,

this ensures that there is little to no need to ‘switch active

replicas’ frequently for the inactive disks. The details of

this methodology are described in Fig. 7.

6.3 Key Optimizations to Basic SRCMap

We augment the basic SRCMap algorithm to increase its

practical usability and effectiveness as follows.

6.3.1 Sub-volume creation

SRCMap redirects the workload for any primarymdisk
that is spun down to exactly one target mdisk. Hence,

a target mdisk Mj for a primary mdisk Mi needs to

support the combined load of the vdisks Vi and Vj in

order to be selected. With this requirement, the SR-

CMap consolidation process may incur a fragmentation

of the available I/O bandwidth across all volumes. To

elaborate, consider an example scenario with 10 iden-

tical mdisks, each with capacity C and input load of

C/2 + δ. Note that even though this load can be served

using 10/2 + 1 mdisks, there is no single mdisk can

support the input load of 2 vdisks. To avoid such a

scenario, SRCMap sub-divides each mdisk into NSV

sub-volumes and identifies the working set for each sub-

volume separately. The sub-replicas (working sets of a

sub-volume) are then placed independently of each other

on target mdisks. With this optimization, SRCMap is

able to subdivide the least amount of load that can be mi-

grated, thereby dealing with the fragmentation problem

in a straightforward manner.

This optimization requires a complementary modifi-

cation to theReplica Placement algorithm. The Source-

Target mapping step is modified to ensure that sub-

replicas belonging to the same source vdisk are not co-

located on a targetmdisk.

6.3.2 Scratch Space for Writes and Missed Reads

SRCMap incorporates the basic write off-loading mech-

anism as proposed by Narayanan et al. [18]. The current

implementation of SRCMap uses an additional alloca-

tion of write scratch space with each sub-replica to ab-

sorb new writes to the corresponding portion of the data

volume. A future optimization is to use a single write

scratch space within each target mdisk rather than one

per sub-replica within the target mdisk so that the over-

head for absorbing writes can be minimized.

A key difference from write off-loading, however, is

that on a read miss for a spun down volume, SRCMap

additionally offloads the data read to dynamically learn

the working-set. This helps SRCMap achieve the goal

ofWorkload Shift Adaptationwith change in working set.

While write off-loading uses the inter read-miss dura-

tions exclusively for spin down operations, SRCMap tar-

gets capturing entire working-sets including both reads

and writes in replica locations to prolong read-miss du-

rations to the order of hours and thus places more impor-

tance on learning changes in the working-set.

7 Evaluation

In this section, we evaluate SRCMap using a prototype

implementation of SRCMap-based storage virtualization

manager and an energy simulator seeded by the proto-

type. We investigate the following questions:

1. What degree of proportionality in energy consump-

tion and I/O load can be achieved using SRCMap?

2. How does SRCMap impact reliability?

3. What is the impact of storage consolidation on the

I/O performance?

4. How sensitive are the energy savings to the amount

of over-provisioned space?

5. What is the overhead associated with implementing

an SRCMap indirection optimization?

Workload The workloads used consist of I/O requests

to eight independent data volumes, each mapped to an

independent disk drive. In practice, volumes will likely

comprise of more than one disk, but resource restrictions

did not allow us to create a more expansive testbed. We

argue that relative energy consumption results still hold

despite this approximation. These volumes support a mix

of production web-servers from the FIU CS department

data center, end-user homes data, and our lab’s Subver-

sion (SVN) and Wiki servers as detailed in Table 3.

Workload I/O statistics were obtained by running blk-

trace [1] on each volume. Observe that there is a wide

variance in their load intensity values, creating opportu-

nities for consolidation across volumes.

Storage Testbed For experimental evaluation, we set up

a single machine (Intel Pentium 4 HT 3GHz, 1GB mem-

9
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Volume ID Disk Model Size [GB] Avg IOPS Max IOPS

home-1 D0 WD5000AAKB 270 8.17 23

online D1 WD360GD 7.8 22.62 82

webmail D2 WD360GD 7.8 25.35 90

webresrc D3 WD360GD 10 7.99 59

webusers D4 WD360GD 10 18.75 37

svn-wiki D5 WD360GD 20 1.12 4

home-2 D6 WD2500AAKS 170 0.86 4

home-3 D7 WD2500AAKS 170 1.37 12

Table 3: Workload and storage system details.

Power Supply
Power

Meter

AoE

SRCMap

A

B

110V

Workload Modifier

BTReplay

Simulated Testbed

Data Collection and Reporting 

Mapping

Traces

Workload

Power Model

Calibration

Workload

Monitored

Information

Real Testbed

(0)

(1)

(2)
(2)

(3)(3)
(3)

Figure 8: Logical view of experimental setup

ory) connected to 8 disks via two SATA-II controllers

A and B. The cumulative (merged workload) trace is

played back using btreplay [1] with each volume’s trace

played back to the corresponding disk. All the disks

share one power supply P that is dedicated only for the

experimental drives; the machine connects to another

power supply. The power supply P is connected to a

Watts up? PRO power meter [29] which allows us to

measure power consumption at a one second granularity

with a resolution of 0.1W. An overhead of 6.4W is intro-

duced by the power supply itself which we deduct from

all our power measurements.

Experimental Setup We describe the experimental

setup used in our evaluation study in Fig. 8. We im-

plemented an SRCMap module with its algorithms for

replica placement and active disk identification during

any consolidation interval. An overall experimental run

consists of using the monitored data to (1) identify the

consolidation candidates for each interval and create

the virtual-to-physical mapping (2) modify the original

traces to reflect the mapping and replaying it, and (3)

power and response time reporting. At each consolida-

tion event, the Workload Modifier generates the neces-

sary additional I/O to synchronize data across the sub-

volumes affected due to active replica changes.

We evaluate SRCMap using two different sets of ex-

periments: (i) prototype runs and (ii) simulated runs. The

prototype runs evaluate SRCMap against a real storage

system and enable realistic measurements of power con-

sumption and impact to I/O performance via the report-

ing module. In a prototype run, the modified I/O work-

Volume L(0) L(1) L(2) L(3) L(4)

ID [IOPS] [IOPS] [IOPS] [IOPS] [IOPS]

D0 33 57 74 96 125

D1-D5 52 89 116 150 196

D6, D7 38 66 86 112 145

(a)

0 1 2 3 4 5 6 7 8

19.8 27.2 32.7 39.1 44.3 49.3 55.7 59.7 66.1

(b)

Table 4: Experimental settings: (a) Estimated disk

IOPS capacity levels. (b) Storage system power con-

sumption in Watts as the number of disks in active

mode are varied from 0 to 8. All disks consumed ap-

proximately the same power when active. The disks not

in active mode consume standby power which was found

to be the same across all disks.

load is replayed on the actual testbed using btreplay [1].

The simulator runs operate similarly on a simulated

testbed, wherein a power model instantiated with power

measurements from the testbed is used for reporting the

power numbers. The advantage with the simulator is the

ability to carry out longer duration experiments in sim-

ulated time as opposed to real-time allowing us to ex-

plore the parameter space efficiently. Further, one may

use it to simulate various types of storage testbeds to

study the performance under various load conditions. In

particular, we use the simulator runs to evaluate energy-

proportionality by simulating the testbed with different

values of disk IOPS capacity estimates. We also simulate

alternate power management techniques (e.g., caching,

replication) for a comparative evaluation.

All experiments with the prototype and the simula-

tor were performed with the following configuration pa-

rameters. The consolidation interval was chosen to be 2

hours for all experiments to restrict the worst-case spin-

up cycles for the disk drives to an acceptable value. Two

minute disk timeouts were used for inactive disks; active

disks within a consolidation interval remain continuously

active. Working sets and replicas were created based on

a three week workload history and we report results for

a subsequent 24 hour duration for brevity. The consoli-

dation is based on an estimate of the disk IOPS capacity,

which varies for each volume. We computed an estimate

of the disk IOPS using a synthetic random I/O workload

for each volume separately (Level L1). We use 5 IOPS

estimation levels (L0 through L4) to (a) simulate storage

testbeds at different load factors and (b) study the sen-

sitivity of SRCMap with the volume IOPS estimation.

The per volume sustainable IOPS at each of these load

levels is provided in Table 4(a). The power consumption

of the storage system with varying number of disks in

active mode is presented in Table 4(b).

7.1 Prototype Results

For the prototype evaluation, we took the most dy-

namic 8-hour period (4 consolidation intervals) from the

10
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Figure 9: Power and active disks time-line.

24 hours and played back I/O traces for the 8 work-

loads described earlier in real-time. We report actual

power consumption and the I/O response time (which

includes queuing and service time) distribution for SR-

CMap when compared to a baseline configuration where

all disks are continuously active. Power consumption

was measured every second and disk active/standby state

information was polled every 5 seconds. We used 2 dif-

ferent IOPS levels; L0 when a very conservative (low)

estimate of the disk IOPS capacity is made and L3 when

a reasonably aggressive (high) estimate is made.

We study the power savings due to SRCMap in Fig-

ure 9. Even using a conservative estimate of disk IOPS,

we are able to spin down approximately 4.33 disks on

an average, leading to an average savings of 23.5W
(35.5%). Using an aggressive estimate of disk IOPS, SR-

CMap is able to spin down 7 disks saving 38.9W (59%)

for all periods other than the 4hr-6hr period. In the 4-6

hr period, it uses 2 disks leading to a power savings of

33.4W (50%). The spikes in the power consumption re-

late to planned and unplanned (due to read misses) vol-

ume activations, which are few in number. It is impor-

tant to note that substantial power is used in maintaining

standby states (19.8W ) and within the dynamic range,

the power savings due to SRCMap are even higher.

We next investigate any performance penalty incurred

due to consolidation. Fig. 10 (upper) depicts the cumula-

tive probability density function (CDF) of response times

for three different configurations: Baseline - On – no

consolidation and all disks always active, SRCMap us-

ing L0, and L3. The accuracy of the CDFs for L0 and L3

suffer from a reporting artifact that the CDFs include the

latencies for the synchronization I/Os themselves which

we were not able to filter out. We throttle the synchro-

nization I/Os to one every 10ms to reduce their interfer-

ence with foreground operations.

First, we observed that less than 0.003% of the re-

quests incurred a spin-up hit due to read misses result-

ing in latencies of greater than 4 seconds in both the L0

and L3 configurations (not shown). This implies that the

working-set dynamically updated with missed reads and

offloaded writes is a fairly at capturing the active data

for these workloads. Second, we observe that for re-

sponse times greater than 1ms, Baseline - On demon-
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Figure 10: Impact of consolidation on response time.

strates better performance than L0 and L3 (upper plot).

For both L0 and L3, less than 8% of requests incur la-

tencies greater than 10ms, less than 2% of requests in-

cur latencies greater than 100ms. L0, having more disks

at its disposal, shows slightly better response times than

L3. For response times lower than 1ms a reverse trend is

observed wherein the SRCMap configurations do better

than Baseline - On . We conjectured that this is due to

the influence of the low latency writes during synchro-

nization operations.

To further delineate the influence of synchronization

I/Os, we performed two additional runs. In the first run,

we disable all synchronization I/Os and in the second,

we disable all foreground I/Os (lower plot). The CDFs

of only the synchronization operations, which show a bi-

modal distribution with 50% low-latency writes absorbed

by the disk buffer and 50% reads with latencies greater

than 1.5ms, indicate that synchronization reads are con-

tributing towards the increased latencies in L0 and L3 for

the upper plot. The CDF without synchronization (’w/o

synch’) is much closer to Baseline - On with a decrease

of approximately 10% in the number of request with la-

tencies greater than 1ms. Intelligent scheduling of syn-

chronization I/Os is an important area of future work to

further reduce the impact on foreground I/O operations.

7.2 Simulator Results

We conducted several experiments with simulated

testbeds hosting disks of capacitiesL0 toL4. For brevity,

we report our observations for disk capacity levels L0
and L3, expanding to other levels only when required.

7.2.1 Comparative Evaluation

We first demonstrate the basic energy proportionality

achieved by SRCMap in its most conservative config-

uration (L0) and three alternate solutions, Caching-1,

Caching-2, and Replication. Caching-1 is a scheme that

uses 1 additional physical volume as a cache. If the ag-

gregate load observed is less than the IOPS capacity of

11
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Figure 11: Power consumption, remap operations,

and aggregate load across time for a single day.

the cache volume, the workload is redirected to the cache

volume. If the load is higher, the original physical vol-

umes are used. Caching-2 uses 2 cache volumes in a sim-

ilar manner. Replication identifies pairs of physical vol-

umes with similar bandwidths and creates replica pairs,

where all the data on one volume is replicated on the

other. If the aggregate load to a pair is less than the IOPS

capacity of one volume, only one in the pair is kept ac-

tive, else both volumes are kept active.

Figure 11 evaluates power consumption of all four so-

lutions by simulating the power consumed as volumes

are spun up/down over 12 2-hour consolidation intervals.

It also presents the average load (measured in IOPS)

within each consolidation interval. In the case of SR-

CMap, read misses are indicated by instantaneous power

spikes which require activating an additional disk drive.

To avoid clutter, we do not show the spikes due to read

misses for the Cache-1/2 configurations. We observe that

each of solutions demonstrate varying degrees of energy

proportionality across the intervals. SRCMap (L0) uni-

formly consumes the least amount of power across all in-

tervals and its power consumption is proportional to load.

Replication also demonstrates good energy proportional-

ity but at a higher power consumption on an average. The

caching configurations are the least energy proportional

with only two effective energy levels to work with.

We also observe that SRCMap remaps (i.e., changes

the active replica for) a minimal number of volumes – ei-

ther 0, 1, or 2 during each consolidation interval. In fact,

we found that for all durations the number of volumes be-

ing remapped equaled the change in the number of active

physical volumes. indicating that the number of synchro-

nization operations are kept to the minimum. Finally, in

our system with eight volumes, Caching-1, Caching-2,

and Replication use 12.5%, 25% and 100% additional

space respectively, while as we shall show later, SR-

CMap is able to deliver almost all its energy savings with

just 10% additional space.

Next, we investigate how SRCMap modifies per-

volume activity and power consumption with an aggres-

sive configuration L3, a configuration that demonstrated
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Figure 12: Load and power consumption for each

disk. Y ranges for all loads is [1 : 130] IOPS in log-

arithmic scale. Y ranges for power is [0 : 19] W.

interesting consolidation dynamics over the 12 2-hour

consolidation intervals. Each row in Figure 12 is specific

to one of the eight volumesD0 throughD7. The left and

center columns show the original and SRCMap-modified

load (IOPS) for each volume. The modified load were

consolidated on disksD2 andD3 by SRCMap. Note that

disks D6 and D7 are continuously in standby mode, D3
is continuously in active mode throughout the 24 hour

duration while the remaining disks switched states more

than once. Of these, D0, D1 and D5 were maintained

in standby mode by SRCMap, but were spun up one or

more times due to read misses to their replica volumes,

while D2 was made active by SRCMap for two of the

consolidation intervals only.

We note that the number of spin-up cycles did not ex-

ceed 6 for any physical volume during the 24 hour pe-

riod, thus not sacrificing reliability. Due to the reliability-

aware design of SRCMap, volumes marked as active

consume power even when there is idleness over shorter,

sub-interval durations. For the right column, power con-

sumption for each disk in either active mode or spun

down is shown with spikes representing spin-ups due to

read misses in the volume’s active replica. Further, even

if the working set changes drastically during an interval,

it only leads to a single spin up that services a large num-

ber of misses. For example, D1 served approximately

5∗104 misses in the single spin-up it had to incur (Figure

omitted due to lack of space). We also note that summing

up power consumption of individual volumes cannot be

used to compute total power as per Table 4(b).

7.2.2 Sensitivity with Space Overhead

We evaluated the sensitivity of SRCMap energy savings

with the amount of over-provisioned space to store vol-

ume working sets. Figure 13 depicts the average power

consumption of the entire storage system (i.e., all eight

volumes) across a 24 hour interval as the amount of over-

provisioned space is varied as a percentage of the total

12
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Figure 13: Sensitivity to over-provisioned space.

storage space for the load level L0. We observe that SR-

CMap is able to deliver most of its energy savings with

10% space over-provisioning and all savings with 20%.

Hence, we conclude that SRCMap can deliver power sav-

ings with minimal replica space.

7.2.3 Energy Proportionality

Our next experiment evaluates the degree of energy pro-

portionality to the total load on the storage system de-

livered by SRCMap. For this experiment, we examined

the power consumption within each 2-hour consolida-

tion interval across the 24-hour duration for each of the

five load estimation levels L0 through L4, giving us 60

data points. Further, we created a few higher load lev-

els below L0 to study energy proportionality at high load

as well. Each data point is characterized by an average

power consumption value and a load factor value which

is the observed average IOPS load as a percentage of

the estimated IOPS capacity (based on the load estima-

tion level) across all the volumes. Figure 14 presents the

power consumption at each load factor. Even though the

load factor is a continuous variable, power consumption

levels in SRCMap are discrete. One may note that SR-

CMap can only vary one volume at a time and hence the

different power-performance levels in SRCMap differ

by one physical volume. We do observe that SRCMap

is able to achieve close to N -level proportionality for a

system with N -volumes, demonstrating a step-wise lin-

ear increase in power levels with increasing load.

7.3 Resource overhead of SRCMap

The primary resource overhead in SRCMap is the mem-

ory used by the Replica Metadata (map) of the Replica

manager. This memory overhead depends on the size of

the replica space maintained on each volume for storing

both working-sets and off-loaded writes. We maintain a

per-block map entry, which consists of 5 bytes to point to

the current active replica. 4 additional bytes keep what

replicas contain the last data version and 4 more bytes

are used to handle the I/Os absorbed in the replica-space

write buffer, making a total of 13 bytes for each entry in

the map. If N is the number of volumes of size S with

R% space to store replicas, then the worst-case memory

consumption is approximately equal to the map size, ex-
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pressed as N×S×R×13

212 . For a storage virtualization man-

ager that manages 10 volumes of total size 10TB, each

with a replica space allocation of 100GB (10% over-

provisioning), the memory overhead is only 3.2GB, eas-

ily affordable for a high-end storage virtualization man-

ager.

8 Conclusions and Future Work

In this work, we have proposed and evaluated SRCMap,

a storage virtualization solution for energy-proportional

storage. SRCMap establishes the feasibility of an energy

proportional storage system with fully flexible dynamic

storage consolidation along the lines of server consoli-

dation where any virtual machine can be migrated to any

physical server in the cluster. SRCMap is able to meet all

the desired goals of fine-grained energy proportionality,

low space overhead, reliability, workload shift adapta-

tion, and heterogeneity support.

Our work opens up several new directions for further

research. Some of the most important modeling and op-

timization solutions that will improve a system like SR-

CMap are (i) new models that capture the performance

impact of storage consolidation, (ii) investigating the use

of workload correlation between logical volumes dur-

ing consolidation, and (iii) optimizing the scheduling

of replica synchronization to minimize impact on fore-

ground I/O.
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A Appendix

A.1 Proof of Theorem 1

Proof : Note that the algorithm always selects the source nodes

with the highest outgoing edge weight. Hence, it suffices to

show that the outgoing edge weight of a source node equals

(or is proportional to) the probability of it requiring a replica

target on an active disk. Observe that the ordering property

on weights holds in the first iteration of the algorithm as the

outgoing edge weight for each mdisk is the probability of it

being spun down (or requiring a replica target). We argue that

the re-calibration step ensures that the Ordering property holds

inductively for all subsequent iterations.

Assuming the property holds for the m
th iteration, consider

the (m+1)th iteration of the algorithm. We classify all source

nodes into three categories: (i) mdisks with Pi lower than

the Pm+1, (ii) mdisks with Pi higher than Pm+1 but with no

replicas assigned to targets, and (iii) mdisks with Pi higher

than Pm+1 but with replicas assigned already. Note that for

the first and second category of mdisks, the outgoing edge

weights are equal to their initial values and hence their proba-

bility of their being spun down is same as the edge weights. For

the third category, we restrict attention to mdisks with only

one replica copy, while observing that the argument holds for

the general case as well. Assume that the mdisk Si has replica

placed on mdisk Tj . Observe then that the re-calibration prop-

erty ensures that the current weight of edge wi,j is PiPj , which

equals the probability that both Si and Tj are spun down. Note

also that Si would require an active target other than Tj if Tj

is also spun down, and hence the likelihood of Si requiring a

replica target (amongst active disks) is precisely PiPj . Hence,

the ordering property holds for the (m + 1)th iteration as well.

14
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Abstract
We introduce Membrane, a set of changes to the oper-
ating system to support restartable file systems. Mem-
brane allows an operating system to tolerate a broad
class of file system failures and does so while remain-
ing transparent to running applications; upon failure, the
file system restarts, its state is restored, and pending ap-
plication requests are serviced as if no failure had oc-
curred. Membrane provides transparent recovery through
a lightweight logging and checkpoint infrastructure, and
includes novel techniques to improve performance and
correctness of its fault-anticipation and recovery machin-
ery. We tested Membrane with ext2, ext3, and VFAT.
Through experimentation, we show that Membrane in-
duces little performance overhead and can tolerate a wide
range of file system crashes. More critically, Membrane
does so with little or no change to existing file systems
thus improving robustness to crashes without mandating
intrusive changes to existing file-system code.

1 Introduction
Operating systems crash. Whether due to software
bugs [8] or hardware bit-flips [22], the reality is clear:
large code bases are brittle and the smallest problem in
software implementation or hardware environment can
lead the entire monolithic operating system to fail.

Recent research has made great headway in operating-
system crash tolerance, particularly in surviving device
driver failures [9, 10, 13, 14, 20, 31, 32, 37, 40]. Many
of these approaches achieve some level of fault toler-
ance by building a hard wall around OS subsystems using
address-space based isolation and microrebooting [2, 3]
said drivers upon fault detection. For example, Nooks
(and follow-on work with Shadow Drivers) encapsulate
device drivers in their own protection domain, thus mak-
ing it challenging for errant driver code to overwrite data
in other parts of the kernel [31, 32]. Other approaches
are similar, using variants of microkernel-based architec-
tures [7, 13, 37] or virtual machines [10, 20] to isolate
drivers from the kernel.

Device drivers are not the only OS subsystem, nor are
they necessarily where the most important bugs reside.
Many recent studies have shown that file systems contain
a large number of bugs [5, 8, 11, 25, 38, 39]. Perhaps
this is not surprising, as file systems are one of the largest

and most complex code bases in the kernel. Further,
file systems are still under active development, and new
ones are introduced quite frequently. For example, Linux
has many established file systems, including ext2 [34],
ext3 [35], reiserfs [27], and still there is great interest in
next-generation file systems such as Linux ext4 and btrfs.
Thus, file systems are large, complex, and under develop-
ment, the perfect storm for numerous bugs to arise.

Because of the likely presence of flaws in their imple-
mentation, it is critical to consider how to recover from
file system crashes as well. Unfortunately, we cannot di-
rectly apply previous work from the device-driver litera-
ture to improving file-system fault recovery. File systems,
unlike device drivers, are extremely stateful, as they man-
age vast amounts of both in-memory and persistent data;
making matters worse is the fact that file systems spread
such state across many parts of the kernel including the
page cache, dynamically-allocated memory, and so forth.
On-disk state of the file system also needs to be consis-
tent upon restart to avoid any damage to the stored data.
Thus, when a file system crashes, a great deal more care is
required to recover while keeping the rest of the OS intact.

In this paper, we introduce Membrane, an operating
system framework to support lightweight, stateful recov-
ery from file system crashes. During normal operation,
Membrane logs file system operations, tracks file sys-
tem objects, and periodically performs lightweight check-
points of file system state. If a file system crash oc-
curs, Membrane parks pending requests, cleans up ex-
isting state, restarts the file system from the most recent
checkpoint, and replays the in-memory operation log to
restore the state of the file system. Once finished with re-
covery, Membrane begins to service application requests
again; applications are unaware of the crash and restart
except for a small performance blip during recovery.

Membrane achieves its performance and robustness
through the application of a number of novel mechanisms.
For example, a generic checkpointing mechanism enables
low-cost snapshots of file system-state that serve as re-
covery points after a crash with minimal support from ex-
isting file systems. A page stealing technique greatly re-
duces logging overheads of write operations, which would
otherwise increase time and space overheads. Finally, an
intricate skip/trust unwind protocol is applied to carefully
unwind in-kernel threads through both the crashed file
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system and kernel proper. This process restores kernel
state while preventing further file-system-induced damage
from taking place.

Interestingly, file systems already contain many ex-
plicit error checks throughout their code. When triggered,
these checks crash the operating system (e.g., by calling
panic) after which the file system either becomes unus-
able or unmodifiable. Membrane leverages these explicit
error checks and invokes recovery instead of crashing the
file system. We believe that this approach will have the
propaedeutic side-effect of encouraging file system devel-
opers to add a higher degree of integrity checking in order
to fail quickly rather than run the risk of further corrupting
the system. If such faults are transient (as many important
classes of bugs are [21]), crashing and quickly restarting
is a sensible manner in which to respond to them.

As performance is critical for file systems, Membrane
only provides a lightweight fault detection mechanism
and does not place an address-space boundary between
the file system and the rest of the kernel. Hence, it is
possible that some types of crashes (e.g., wild writes [4])
will corrupt kernel data structures and thus prohibit com-
plete recovery, an inherent weakness of Membrane’s ar-
chitecture. Users willing to trade performance for relia-
bility could use Membrane on top of stronger protection
mechanism such as Nooks [31].

We evaluated Membrane with the ext2, VFAT, and ext3
file systems. Through experimentation, we find that Mem-
brane enables existing file systems to crash and recover
from a wide range of fault scenarios (around 50 fault in-
jection experiments). We also find that Membrane has less
than 2% overhead across a set of file system benchmarks.
Membrane achieves these goals with little or no intrusive-
ness to existing file systems: only 5 lines of code were
added to make ext2, VFAT, and ext3 restartable. Finally,
Membrane improves robustness with complete applica-
tion transparency; even though the underlying file system
has crashed, applications continue to run.

The rest of this paper is organized as follows. Sec-
tion 2 places Membrane in the context of other relevant
work. Sections 3 and 4 present the design and imple-
mentation, respectively, of Membrane; finally, we eval-
uate Membrane in Section 5 and conclude in Section 6.

2 Background
Before presenting Membrane, we first discuss previous
systems that have a similar goal of increasing operating
system fault resilience. We classify previous approaches
along two axes: overhead and statefulness.

We classify fault isolation techniques that incur little
overhead as lightweight, while more costly mechanisms
are classified as heavyweight. Heavyweight mechanisms
are not likely to be adopted by file systems, which have
been tuned for high performance and scalability [15, 30,

1], especially when used in server environments.
We also classify techniques based on how much system

state they are designed to recover after failure. Techniques
that assume the failed component has little in-memory
state is referred to as stateless, which is the case with
most device driver recovery techniques. Techniques that
can handle components with in-memory and even persis-
tent storage are stateful; when recovering from file-system
failure, stateful techniques are required.

We now examine three particular systems as they are
exemplars of three previously explored points in the de-
sign space. Membrane, described in greater detail in sub-
sequent sections, represents an exploration into the fourth
point in this space, and hence its contribution.

2.1 Nooks and Shadow Drivers
The renaissance in building isolated OS subsystems is
found in Swift et al.’s work on Nooks and subsequently
shadow drivers [31, 32]. In these works, the authors
use memory-management hardware to build an isolation
boundary around device drivers; not surprisingly, such
techniques incur high overheads [31]. The kernel cost of
Nooks (and related approaches) is high, in this one case
spending nearly 6× more time in the kernel.

The subsequent shadow driver work shows how re-
covery can be transparently achieved by restarting failed
drivers and diverting clients by passing them error codes
and related tricks. However, such recovery is relatively
straightforward: only a simple reinitialization must occur
before reintegrating the restarted driver into the OS.

2.2 SafeDrive
SafeDrive takes a different approach to fault re-
silience [40]. Instead of address-space based protec-
tion, SafeDrive automatically adds assertions into device
drivers. When an assert is triggered (e.g., due to a null
pointer or an out-of-bounds index variable), SafeDrive en-
acts a recovery process that restarts the driver and thus
survives the would-be failure. Because the assertions are
added in a C-to-C translation pass and the final driver
code is produced through the compilation of this code,
SafeDrive is lightweight and induces relatively low over-
heads (up to 17% reduced performance in a network
throughput test and 23% higher CPU utilization for the
USB driver [40], Table 6.).

However, the SafeDrive recovery machinery does not
handle stateful subsystems; as a result the driver will be
in an initial state after recovery. Thus, while currently
well-suited for a certain class of device drivers, SafeDrive
recovery cannot be applied directly to file systems.

2.3 CuriOS
CuriOS, a recent microkernel-based operating system,
also aims to be resilient to subsystem failure [7]. It
achieves this end through classic microkernel techniques
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Heavyweight Lightweight
Nooks/Shadow[31, 32]∗ SafeDrive[40]∗

Stateless Xen[10], Minix[13, 14] Singularity[19]
L4[20], Nexus[37]

Stateful CuriOS[7] Membrane∗EROS[29]

Table 1: Summary of Approaches. The table performs
a categorization of previous approaches that handle OS subsys-
tem crashes. Approaches that use address spaces or full-system
checkpoint/restart are too heavyweight; other language-based
approaches may be lighter weight in nature but do not solve the
stateful recovery problem as required by file systems. Finally,
the table marks (with an asterisk) those systems that integrate
well into existing operating systems, and thus do not require the
widespread adoption of a new operating system or virtual ma-
chine to be successful in practice.

(i.e., address-space boundaries between servers) with an
additional twist: instead of storing session state inside a
service, it places such state in an additional protection do-
main where it can remain safe from a buggy service. How-
ever, the added protection is expensive. Frequent kernel
crossings, as would be common for file systems in data-
intensive environments, would dominate performance.

As far as we can discern, CuriOS represents one of the
few systems that attempt to provide failure resilience for
more stateful services such as file systems; other heavy-
weight checkpoint/restart systems also share this prop-
erty [29]. In the paper there is a brief description of an
“ext2 implementation”; unfortunately it is difficult to un-
derstand exactly how sophisticated this file service is or
how much work is required to recover from failures. It
also seems that there is little shared state as is common in
modern systems (e.g., pages in a page cache).

2.4 Summary
We now classify these systems along the two axes of over-
head and statefulness, as shown in Table 1. From the table,
we can see that many systems use methods that are simply
too costly for file systems; placing address-space bound-
aries between the OS and the file system greatly increases
the amount of data copying (or page remapping) that must
occur and thus is untenable. We can also see that fewer
lightweight techniques have been developed. Of those,
we know of none that work for stateful subsystems such
as file systems. Thus, there is a need for a lightweight,
transparent, and stateful approach to fault recovery.

3 Design
Membrane is designed to transparently restart the affected
file system upon a crash, while applications and the rest of
the OS continue to operate normally. A primary challenge
in restarting file systems is to correctly manage the state
associated with the file system (e.g., file descriptors, locks
in the kernel, and in-memory inodes and directories).

In this section, we first outline the high-level goals for
our system. Then, we discuss the nature and types of
faults Membrane will be able to detect and recover from.
Finally, we present the three major pieces of the Mem-
brane system: fault detection, fault anticipation, and re-
covery.

3.1 Goals
We believe there are five major goals for a system that
supports restartable file systems.
Fault Tolerant: A large range of faults can occur in
file systems. Failures can be caused by faulty hardware
and buggy software, can be permanent or transient, and
can corrupt data arbitrarily or be fail-stop. The ideal
restartable file system recovers from all possible faults.
Lightweight: Performance is important to most users and
most file systems have had their performance tuned over
many years. Thus, adding significant overhead is not a vi-
able alternative: a restartable file system will only be used
if it has comparable performance to existing file systems.
Transparent: We do not expect application developers
to be willing to rewrite or recompile applications for this
environment. We assume that it is difficult for most appli-
cations to handle unexpected failures in the file system.
Therefore, the restartable environment should be com-
pletely transparent to applications; applications should
not be able to discern that a file-system has crashed.
Generic: A large number of commodity file systems exist
and each has its own strengths and weaknesses. Ideally,
the infrastructure should enable any file system to be made
restartable with little or no changes.
Maintain File-System Consistency: File systems pro-
vide different crash consistency guarantees and users typ-
ically choose their file system depending on their require-
ments. Therefore, the restartable environment should not
change the existing crash consistency guarantees.

Many of these goals are at odds with one another. For
example, higher levels of fault resilience can be achieved
with heavier-weight fault-detection mechanisms. Thus
in designing Membrane, we explicitly make the choice
to favor performance, transparency, and generality over
the ability to handle a wider range of faults. We believe
that heavyweight machinery to detect and recover from
relatively-rare faults is not acceptable. Finally, although
Membrane should be as generic a framework as possible,
a few file system modifications can be tolerated.

3.2 Fault Model
Membrane’s recovery does not attempt to handle all types
of faults. Like most work in subsystem fault detection and
recovery, Membrane best handles failures that are tran-
sient and fail-stop [26, 32, 40].

Deterministic faults, such as memory corruption, are
challenging to recover from without altering file-system
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code. We assume that testing and other standard code-
hardening techniques have eliminated most of these bugs.
Faults such as a bug that is triggered on a given input se-
quence could be handled by failing the particular request.
Currently, we return an error (-EIO) to the requests trig-
gering such deterministic faults, thus preventing the same
fault from being triggered again and again during recov-
ery. Transient faults, on the other hand, are caused by race
conditions and other environmental factors [33]. Thus,
our aim is to mainly cope with transient faults, which can
be cured with recovery and restart.

We feel that many faults and bugs can be caught with
lightweight hardware and software checks. Other solu-
tions, such as extremely large address spaces [17], could
help reduce the chances of wild writes causing harm by
hiding kernel objects (“needles”) in a much larger ad-
dressable region (“the haystack”).

Recovering a stateful file system with lightweight
mechanisms is especially challenging when faults are not
fail-stop. For example, consider buggy file-system code
that attempts to overwrite important kernel data structures.
If there is a heavyweight address-space boundary between
the file system and kernel proper, then such a stray write
can be detected immediately; in effect, the fault becomes
fail-stop. If, in contrast, there is no machinery to detect
stray writes, the fault can cause further silent damage to
the rest of the kernel before causing a detectable fault; in
such a case, it may be difficult to recover from the fault.

We strongly believe that once a fault is detected in the
file system, no aspect of the file system should be trusted:
no more code should be run in the file system and its in-
memory data structures should not be used.

The major drawback of our approach is that the bound-
ary we use is soft: some file system bugs can still cor-
rupt kernel state outside the file system and recovery will
not succeed. However, this possibility exists even in sys-
tems with hardware boundaries: data is still passed across
boundaries, and no matter how many integrity checks one
makes, it is possible that bad data is passed across the
boundary and causes problems on the other side.

3.3 Overview
The main design challenge for Membrane is to recover
file-system state in a lightweight, transparent fashion. At
a high level, Membrane achieves this goal as follows.

Once a fault has been detected in the file system, Mem-
brane rolls back the state of the file system to a point in
the past that it trusts: this trusted point is a consistent file-
system image that was checkpointed to disk. This check-
point serves to divide file-system operations into distinct
epochs; no file-system operation spans multiple epochs.

To bring the file system up to date, Membrane re-
plays the file-system operations that occurred after the
checkpoint. In order to correctly interpret some opera-

Figure 1: Membrane Overview. The figure shows a file
being created and written to on top of a restartable file sys-
tem. Halfway through, Membrane creates a checkpoint. After
the checkpoint, the application continues to write to the file;
the first succeeds (and returns success to the application) and
the program issues another write, which leads to a file system
crash. For Membrane to operate correctly, it must (1) unwind
the currently-executing write and park the calling thread, (2)
clean up file system objects (not shown), restore state from the
previous checkpoint, and (3) replay the activity from the current
epoch (i.e., write w1). Once file-system state is restored from
the checkpoint and session state is restored, Membrane can (4)
unpark the unwound calling thread and let it reissue the write,
which (hopefully) will succeed this time. The application should
thus remain unaware, only perhaps noticing the timing of the
third write (w2) was a little slow.

tions, Membrane must also remember small amounts of
application-visible state from before the checkpoint, such
as file descriptors. Since the purpose of this replay is only
to update file-system state, non-updating operations such
as reads do not need to be replayed.

Finally, to clean up the parts of the kernel that the buggy
file system interacted with in the past, Membrane releases
the kernel locks and frees memory the file system allo-
cated. All of these steps are transparent to applications
and require no changes to file-system code. Applications
and the rest of the OS are unaffected by the fault. Figure 1
gives an example of how Membrane works during normal
file-system operation and upon a file system crash.

Thus, there are three major pieces in the Membrane de-
sign. First, fault detection machinery enables Membrane
to detect faults quickly. Second, fault anticipation mecha-
nisms record information about current file-system opera-
tions and partition operations into distinct epochs. Finally,
the fault recovery subsystem executes the recovery proto-
col to clean up and restart the failed file system.

3.4 Fault Detection
The main aim of fault detection within Membrane is to
be lightweight while catching as many faults as possible.
Membrane uses both hardware and software techniques to
catch faults. The hardware support is simple: null point-
ers, divide-by-zero, and many other exceptions are caught
by the hardware and routed to the Membrane recovery
subsystem. More expensive hardware machinery, such as
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address-space-based isolation, is not used.
The software techniques leverage the many checks that

already exist in file system code. For example, file sys-
tems contain assertions as well as calls to panic() and
similar functions. We take advantage of such internal in-
tegrity checking and transform calls that would crash the
system into calls into our recovery engine. An approach
such as that developed by SafeDrive [40] could be used
to automatically place out-of-bounds pointer and other
checks in the file system code.

Membrane provides further software-based protection
by adding extensive parameter checking on any call from
the file system into the kernel proper. These lightweight
boundary wrappers protect the calls between the file sys-
tem and the kernel and help ensure such routines are
called with proper arguments, thus preventing file system
from corrupting kernel objects through bad arguments.
Sophisticated tools (e.g., Ballista[18]) could be used to
generate many of these wrappers automatically.

3.5 Fault Anticipation
As with any system that improves reliability, there is a per-
formance and space cost to enabling recovery when a fault
occurs. We refer to this component as fault anticipation.
Anticipation is pure overhead, paid even when the system
is behaving well; it should be minimized to the greatest
extent possible while retaining the ability to recover.

In Membrane, there are two components of fault antic-
ipation. First, the checkpointing subsystem partitions file
system operations into different epochs (or transactions)
and ensures that the checkpointed image on disk repre-
sents a consistent state. Second, updates to data structures
and other state are tracked with a set of in-memory logs
and parallel stacks. The recovery subsystem (described
below) utilizes these pieces in tandem to restart the file
system after failure.

File system operations use many core kernel services
(e.g., locks, memory allocation), are heavily intertwined
with major kernel subsystems (e.g., the page cache), and
have application-visible state (e.g., file descriptors). Care-
ful state-tracking and checkpointing are thus required to
enable clean recovery after a fault or crash.

3.5.1 Checkpointing
Checkpointing is critical because a checkpoint represents
a point in time to which Membrane can safely roll back
and initiate recovery. We define a checkpoint as a consis-
tent boundary between epochs where no operation spans
multiple epochs. By this definition, file-system state at a
checkpoint is consistent as no file system operations are
in flight.

We require such checkpoints for the following reason:
file-system state is constantly modified by operations such
as writes and deletes and file systems lazily write back
the modified state to improve performance. As a result, at

any point in time, file system state is comprised of (i) dirty
pages (in memory), (ii) in-memory copies of its meta-data
objects (that have not been copied to its on-disk pages),
and (iii) data on the disk. Thus, the file system is in an in-
consistent state until all dirty pages and meta-data objects
are quiesced to the disk. For correct operation, one needs
to ensure that the file system is in a consistent state at the
beginning of the mount process (or the recovery process
in the case of Membrane).

Modern file systems take a number of different ap-
proaches to the consistency management problem: some
group updates into transactions (as in journaling file sys-
tems [12, 27, 30, 35]); others define clear consistency in-
tervals and create snapshots (as in shadow-paging file sys-
tems [1, 15, 28]). All such mechanisms periodically create
checkpoints of the file system in anticipation of a power
failure or OS crash. Older file systems do not impose any
ordering on updates at all (as in Linux ext2 [34] and many
simpler file systems). In all cases, Membrane must oper-
ate correctly and efficiently.

The main challenge with checkpointing is to accom-
plish it in a lightweight and non-intrusive manner. For
modern file systems, Membrane can leverage the in-built
journaling (or snapshotting) mechanism to periodically
checkpoint file system state; as these mechanisms atomi-
cally write back data modified within a checkpoint to the
disk. To track file-system level checkpoints, Membrane
only requires that these file systems explicitly notify the
beginning and end of the file-system transaction (or snap-
shot) to it so that it can throw away the log records before
the checkpoint. Upon a file system crash, Membrane uses
the file system’s recovery mechanism to go back to the
last known checkpoint and initiate the recovery process.
Note that the recovery process uses on-disk data and does
not depend on the in-memory state of the file system.

For file systems that do not support any consistent-
management scheme (e.g., ext2), Membrane provides
a generic checkpointing mechanism at the VFS layer.
Membrane’s checkpointing mechanism groups several
file-system operations into a single transaction and com-
mits it atomically to the disk. A transaction is created
by temporarily preventing new operations from entering
into the file system for a small duration in which dirty
meta-data objects are copied back to their on-disk pages
and all dirty pages are marked copy-on-write. Through
copy-on-write support for file-system pages, Membrane
improves performance by allowing file system operations
to run concurrently with the checkpoint of the previous
epoch. Membrane associates each page with a check-
point (or epoch) number to prevent pages dirtied in the
current epoch from reaching the disk. It is important to
note that the checkpointing mechanism in Membrane is
implemented at the VFS layer; as a result, it can be lever-
aged by all file system with little or no modifications.
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3.5.2 Tracking State with Logs and Stacks

Membrane must track changes to various aspects of file
system state that transpired after the last checkpoint. This
is accomplished with five different types of logs or stacks
handling: file system operations, application-visible ses-
sions, mallocs, locks, and execution state.

First, an in-memory operation log (op-log) records all
state-modifying file system operations (such as open) that
have taken place during the epoch or are currently in
progress. The op-log records enough information about
requests to enable full recovery from a given checkpoint.

Membrane also requires a small session log (s-log).
The s-log tracks which files are open at the beginning of
an epoch and the current position of the file pointer. The
op-log is not sufficient for this task, as a file may have
been opened in a previous epoch; thus, by reading the op-
log alone, one can only observe reads and writes to vari-
ous file descriptors without the knowledge of which files
such operations refer to.

Third, an in-memory malloc table (m-table) tracks
heap-allocated memory. Upon failure, the m-table can
be consulted to determine which blocks should be freed.
If failure is infrequent, an implementation could ignore
memory left allocated by a failed file system; although
memory would be leaked, it may leak slowly enough not
to impact overall system reliability.

Fourth, lock acquires and releases are tracked by the
lock stack (l-stack). When a lock is acquired by a thread
executing a file system operation, information about said
lock is pushed onto a per-thread l-stack; when the lock is
released, the information is popped off. Unlike memory
allocation, the exact order of lock acquires and releases
is critical; by maintaining the lock acquisitions in LIFO
order, recovery can release them in the proper order as
required. Also note that only locks that are global kernel
locks (and hence survive file system crashes) need to be
tracked in such a manner; private locks internal to a file
system will be cleaned up during recovery and therefore
require no such tracking.

Finally, an unwind stack (u-stack) is used to track the
execution of code in the file system and kernel. By push-
ing register state onto the per-thread u-stack when the file
system is first called on kernel-to-file-system calls, Mem-
brane records sufficient information to unwind threads af-
ter a failure has been detected in order to enable restart.

Note that the m-table, l-stack, and u-stack are compen-
satory [36]; they are used to compensate for actions that
have already taken place and must be undone before pro-
ceeding with restart. On the other hand, both the op-log
and s-log are restorative in nature; they are used by recov-
ery to restore the in-memory state of the file system before
continuing execution after restart.

3.6 Fault Recovery
The fault recovery subsystem is likely the largest subsys-
tem within Membrane. Once a fault is detected, control is
transferred to the recovery subsystem, which executes the
recovery protocol. This protocol has the following phases:
Halt execution and park threads: Membrane first halts
the execution of threads within the file system. Such “in-
flight” threads are prevented from further execution within
the file system in order to both prevent further damage
as well as to enable recovery. Late-arriving threads (i.e.,
those that try to enter the file system after the crash takes
place) are parked as well.
Unwind in-flight threads: Crashed and any other in-
flight thread are unwound and brought back to the point
where they are about to enter the file system; Membrane
uses the u-stack to restore register values before each call
into the file system code. During the unwind, any held
global locks recorded on l-stack are released.
Commit dirty pages from previous epoch to stable
storage: Membrane moves the system to a clean starting
point at the beginning of an epoch; all dirty pages from
the previous epoch are forcefully committed to disk. This
action leaves the on-disk file system in a consistent state.
Note that this step is not needed for file systems that have
their own crash consistency mechanism.
“Unmount” the file system: Membrane consults the m-
table and frees all in-memory objects allocated by the the
file system. The items in the file system buffer cache (e.g.,
inodes and directory entries) are also freed. Conceptually,
the pages from this file system in the page cache are also
released mimicking an unmount operation.
“Remount” the file system: In this phase, Membrane
reads the super block of the file system from stable stor-
age and performs all other necessary work to reattach the
FS to the running system.
Roll forward: Membrane uses the s-log to restore the ses-
sions of active processes to the state they were at the last
checkpoint. It then processes the op-log, replays previous
operations as needed and restores the active state of the
file system before the crash. Note that Membrane uses
the regular VFS interface to restore sessions and to replay
logs. Hence, Membrane does not require any explicit sup-
port from file systems.
Restart execution: Finally, Membrane wakes all parked
threads. Those that were in-flight at the time of the crash
begin execution as if they had not entered the file system;
those that arrived after the crash are allowed to enter the
file system for the first time, both remaining oblivious of
the crash.

4 Implementation
We now present the implementation of Membrane. We
first describe the operating system (Linux) environment,
and then present each of the main components of Mem-
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brane. Much of the functionality of Membrane is encap-
sulated within two components: the checkpoint manager
(CPM) and the recovery manager (RM). Each of these
subsystems is implemented as a background thread and
is needed during anticipation (CPM) and recovery (RM).
Beyond these threads, Membrane also makes heavy use of
interposition to track the state of various in-memory ob-
jects and to provide the rest of its functionality. We ran
Membrane with ext2, VFAT, and ext3 file systems.

In implementing the functionality described above,
Membrane employs three key techniques to reduce over-
heads and make lightweight restart of a stateful file sys-
tems feasible. The techniques are (i) page stealing: for
low-cost operation logging, (ii) COW-based checkpoint-
ing: for fast in-memory partitioning of pages across
epochs using copy-on-write techniques for file systems
that do not support transactions, and (iii) control-flow
capture and skip/trust unwind protocol: to halt in-flight
threads and properly unwind in-flight execution.

4.1 Linux Background
Before delving into the details of Membrane’s implemen-
tation, we first provide some background on the operating
system in which Membrane was built. Membrane is cur-
rently implemented inside Linux 2.6.15.

Linux provides support for multiple file systems via the
VFS interface [16], much like many other operating sys-
tems. Thus, the VFS layer presents an ideal point of inter-
position for a file system framework such as Membrane.

Like many systems [6], Linux file systems cache user
data in a unified page cache. The page cache is thus tightly
integrated with file systems and there are frequent cross-
ings between the generic page cache and file system code.

Writes to disk are handled in the background (except
when forced to disk by applications). A background I/O
daemon, known as pdflush, wakes up, finds old and
dirty pages, and flushes them to disk.

4.2 Fault Detection
There are numerous fault detectors within Membrane,
each of which, when triggered, immediately begins the
recovery protocol. We describe the detectors Membrane
currently uses; because they are lightweight, we imagine
more will be added over time, particularly as file-system
developers learn to trust the restart infrastructure.

4.2.1 Hardware-based Detectors
The hardware provides the first line of fault detection. In
our implementation inside Linux on x86 (64-bit) archi-
tecture, we track the following runtime exceptions: null-
pointer exception, invalid operation, general protection
fault, alignment fault, divide error (divide by zero), seg-
ment not present, and stack segment fault. These excep-
tion conditions are detected by the processor; software
fault handlers, when run, inspect system state to determine

File System assert() BUG() panic()
xfs 2119 18 43
ubifs 369 36 2
ocfs2 261 531 8
gfs2 156 60 0
jbd 120 0 0
jbd2 119 0 0
afs 106 38 0
jfs 91 15 6
ext4 42 182 12
ext3 16 0 11
reiserfs 1 109 93
jffs2 1 86 0
ext2 1 10 6
ntfs 0 288 2
fat 0 10 16

Table 2: Software-based Fault Detectors. The table
depicts how many calls each file system makes to assert(),
BUG(), and panic() routines. The data was gathered simply
by searching for various strings in the source code. A range of
file systems and the ext3 journaling devices (jbd and jbd2) are
included in the micro-study. The study was performed on the
latest stable Linux release (2.6.26.7).

whether the fault was caused by code executing in the file
system module (i.e., by examining the faulting instruction
pointer). Note that the kernel already tracks these runtime
exceptions which are considered kernel errors and trig-
gers panic as it doesn’t know how to handle them. We
only check if these exceptions were generated in the con-
text of the restartable file system to initiate recovery, thus
preventing kernel panic.

4.2.2 Software-based Detectors
A large number of explicit error checks are extant within
the file system code base; we interpose on these macros
and procedures to detect a broader class of semantically-
meaningful faults. Specifically, we redefine macros such
as BUG(), BUG ON(), panic(), and assert() so
that the file system calls our version of said routines.

These routines are commonly used by kernel program-
mers when some unexpected event occurs and the code
cannot properly handle the exception. For example, Linux
ext2 code that searches through directories often calls
BUG() if directory contents are not as expected; see
ext2 add link() where a failed scan through the di-
rectory leads to such a call. Other file systems, such as
reiserfs, routinely call panic() when an unanticipated
I/O subsystem failure occurs [25]. Table 2 presents a sum-
mary of calls present in existing Linux file systems.

In addition to those checks within file systems, we
have added a set of checks across the file-system/kernel
boundary to help prevent fault propagation into the kernel
proper. Overall, we have added roughly 100 checks across
various key points in the generic file system and memory
management modules as well as in twenty or so header
files. As these checks are low-cost and relatively easy to
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op-log (naive)
write(A) to blk 0

A

write(B) to blk 1

B

write(C) to blk 0

C

op-log (with page stealing)
write(A) to blk 0

write(B) to blk 1

write(C) to blk 0

Page Cache

C

B

(not needed)

Figure 2: Page Stealing. The figure depicts the op-log both
with and without page stealing. Without page stealing (left side
of the figure), user data quickly fills the log, thus exacting harsh
penalties in both time and space overheads. With page stealing
(right), only a reference to the in-memory page cache is recorded
with each write; further, only the latest such entry is needed to
replay the op-log successfully.

add, we will continue to “harden” the file-system/kernel
interface as our work continues.

4.3 Fault Anticipation
We now describe the fault anticipation support within the
current Membrane implementation. We begin by present-
ing our approach to reducing the cost of operation logging
via a technique we refer to as page stealing.

4.3.1 Low-Cost Op-Logging via Page Stealing
Membrane interposes at the VFS layer in order to record
the necessary information to the op-log about file-system
operations during an epoch. Thus, for any restartable file
system that is mounted, the VFS layer records an entry for
each operation that updates the file system state in some
way.

One key challenge of logging is to minimize the amount
of data logged in order to keep interpositioning costs
low. A naive implementation (including our first attempt)
might log all state-updating operations and their parame-
ters; unfortunately, this approach has a high cost due to
the overhead of logging write operations. For each write
to the file system, Membrane has to not only record that
a write took place but also log the data to the op-log, an
expensive operation both in time and space.

Membrane avoids the need to log this data through a
novel page stealing mechanism. Because dirty pages are
held in memory before checkpointing, Membrane is as-
sured that the most recent copy of the data is already
in memory (in the page cache). Thus, when Membrane
needs to replay the write, it steals the page from the cache
(before it is removed from the cache by recovery) and
writes the stolen page to disk. In this way, Membrane
avoids the costly logging of user data. Figure 2 shows
how page stealing helps in reducing the size of op-log.

When two writes to the same block have taken place,
note that only the last write needs to be replayed. Earlier

writes simply update the file position correctly. This strat-
egy works because reads are not replayed (indeed, they
have already completed); hence, only the current state of
the file system, as represented by the last checkpoint and
current op-log and s-log, must be reconstructed.

4.3.2 Other Logging and State Tracking
Membrane also interposes at the VFS layer to track all
necessary session state in the s-log. There is little infor-
mation to track here: simply which files are open (with
their pathnames) and the current file position of each file.

Membrane also needs to track memory allocations per-
formed by a restartable file system. We added a new allo-
cation flag, GFP RESTARTABLE, in Membrane. We also
provide a new header file to include in file-system code
to append GFP RESTARTABLE to all memory allocation
call. This enables the memory allocation module in the
kernel to record the necessary per-file-system information
into the m-table and thus prepare for recovery.

Tracking lock acquisitions is also straightforward. As
we mentioned earlier, locks that are private to the file sys-
tem will be ignored during recovery, and hence need not
be tracked; only global locks need to be monitored. Thus,
when a thread is running in the file system, the instru-
mented lock function saves the lock information in the
thread’s private l-stack for the following locks: the global
kernel lock, super-block lock, and the inode lock.

Finally, Membrane must also track register state across
certain code boundaries to unwind threads properly. To do
so, Membrane wraps all calls from the kernel into the file
system; these wrappers push and pop register state, return
addresses, and return values onto and off of the u-stack.

4.3.3 COW-based Checkpointing
Our goal of checkpointing was to find a solution that is
lightweight and works correctly despite the lack of trans-
actional machinery in file systems such as Linux ext2,
many UFS implementations, and various FAT file sys-
tems; these file systems do not include journaling or
shadow paging to naturally partition file system updates
into transactions.

One could implement a checkpoint using the following
strawman protocol. First, during an epoch, prevent dirty
pages from being flushed to disk. Second, at the end of
an epoch, checkpoint file-system state by first halting file
system activity and then forcing all dirty pages to disk.
At this point, the on-disk state would be consistent. If a
file-system failure occurred during the next epoch, Mem-
brane could rollback the file system to the beginning of
the epoch, replay logged operations, and thus recover the
file system.

The obvious problem with the strawman is perfor-
mance: forcing pages to disk during checkpointing makes
checkpointing slow, which slows applications. Further,
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A

Figure 3: COW-based Checkpointing. The picture shows
what happens during COW-based checkpointing. At time=0, an
application writes to block 0 of a file and fills it with the contents
“A”. At time=1, Membrane performs a checkpoint, which simply
marks the block copy-on-write. Thus, Epoch 0 is over and a new
epoch begins. At time=2, block 0 is over-written with the new
contents “B”; the system catches this overwrite with the COW
machinery and makes a new in-memory page for it. At time=3,
Membrane decides to flush the previous epoch’s dirty pages to
disk, and thus commits block 0 (with “A” in it) to disk.

update traffic is bunched together and must happen dur-
ing the checkpoint, instead of being spread out over time;
as is well known, this can reduce I/O performance [23].

Our lightweight checkpointing solution instead takes
advantage of the page-table support provided by mod-
ern hardware to partition pages into different epochs.
Specifically, by using the protection features provided by
the page table, the CPM implements a copy-on-write-
based checkpoint to partition pages into different epochs.
This COW-based checkpoint is simply a lightweight way
for Membrane to partition updates to disk into different
epochs. Figure 3 shows an example on how COW-based
checkpointing works.

We now present the details of the checkpoint imple-
mentation. First, at the time of a checkpoint, the check-
point manager (CPM) thread wakes and indicates to the
session manager (SM) that it intends to checkpoint. The
SM parks new VFS operations and waits for in-flight op-
erations to complete; when finished, the SM wakes the
CPM so that it can proceed.

The CPM then walks the lists of dirty objects in the
file system, starting at the superblock, and finds the dirty
pages of the file system. The CPM marks these kernel
pages copy-on-write; further updates to such a page will
induce a copy-on-write fault and thus direct subsequent
writes to a new copy of the page. Note that the copy-on-
write machinery is present in many systems, to support
(among other things) fast address-space copying during
process creation. This machinery is either implemented
within a particular subsystem (e.g., file systems such as
ext3cow [24], WAFL [15] manually create and track their
COW pages) or inbuilt in the kernel for application pages.
To our knowledge, copy-on-write machinery is not avail-
able for kernel pages. Hence, we explicitly added support

for copy-on-write machinery for kernel pages in Mem-
brane; thereby avoiding extensive changes to file systems
to support COW machinery.

The CPM then allows these pages to be written to disk
(by tracking a checkpoint number associated with the
page), and the background I/O daemon (pdflush) is free
to write COW pages to disk at its leisure during the next
epoch. Checkpointing thus groups the dirty pages from
the previous epoch and allows only said modifications to
be written to disk during the next epoch; newly dirtied
pages are held in memory until the complete flush of the
previous epoch’s dirty pages.

There are a number of different policies that can be
used to decide when to checkpoint. An ideal policy would
likely consider a number of factors, including the time
since last checkpoint (to minimize recovery time), the
number of dirty blocks (to keep memory pressure low),
and current levels of CPU and I/O utilization (to perform
checkpointing during relatively-idle times). Our current
policy is simpler, and just uses time (5 secs) and a dirty-
block threshold (40MB) to decide when to checkpoint.
Checkpoints are also initiated when an application forces
data to disk.

4.4 Fault Recovery
We now describe the last piece of our implementation
which performs fault recovery. Most of the protocol is
implemented by the recovery manager (RM), which runs
as a separate thread. The most intricate part of recovery
is how Membrane gains control of threads after a fault oc-
curs in the file system and the unwind protocol that takes
place as a result. We describe this component of recovery
first.

4.4.1 Gaining Control with Control-Flow Capture
The first problem encountered by recovery is how to gain
control of threads already executing within the file sys-
tem. The fault that occurred (in a given thread) may have
left the file system in a corrupt or unusable state; thus, we
would like to stop all other threads executing in the file
system as quickly as possible to avoid any further execu-
tion within the now-untrusted file system.

Membrane, through the RM, achieves this goal by im-
mediately marking all code pages of the file system as
non-executable and thus ensnaring other threads with a
technique that we refer as control-flow capture. When a
thread that is already within the file system next executes
an instruction, a trap is generated by the hardware; Mem-
brane handles the trap and then takes appropriate action
to unwind the execution of the thread so that recovery
can proceed after all these threads have been unwound.
File systems in Membrane are inserted as loadable ker-
nel modules, this ensures that the file system code is in
a 4KB page and not part of a large kernel page which
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could potentially be shared among different kernel mod-
ules. Hence, it is straightforward to transparently identify
code pages of file systems.

4.4.2 Intertwined Execution and
The Skip/Trust Unwind Protocol

Unfortunately, unwinding a thread is challenging, as the
file system interacts with the kernel in a tightly-coupled
fashion. Thus, it is not uncommon for the file system to
call into the kernel, which in turn calls into the file system,
and so forth. We call such execution paths intertwined.

Intertwined code puts Membrane into a difficult posi-
tion. Ideally, Membrane would like to unwind the execu-
tion of the thread to the beginning of the first kernel-to-
file-system call as described above. However, the fact that
(non-file-system) kernel code has run complicates the un-
winding; kernel state will not be cleaned up during recov-
ery, and thus any state modifications made by the kernel
must be undone before restart.

For example, assume that the file system code is exe-
cuting (e.g., in function f1()) and calls into the kernel
(function k1()); the kernel then updates kernel-state in
some way (e.g., allocates memory or grabs locks) and then
calls back into the file system (function f2()); finally,
f2() returns to k1()which returns to f1()which com-
pletes. The tricky case arises when f2() crashes; if we
simply unwound execution naively, the state modifica-
tions made while in the kernel would be left intact, and
the kernel could quickly become unusable.

To overcome this challenge, Membrane employs a care-
ful skip/trust unwind protocol. The protocol skips over file
system code but trusts the kernel code to behave reason-
able in response to a failure and thus manage kernel state
correctly. Membrane coerces such behavior by carefully
arranging the return value on the stack, mimicking an er-
ror return from the failed file-system routine to the kernel;
the kernel code is then allowed to run and clean up as it
sees fit. We found that the Linux kernel did a good job of
checking return values from the file-system function and
in handling error conditions. In places where it did not
(12 such instances), we explicitly added code to do the
required check.

In the example above, when the fault is detected in
f2(), Membrane places an error code in the appropri-
ate location on the stack and returns control immediately
to k1(). This trusted kernel code is then allowed to ex-
ecute, hopefully freeing any resources that it no longer
needs (e.g., memory, locks) before returning control to
f1(). When the return to f1() is attempted, the control-
flow capture machinery again kicks into place and enables
Membrane to unwind the remainder of the stack. A real
example from Linux is shown in Figure 4.

Throughout this process, the u-stack is used to capture
the necessary state to enable Membrane to unwind prop-

Figure 4: The Skip/Trust Unwind Protocol. The fig-
ure depicts the call path from the open() system call through
the ext2 file system. The first sequence of calls (through
vfs create()) are in the generic (trusted) kernel; then the
(untrusted) ext2 routines are called; then ext2 calls back into the
kernel to prepare to write a page, which in turn may call back
into ext2 to get a block to write to. Assume a fault occurs at this
last level in the stack; Membrane catches the fault, and skips
back to the last trusted kernel routine, mimicking a failed call
to ext2 get block(); this routine then runs its normal fail-
ure recovery (marked by the circled “3” in the diagram), and
then tries to return again. Membrane’s control-flow capture ma-
chinery catches this and then skips back all the way to the last
trusted kernel code (vfs create), thus mimicking a failed call
to ext2 create(). The rest of the code unwinds with Mem-
brane’s interference, executing various cleanup code along the
way (as indicated by the circled 2 and 1).

erly. Thus, both when the file system is first entered as
well as any time the kernel calls into the file system, wrap-
per functions push register state onto the u-stack; the val-
ues are subsequently popped off on return, or used to skip
back through the stack during unwind.

4.4.3 Other Recovery Functions
There are many other aspects of recovery which we do not
discuss in detail here for sake of space. For example, the
RM must orchestrate the entire recovery protocol, ensur-
ing that once threads are unwound (as described above),
the rest of the recovery protocol to unmount the file sys-
tem, free various objects, remount it, restore sessions, and
replay file system operations recorded in the logs, is car-
ried out. Finally, after recovery, RM allows the file system
to begin servicing new requests.

4.4.4 Correctness of Recovery
We now discuss the correctness of our recovery mecha-
nism. Membrane throws away the corrupted in-memory
state of the file system immediately after the crash. Since
faults are fail-stop in Membrane, on-disk data is never cor-
rupted. We also prevent any new operation from being is-
sued to the file system while recovery is being performed.
The file-system state is then reverted to the last known
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checkpoint (which is guaranteed to be consistent). Next,
successfully completed op-logs are replayed to restore the
file-system state to the crash time. Finally, the unwound
processes are allowed to execute again.

Non-determinism could arise while replaying the com-
pleted operations. The order recorded in op-logs need not
be the same as the order executed by the scheduler. This
new execution order could potentially pose a problem
while replaying completed write operations as applica-
tions could have observed the modified state (via read) be-
fore the crash. On the other hand, operations that modify
the file-system state (such as create, unlink, etc.) would
not be a problem as conflicting operations are resolved by
the file system through locking.

Membrane avoids non-deterministic replay of com-
pleted write operations through page stealing. While re-
playing completed operations, Membrane reads the final
version of the page from the page cache and re-executes
the write operation by copying the data from it. As a re-
sult, write operations while being replayed will end up
with the same final version no matter what order they
are executed. Lastly, as the in-flight operations have not
returned back to the application, Membrane allows the
scheduler to execute them in arbitrary order.

5 Evaluation
We now evaluate Membrane in the following three cate-
gories: transparency, performance, and generality. All ex-
periments were performed on a machine with a 2.2 GHz
Opteron processor, two 80GB WDC disks, and 2GB of
memory running Linux 2.6.15. We evaluated Membrane
using ext2, VFAT, and ext3. The ext3 file system was
mounted in data journaling mode in all the experiments.

5.1 Transparency
We employ fault injection to analyze the transparency of-
fered by Membrane in hiding file system crashes from ap-
plications. The goal of these experiments is to show the
inability of current systems in hiding faults from applica-
tion and how using Membrane can avoid them.

Our injection study is quite targeted; we identify places
in the file system code where faults may cause trouble,
and inject faults there, and observe the result. These
faults represent transient errors from three different com-
ponents: virtual memory (e.g., kmap, d alloc anon), disks
(e.g., write full page, sb bread), and kernel-proper (e.g.,
clear inode, iget). In all, we injected 47 faults in differ-
ent code paths in three file systems. We believe that many
more faults could be injected to highlight the same issue.

Table 3 presents the results of our study. The caption
explains how to interpret the data in the table. In all ex-
periments, the operating system was always usable after
fault injection (not shown in the table). We now discuss
our major observations and conclusions.
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create null-pointer o × × × o × × × d
√√ √

create mark inode dirty o × × × o × × × d
√√ √

writepage write full page o ×

√ √
a d s ×

√
a d

√√ √

writepages write full page o × ×

√
a d s ×

√
a d

√√ √

free inode mark buffer dirty o × × × ob
× ×

√
a d

√√ √

mkdir d instantiate o × × × d s
√ √

d
√√ √

get block map bh o × ×

√
a ob

× × × d
√√ √

readdir page address G × × × G × × × d
√√ √

get page kmap o ×

√

× ob
×

√

× d
√√ √

get page wait page locked o ×

√

× ob
×

√

× d
√√ √

get page read cache page o ×

√

× o ×

√

× d
√√ √

lookup iget o ×

√

× ob
×

√

× d
√√ √

add nondir d instantiate o × × × d e
√ √

d
√√ √

find entry page address G ×

√

× Gb
×

√

× d
√√ √

symlink null-pointer o × × × o ×

√

× d
√√ √

rmdir null-pointer o ×

√

× o ×

√

× d
√√ √

empty dir page address G ×

√

× G ×

√

× d
√√ √

make empty grab cache page o ×

√

× ob
× × × d

√√ √

commit chunk unlock page o ×

√

× d e × × d
√√ √

readpage mpage readpage o ×

√ √

i ×

√ √

d
√√ √

vfat vfat+ vfat+
vfat Function Fault boundary Membrane

create null-pointer o × × × o × × × d
√√ √

create d instantiate o × × × o × × × d
√√ √

writepage blk write fullpage o × ×

√
a d s ×

√
a d

√√ √

mkdir d instantiate o ×

√

× d s
√ √

d
√√ √

rmdir null-pointer o ×

√

× o ×

√√
a d

√√ √

lookup d find alias o ×

√

× d e
√ √

d
√√ √

get entry sb bread o ×

√

× o ×

√

× d
√√ √

get block map bh o × ×

√
a o × ×

√
a d

√√ √

remove entries mark buffer dirty o × ×

√
a d s ×

√

d
√√ √

write inode mark buffer dirty o × ×

√
a d s

√ √

d
√√ √

clear inode is bad inode o × ×

√
a d s

√ √

d
√√ √

get dentry d alloc anon o × ×

√
a ob

× × × d
√√ √

readpage mpage readpage o ×

√ √
a o ×

√√
a d

√√ √

ext3 ext3+ ext3+
ext3 Function Fault boundary Membrane

create null-pointer o × × × o ×

√

× d
√√ √

get blk handle bh result o × × × d s ×

√
a d

√√ √

follow link nd set link o × ×

√
a d e

√ √

d
√√ √

mkdir d instantiate o × × × d s
√ √

d
√√ √

symlink null-pointer o × × × d ×

√

× d
√√ √

readpage mpage readpage o × ×

√
a d ×

√√
a d

√√ √

add nondir d instantiate o ×

√

× o ×

√

× d
√√ √

prepare write blk prepare write o ×

√

× i e
√ √

d
√√ √

read blk bmap sb bread o ×

√

× o ×

√

× d
√√ √

new block dquot alloc blk o ×

√

× o ×

√

× d
√√ √

readdir null-pointer o × × × o ×

√√
a d

√√ √

file write file aio write G ×

√ √

i e
√ √

d
√√ √

free inode clear inode o × × × o ×

√

× d
√√ √

new inode null-pointer o ×

√

× i × ×

√
a d

√√ √

Table 3: Fault Study. The table shows the results of fault
injections on the behavior of Linux ext2, VFAT and ext3. Each
row presents the results of a single experiment, and the columns
show (in left-to-right order): which routine the fault was injected
into, the nature of the fault, how/if it was detected, how it af-
fected the application, whether the file system was consistent af-
ter the fault, and whether the file system was usable. Various
symbols are used to condense the presentation. For detection,
“o”: kernel oops; “G”: general protection fault; “i”: invalid
opcode; “d”: fault detected, say by an assertion. For applica-
tion behavior, “×”: application killed by the OS; “

√
”: appli-

cation continued operation correctly; “s”: operation failed but
application ran successfully (silent failure); “e”: application
ran and returned an error. Footnotes: a- file system usable, but
un-unmountable; b - late oops or fault, e.g., after an error code
was returned.
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ext2 ext2+ ext3 ext3+ VFAT VFAT+
Benchmark Membrane Membrane Membrane
Seq. read 17.8 17.8 17.8 17.8 17.7 17.7
Seq. write 25.5 25.7 56.3 56.3 18.5 20.2
Rand. read 163.2 163.5 163.2 163.2 163.5 163.6
Rand. write 20.3 20.5 65.5 65.5 18.9 18.9
create 34.1 34.1 33.9 34.3 32.4 34.0
delete 20.0 20.1 18.6 18.7 20.8 21.0

Table 4: Microbenchmarks. This table compares the exe-
cution time (in seconds) for various benchmarks for restartable
versions of ext2, ext3, VFAT (on Membrane) against their regular
versions on the unmodified kernel. Sequential read/writes are 4
KB at a time to a 1-GB file. Random reads/writes are 4 KB at
a time to 100 MB of a 1-GB file. Create/delete copies/removes
1000 files each of size 1MB to/from the file system respectively.
All workloads use a cold file-system cache.

ext2 ext2+ ext3 ext3+ VFAT VFAT+
Benchmark Membrane Membrane Membrane
Sort 142.2 142.6 152.1 152.5 146.5 146.8
OpenSSH 28.5 28.9 28.7 29.1 30.1 30.8
PostMark 46.9 47.2 478.2 484.1 43.1 43.8

Table 5: Macrobenchmarks. The table presents the per-
formance (in seconds) of different benchmarks running on both
standard and restartable versions of ext2, VFAT, and ext3. The
sort benchmark (CPU intensive) sorts roughly 100MB of text us-
ing the command-line sort utility. For the OpenSSH benchmark
(CPU+I/O intensive), we measure the time to copy, untar, con-
figure, and make the OpenSSH 4.51 source code. PostMark (I/O
intensive) parameters are: 3000 files (sizes 4KB to 4MB), 60000
transactions, and 50/50 read/append and create/delete biases.

First, we analyzed the vanilla versions of the file sys-
tems on standard Linux kernel as our base case. The re-
sults are shown in the leftmost result column in Table 3.
We observed that Linux does a poor job in recovering
from the injected faults; most faults (around 91%) trig-
gered a kernel “oops” and the application (i.e., the pro-
cess performing the file system operation that triggered
the fault) was always killed. Moreover, in one-third of the
cases, the file system was left unusable, thus requiring a
reboot and repair (fsck).

Second, we analyzed the usefulness of fault detection
without recovery by hardening the kernel and file-system
boundary through parameter checks. The second result
column (denoted by +boundary) of Table 3 shows the re-
sults. Although assertions detect the bad argument passed
to the kernel proper function, in the majority of the cases,
the returned error code was not handled properly (or prop-
agated) by the file system. The application was always
killed and the file system was left inconsistent, unusable,
or both.

Finally, we focused on file systems surrounded by
Membrane. The results of the experiments are shown
in the rightmost column of Table 3; faults were handled,
applications did not notice faults, and the file system re-
mained in a consistent and usable state.

In summary, even in a limited and controlled set of fault
injection experiments, we can easily realize the usefulness
of Membrane in recovering from file system crashes. In
a standard or hardened environment, a file system crash
is almost always visible to the user and the process per-
forming the operation is killed. Membrane, on detecting a
file system crash, transparently restarts the file system and
leaves it in a consistent and usable state.

5.2 Performance
To evaluate the performance of Membrane, we run a series
of both microbenchmark and macrobenchmark workloads
where ext2, VFAT, and ext3 are run in a standard environ-
ment and within the Membrane framework.

Tables 4 and 5 show the results of our microbenchmark
and macrobenchmark experiments respectively. From the

tables, one can see that the performance overheads of our
prototype are quite minimal; in all cases, the overheads
were between 0% and 2%.

Data Recovery
(MB) time (ms)

10 12.9
20 13.2
40 16.1

(a)

Open Recovery
Sessions time (ms)

200 11.4
400 14.6
800 22.0

(b)

Log Recovery
Records time (ms)

1K 15.3
10K 16.8

100K 25.2
(c)

Table 6: Recovery Time. Tables a, b, and c show re-
covery time as a function of dirty pages (at checkpoint), s-log,
and op-log respectively. Dirty pages are created by copying new
files. Open sessions are created by getting handles to files. Log
records are generated by reading and seeking to arbitrary data
inside multiple files. The recovery time was 8.6ms when all three
states were empty.

Recovery Time. Beyond baseline performance under no
crashes, we were interested in studying the performance
of Membrane during recovery. Specifically, how long
does it take Membrane to recover from a fault? This met-
ric is particularly important as high recovery times may
be noticed by applications.

We measured the recovery time in a controlled environ-
ment by varying the amount of state kept by Membrane
and found that the recovery time grows sub-linearly with
the amount of state and is only a few milliseconds in all
the cases. Table 6 shows the result of varying the amount
of state in the s-log, op-log and the number of dirty pages
from the previous checkpoint.

We also ran microbenchmarks and forcefully crashed
ext2, ext3, and VFAT file systems during execution
to measure the impact in application throughput inside
Membrane. Figure 5 shows the results for performing re-
covery during the random-read microbenchmark for the
ext2 file system. From the figure, we can see that Mem-
brane restarts the file system within 10ms from the point
of crash. Subsequent read operations are slower than the
regular case because the indirect blocks, that were cached
by the file system, are thrown away at recovery time in
our current prototype and have to be read back again after
recovery (as shown in the graph).

12



USENIX Association  FAST ’10: 8th USENIX Conference on File and Storage Technologies 293

Elapsed time (s)

R
ea

d 
La

te
nc

y(
m

s)

15 25 35 45 55
0

4

8

12

Crash

15 25 35 45 55

In
di

re
ct

 b
lo

ck
s

0

20

40

60

Average Response Time
Response Time
Indirect Blocks

Figure 5: Recovery Overhead. The figure shows the over-
head of restarting ext2 while running random-read microbench-
mark. The x axis represents the overall elapsed time of the mi-
crobenchmark in seconds. The primary y axis contains the ex-
ecution time per read operation as observed by the application
in milliseconds. A file-system crash was triggered at 34s, as a
result the total elapsed time increased from 66.5s to 67.1s. The
secondary y axis contains the number of indirect blocks read by
the ext2 file system from the disk per second.

In summary, both micro and macrobenchmarks show
that the fault anticipation in Membrane almost comes for
free. Even in the event of a file system crash, Membrane
restarts the file system within a few milliseconds.

5.3 Generality
We chose ext2, VFAT, and ext3 to evaluate the generality
of our approach. ext2 and VFAT were chosen for their
lack of crash consistency machinery and for their com-
pletely different on-disk layout. ext3 was selected for
its journaling machinery that provides better crash con-
sistency guarantees than ext2. Table 7 shows the code
changes required in each file system.

File System Added Modified
ext2 4 0
VFAT 5 0
ext3 1 0
JBD 4 0

Individual File-system Changes
Components No Checkpoint With Checkpoint

Added Modified Added Modified
FS 1929 30 2979 64
MM 779 5 867 15
Arch 0 0 733 4
Headers 522 6 552 6
Module 238 0 238 0
Total 3468 41 5369 89

Kernel Changes

Table 7: Implementation Complexity. The table presents
the code changes required to transform a ext2, VFAT, ext3, and
vanilla Linux 2.6.15 x86 64 kernel into their restartable counter-
parts. Most of the modified lines indicate places where vanilla
kernel did not check/handle errors propagated by the file system.
As our changes were non-intrusive in nature, none of existing
code was removed from the kernel.

From the table, we can see that the file system spe-
cific changes required to work with Membrane are min-
imal. For ext3, we also added 4 lines of code to JBD

to notify the beginning and the end of transactions to the
checkpoint manager, which could then discard the opera-
tion logs of the committed transactions. All of the addi-
tions were straightforward, including adding a new header
file to propagate the GFP RESTARTABLE flag and code
to write back the free block/inode/cluster count when the
write super method of the file system was called. No
modification (or deletions) of existing code were required
in any of the file systems.

In summary, Membrane represents a generic approach
to achieve file system restartability; existing file systems
can work with Membrane with minimal changes of adding
a few lines of code.

6 Conclusions
File systems fail. With Membrane, failure is transformed
from a show-stopping event into a small performance is-
sue. The benefits are many: Membrane enables file-
system developers to ship file systems sooner, as small
bugs will not cause massive user headaches. Membrane
similarly enables customers to install new file systems,
knowing that it won’t bring down their entire operation.

Membrane further encourages developers to harden
their code and catch bugs as soon as possible. This fringe
benefit will likely lead to more bugs being triggered in the
field (and handled by Membrane, hopefully); if so, diag-
nostic information could be captured and shipped back to
the developer, further improving file system robustness.

We live in an age of imperfection, and software imper-
fection seems a fact of life rather than a temporary state
of affairs. With Membrane, we can learn to embrace that
imperfection, instead of fearing it. Bugs will still arise,
but those that are rare and hard to reproduce will remain
where they belong, automatically “fixed” by a system that
can tolerate them.
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