Improving I/0O Performance by Coscheduling of I/0O and computation
on Commodity based Clusters
Saba Sehrish, Grant Mackey and Jun Wang

University of Central Florida
ssehrish, gmackey, juwang@eecs.ucf.edu

A fault tolerant system like Hadoop [1] running on a
commodity based cluster schedules two types of tasks,
Regular Map/Reduce tasks and Speculative Map/Reduce
tasks. Regular Map/Reduce tasks are spawned when a
MapReduce [3, 2] application is launched, whereas spec-
ulative tasks are instigated when there is a slow or a
failed task. Hadoop’s task scheduler exploits data lo-
cality, and tries to schedule the regular map tasks near
data. By assigning one DFS block per map task, a large
number of map tasks are generated that are cumbersome
to manage and also impacts I/O performance. The num-
ber of map tasks can be reduced by increasing the split
size from one DF'S block to multiple DFS blocks. For ex-
ample, random sort with 294 map tasks took 388 sec to
finish, while 154 map tasks took 292 sec. A logical con-
tiguous split may consist of DFS blocks that are spread
across multiple nodes. The challenge is to schedule map
tasks using the locations of multiple DF'S blocks. Apart
from improving performance, multiple blocks can also
be combined in a split for applications like matching
and clustering of long strings. In this case, blocks are
statically combined into splits i.e. the application de-
veloper specifies the split size. The regular map tasks
with multiple blocks are scheduled based on the data lo-
cality of these blocks such that the node with maximum
block contribution becomes the host node for this task.
However, the remaining blocks must be transferred from
remote nodes but their I/O latency is not incorporated
in the initial scheduling decision, and the remote node(s)
for remaining blocks is not determined at that time.

We propose a scheduling algorithm for the regular
map tasks, which considers data locality and I/0O la-
tency when more than one DFS blocks are assigned to a
map task. Additionally, we will also combine our sched-
uler with LATE scheduler [4] for speculative tasks by
introducing data locality for further performance gains.
We have identified three different cases where scheduling
can improve performance for regular map tasks as shown
in the Figure 1, 2 and 3. Scheduling when inde-
pendent DFS blocks are combined statically, as a
result of increase in split size to improve perfor-
mance: The file splits are provided by the application
programmer, and each split consists of a number of DFS
blocks. Our scheduler uses the location of participating
blocks provided by HDFS’s namenode to determine the
candidate nodes. We introduce wvirtual splits for inde-

pendent blocks on a node that can be combined logically
into one split. We consider a cost for creating virtual
splits, for example, the cost for three virtual splits is
2, etc. Similarly, there is also a cost for data trans-
fer because we want to choose between virtual splits
and data transfer. We measure the latency using heart-
beat timestamps. For each node, an average latency
cost is maintained over a small interval. Essentially, the
idea is to divide the initial splits into smaller splits if
the cost of data transfer is higher than cost of dividing
the splits into virtual splits. Scheduling when de-
pendent DFS blocks are combined statically, as
an application requirement: This case is similar to
the previous one, except that the virtual splits can not
be created, and in some cases data transfer becomes
unavoidable. We measure average cost for each data
transfer using heartbeat timestamps. For example, if
heartbeat returns in 2ms, 3ms and 2.6ms in an inter-
val of 2sec, then the cost for that node is 2.53ms. The
node with maximum number of blocks is chosen as the
local node, and the node with minimal latency cost is
chosen as the remote node for the transfer of remaining
data blocks. The remaining blocks have to be trans-
ferred because the application requires these blocks to
be processed together. Scheduling when indepen-
dent DFS blocks are combined dynamically to
improve performance: If the file splits are not spec-
ified by the application developer, then scheduler is re-
sponsible to make the splits and assign them to map
tasks. In this case, we determine all the required file
blocks per node and combine them into one split, al-
though they are not logically contiguous. Hence, the
size of splits and number of map tasks are determined
dynamically based on the file size.

If there are x DFS blocks of the input file(s), r repli-
cas and N nodes in the cluster, then the upper and lower
bound on the number of blocks per map task B is give
by 2/rN <= B < z/N. Ideally, the number of blocks
per map task per node should be kept closer to z:/rN,
so that there are no redundant data processing unless it
is a speculative task. Also, the number of local I/O per
map task per node should be close to z/r N, and number
of remote I/O per map task should be 0 for the inde-
pendent data blocks. For dependent data blocks that
are combined statically, the lower bound on remote 1/0O
can not be determined because it is application specific.

CreateMap Task 1to

Map Task scheduled on NodeD , and processblocks 1and 3.

block 2 will be transferred from Node C
assuming minimal latency .

DFSbhlock 1
DFSbhlock 3

DFSblock 1
DFSblock 3
DFSblock 2
DFSblock 3

j) Node D
\ M CreateMap Task 3to

NodeE < processblocks 5 and 6
:atransfer from Node C to Node D

DFSblock 5
DFSblock 6

DFShblock 2

B
g

DFSblock 4
Node C
CreateMap Task 2
to process blocks 2
Node B and 4

Node A

Independent Data blocks are combined
dynamicaaly :

Node B Create amap task with blocks 5 and 6 on Node A .
Create amap task with blocks 2 and 4 on NodeB .

Create amap task with blocks 1 and 3 on NodeD .

Challengeis not to launch redundant tasks with

Dependent Data blocks are combined statically : regular tasks !

Map (block 1, 2, 3) arerequired by amap task

Node D hastwo blocks , whereas other Nodes have

1 block each . Block 2 will be transferred to Node D . . .
from the Node with minimal latency (heartbeat Figure 3. Scheduling when independent DFS

timestamps). blocks are combined dynamically.

Figure 1. Scheduling when dependent DFS

blocks are combined statically. Ref
eferences

[1] Hadoop. http://hadoop.apache.org/core/.

[2] Jeffrey Dean. Experiences with mapreduce, an abstraction for
large-scale computation. In PACT ’06: Proceedings of the
15th international conference on Parallel architectures and
compilation techniques, pages 1-1, New York, NY, USA, 2006.
ACM.

Virtual Map Task 1
~~Node D to
processblocks 1 and

3.

DFSbhlock 1
DFSblock 3

[3] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified
data processing on large clusters. Commun. ACM, 51(1):107—

“) 113, 2008.
Virtual Map Task 2)
Node D } W i OLrl‘ ,\‘[JdaepC s

processblock 2. [4] Matei Zaharia, Andy Konwinski, Anthony D. Joseph,
Randy H. Katz, and Ion Stoica. Improving mapreduce perfor-
mance in heterogeneous environments. In Richard Draves and
Robbert van Renesse, editors, OSDI, pages 29-42. USENIX
/‘/ Q Association, 2008.

Node C
Node A Q

Node B

Independent Data blocks are combined

statically :

Map (block 1, 2, 3) arerequired by amap task .
Node D hastwo blocks , whereas other Nodes have
1 block each . Create two virtual map tasks , one on
Node D with blocks 1 and 3, and second on either
Node A , B or Cwith Block 2.

Figure 2. Scheduling when independent DFS
blocks are combined statically.

