Can Clustered File Systems Support Data Intensive Applications?

Rajagopal Ananthanarayanan, Karan Gupta, Prashant Pandey, Himabindu Pucha
Prasenjit Sarkar, Mansi Shah, Renu Tewari
IBM Research

This WIP attempts to address the question—Can cluster file
systems match specialized file systems such as Google’s GFS
for data-intensive applications?

With the explosive growth of information and applications
exploiting that information, large-scale data processing has
emerged as an important challenge. Example applications in-
clude web search, indexing and mining, discovering biological
functions from genomic sequences, astronomical phenomena
from telescope imagery, and brain-scale networks for cog-
nitive systems. These data-intensive applications demand a
scalable, yet cost-effective storage layer. The storage layer for
these applications needs to scale to thousands of nodes so that
highly parallel applications process petabytes of data in hours
rather than days. At the same time, the infrastructure needs
to be built on commodity components to minimize cost while
tolerating the failures that are typical for these components.
Given the large volumes of data being processed, another
key requirement for this storage layer is to enable shipping
compute to data rather than the other way around.

Recently, enterprises faced with these critical needs of data-
intensive applications have proposed specialized file systems,
built with the unique requirements of the layer in mind. For ex-
ample, Google developed the GFS file system that is optimized
for large sequential and small random reads on a small number
of large files residing on a commodity cluster. Companies
such as Yahoo and Kosmix followed this trend by emulating
the GFS architecture in Hadoop DFS and KFS respectively.
For the scope of this work, we choose the open source Hadoop
DFS (HDFS) as a representative specialized file system.

This work argues that cluster file systems can also rise
to the challenges posed by these data-intensive applications.
Moreover, there are inherent advantages to using cluster file
systems in this paradigm: (1) These file systems can provide
well-known traditional file APIs to these new class of appli-
cations. (2) Given that these file systems have been around
for a while, they are enabled with a rich set of management
tools such as automated backup and disaster recovery etc. (3)
These file systems can simultaneously support legacy appli-
cations that rely on traditional file APIs obviating the need to
maintain different storage layers for different applications. (4)
Finally, an interesting trend further motivates this study: en-
terprises are increasingly incorporating data analytics in their
workflows resulting in a mix of legacy and the new class of
data-intensive applications accessing a common storage layer.

There is ample evidence that existing cluster file systems
such as Lustre, PVFS, OCFS and GPFS meet the scalability

requirement of the data-intensive applications; modern cluster
file systems scale to thousands of nodes while providing high
performance and availability. Furthermore, these file systems
can be configured using commodity processors, disks and
networks without the need for specialized SANs or enterprise-
class storage. Thus, to make our case that cluster file systems
can indeed support data-intensive applications, work is in
progress to demonstrate the following:
Cluster file systems can support compute shipping to data
nodes. We choose IBM’s GPFES as a representative cluster
file system and Map-Reduce as the data-intensive application
framework to study the challenges in compute shipping. To
enable this functionality, we first exposed block location infor-
mation to the Map-Reduce framework through a new GPFS
ioctl. The framework uses this information to ship the com-
pute task to where the data resides. Further, we found that
Map-Reduce performs computation on large HDFS blocks
(e.g. 64 MB at a time) since it helps HDFS utilize the se-
quential bandwidth of disks. So our next challenge was to
enable large block sizes in GPFS. While a first-cut solution of
increasing GPFS block size helped Map-reduce performance,
the large block size was harmful for the cache efficiency and
the prefetching performance of GPFS, thereby impacting the
performance of legacy applications. To accommodate both
workloads we introduced the concept of metablocks. We used
small block sizes in GPFS (512 KB-2 MB), but changed the
block allocation policy so that contiguous blocks are placed on
the same node (in groups of 32-128 blocks). This allows GPFS
to manage prefetching and caching in terms of small blocks,
but enables Map-Reduce to schedule jobs to work on a group
of blocks (exposed to Map-Reduce as a single “metablock”).
Our preliminary results suggest that our enhanced version
of GPFS shows negligible performance degradation for legacy
applications while matching the performance of the special-
ized file system, HDFS, for data-intensive applications. In
addition, GPFS exceeds HDFS performance for meta-data
intensive and for cache-friendly applications.
Cluster file systems can efficiently provide fault tolerance
in a commodity hardware environment. HDFS replicates
data to deal with node/disk failures. Our initial experiments
with GPFS configured with a data replication factor of two
show that the write performance of GPFS is comparable to
that of HDFS. Encouraged by this finding, our ongoing work
explores the design of an efficient n-way replication strategy
for cluster file systems to achieve fault tolerance. We are also
investigating GPFS’ response to failures.



