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I/O for Computational Science

Application
Parallel File System ‘
|/O Hardware
B Parallel file systems support middleware and
applications
— Understanding this context helps motivate some of their
features
B Goals of the storage system as a whole:
— Scalability
— Parallelism (high bandwidth)
— Usability
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Parallel File System
Application

High-level I/O Library
I/O Middleware (MPI-10)
I/O Forwarding

I/O Hardware

B Manage storage hardware
— Present unified view
— Stripe files for performance
— Handle failures

B In the context of the I/O software stack
— Focus on concurrent, independent access

— Publish an interface that middleware can use
effectively

— Knowledge of collective I/O usually very limited
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I/O Forwarding

Application
High-level I/O Library
I/O Middleware (MPI-10)

Parallel File System
I/O Hardware

B Present in some of the largest systems
B Newest layer in the stack

M Provides bridge between system and storage in machines
such as the Blue Gene/P

H Allows for a point of aggregation, hiding true number of
clients from underlying file system

B Poor implementations can lead to unnecessary
serialization, hindering performance
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/O Middleware

Application
High-level I/O Library

I/O Forwarding
Parallel File System
I/O Hardware

B Match the programming model

B Facilitate concurrent access
— Collective I/0
— Atomicity rules

B Expose a generic interface
— Good building block for high-level libraries

m Efficiently map middleware operations into PFS ones
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High Level Libraries

Application

I/O Middleware (MPI-10)

_ I/O Forwarding
B Match storage abstraction

to domain

— Multidimensional datasets
— Typed variables

— Attributes

M Provide self-describing, structured files
B Map to middleware interface

B I[mplement higher-level optimizations

— Caching attributes of variables
— Chunking of datasets

Parallel File System
/O Hardware
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Role of the File System
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Parallel File System Design Issues

B Same problems as local filesystem
— Block allocation
— Metadata management
— Data reliability and error correction

B Additional requirements
— Cache coherency
— High availability
— Scalable capacity & performance
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Network Attached Storage (NAS)
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Clustered NAS
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SAN Shared Disk File Systems
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Object-based Storage Clusters

e Metadata

; server(s)
1

Object storage devices
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Object Storage Architecture

Operations

Read block
Write block

Addressing

Block range

Allocation

External

Block Based Disk
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Operations

Create object
Delete object
Read object
Write object
Get Attribute
Set Attribute

Addressing

[object, byte range]

Allocation

Internal

Object Based Disk
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What’s in an OSD?

Lustre OSS Panasas Seagate
PVFS storage node StorageBlade prototype
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SCSI T10 OSD Security Model

Client

Authorization Req

Capability,

Req, CAP_key
Capabilty, ¥21 Security
MAC p key(Req) = Manager

Shared Secret,
refreshed periodically

19 panasa%



Strengths of Object Storage

B Scalable block allocation

B Data relationships exposed to OSD
B Extensible metadata

B Fine-grained security

B Command set friendly to embedded devices
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Production Parallel File Systems

® All four systems scale to support the very largest
compute clusters
— LLNL Purple, LANL RoadRunner, Sandia Red Storm, etc.

H All but GPFS delegate block management to
“object-like” data servers or OSDs

B Approaches to metadata vary
M Approaches to fault tolerance vary
B Emphasis on features & “turn-key” deployment vary

GPFS PVES

panasas /| -l-U-S-{-F€-
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IBM GPFS

B General Parallel File System

M Legacy: IBM Tiger multimedia
filesystem

B Commercial product

M Lots of configuration flexibility

— AIX, SP3, Linux

— Direct storage, Virtual Shared
Disk, Network Shared Disk

— Clustered NFS re-export
M Block interface to storage
nodes

M Distributed locking

., panasa%



GPFS: Block Allocation

M |/O server exports exports local disk via block-oriented protocol
B Block allocation map shared by all nodes

— Block map split into N regions

— Each region has 1/Nth of each I/O server’s blocks
B Writing node performs block allocation

— Locks a region of the block map to find free blocks

— Updates inode & indirect blocks

— If # regions ~= # client nodes, block map sharing reduced or eliminated
M Stripe each file across multiple 1/O servers (RAID-0)
M Large block size (1-4 MB) typically used

— Increases transfer size per |/O server

— Match block size to RAID stripe width

— Minimizes block allocation overhead

— Not great for small files

) panasa%



GPFS: Metadata Management

B Symmetric model with distributed locking

® Each node acquires locks and updates metadata
structures itself

B Global token manager manages locking assignments
— Client accessing a shared resource contacts token manager

— Token manager gives token to client, or tells client current
holder of token

— Token owner manages locking, etc. for that resource

— Client acquires read/write lock from token owner before
accessing resource

M inode updates optimized for multiple writers
— Shared write lock on inode
— “Metanode token” for file controls which client updates inode
— Other clients send inode updates to metanode

25 panasa%



GPFS: Caching

M Clients cache reads and writes
B Strong coherency, based on distributed locking
m Client acquires R/W lock before accessing data
B Optimistic locking algorithm

— First node accesses 0-1M, locks 0...EOF

— Second node accesses 8M-9M

* First node reduces its lock to 0...8191K
« Second node locks 8192K...EOF

— Lock splitting assumes client will continue accessing
in current pattern (forward or backward sequential)

M Client cache (“page pool”) pinned and separate
from OS page/buffer cache

2, panasa%



GPFS: Reliability

B RAID underneath |I/O server to handle disk failures &
sector errors

B Replication across |/O servers supported, but typically
only used for metadata

] g%\?erver failure handled via dual-attached RAID or

— Backup I/O server takes over primary’s disks if it fails
® Nodes journal metadata updates before modifying FS
structures
— Journal is per-node, so no sharing/locking issues
— Journal kept in shared storage (i.e., on the 1/O servers)

— If node crashes, another node replays its journal to make FS
consistent

O Qucci)rum/consensus protocol to determine set of “online”
nodes

panasa%



PVFS

B Parallel Virtual Filesystem
B Open source
M Linux based

B Community development
— Led by Argonne National Lab

B Asymmetric architecure (data servers & clients)
M Data servers use object-like API

B Focus on needs of HPC applications
— Interface optimized for MPI-10 semantics not POSIX

PVFS PVFS| |PVFS|PVFS PVFs\
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PVFS: Block Allocation

M |/O server exports file/object oriented API

— Storage object (“dataspace”) on an I/O server addressed
by numeric handle

— Dataspace can be stream of bytes or key/value pairs
— Create dataspace, delete dataspace, read/write

B Files & directories mapped onto dataspaces

— File may be single dataspace, or chunked/striped over
several

M Each |/O server manages block allocation for its
ocal storage

M |/O server uses local filesystem to store dataspaces

B Key/value dataspace stored using Berkeley DB
table

., panasa%



PVFS: Metadata Management

M Directory dataspace contains list of names &
metafile handles

B Metafile dataspace contains
— Attributes (permissions, owner, xattrs)
— Distribution function parameters
— Datafile handles
M Datafile(s) store file data
— Distribution function determines pattern
— Default is 64 KB chunk size and round-robin placement
M Directory and metadata updates are atomic
— Eliminates need for locking
— May require “losing” node in race to do significant cleanup

B System configuration (I/O server list, etc.) stored in
static file on all I/O servers

30 panasa%
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PVFS: Caching

m Client only caches immutable metadata and
read-only files

mAll other I/O (reads, writes) go through to I/O
node

B Strong coherency (writes are immediately visible
to other nodes)

B Flows from PVFS2 design choices
— No locking
— No cache coherency protocol

M |/O server can cache data & metadata for local
dataspaces

M All prefetching must happen on |/O server
M Reads & writes limited by client’s interconnect

3 panasa%



PVFS: Reliability

B Similar to GPFS

— RAID underneath I/O server to handle disk failures &
sector errors

— Dual attached RAID to primary/backup 1/O server to
handle I/O server failures
MmLinux HA used for generic failover support

B Sequenced operations provide well-defined
crash behavior
— Example: Creating a new file
 Create datafiles

 Create metafile that points to datafiles
* Link metafile into directory (atomic)

— Crash can result in orphans, but no other
Inconsistencies

. panasa%



Panasas ActiveScale (PanFS)

B Commercial product based on CMU NASD research

B Complete “appliance” solution (HW + SW), blade server
form factor 1l
— DirectorBlade = metadata server

Compute Nodes

— StorageBlade = OSD Client | | UYp 10 12,000
= Coarse grained metadata oo/ [fiscsioso
clustering i_ : i
B Linux native client for NFS/CIFS | | SysMgr
parallel 1/O Client | | PanFS
B NFS & CIFS re-export | |
: Manager Nodes \ 111
M Integrated battery/UPS 100+ o
B Integrated 10GE switch ; N OSDFES ;
i orage i
B Global namespace Nodes J
i 1000+ —
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PanFS: Block Allocation

B OSD exports object-oriented APl based on T10 OSD

— Objects have a number (object ID), data, and attributes

— CREATE OBJECT, REMOVE OBJECT, READ, WRITE, GET
ATTRIBUTE, SET ATTRIBUTE, etc.

— Commands address object ID and data range in object
— Capabilities provide fine-grained revocable access control

B OSD manages private local storage
— Two SATA drives, 500/750/1000 GB each, 1-2 TB total capacity

B Specialized filesystem (OSDFS) stores objects
— Delayed floating block allocation
— Efficient copy-on-write support

M Files and directories stored as “virtual objects”
— Virtual object striped across multiple container objects on

multiple OSDs
3 panasa%



PanFS: Metadata Management

M Directory is a list of names & object IDs in a RAID-1
virtual object

B Filesystem metadata stored as object attributes
— Owner, ACL, timestamps, etc.
- If__layout map describing RAID type & OSDs that hold the

ile

M Metadata server (DirectorBlade)
— Checks client permissions & provides map/capabilities
— Performs namespace updates & directory modifications
— Performs most metadata updates

® Client modifies some metadata directly (length,
timestamps)

B Coarse-grained metadata clustering based on
directory hierarchy
. panasa%



PanFS: Caching

B Clients cache reads & writes

M Strong coherency, based on callbacks
— Client registers callback with metadata server

— Callback type identifies sharing state (unshared, read-
only, read-write)

— Server notifies client when file or sharing state changes
B Sharing state determines caching allowed

— Unshared: client can cache reads & writes

— Read-only shared: client can cache reads

— Read-write shared: no client caching

— Specialized “concurrent write” mode for cooperating apps

(e.g. MPI-IO)

M Client cache shared with OS page/buffer cache

., panasa%



PanFS: Reliability

B RAID-1 & RAID-5 across OSDs to handle disk failures

— Any failure in StorageBlade is handled via rebuild
— Declustered parity allows scalable rebuild

B “Vertical parity” inside OSD to handle sector errors

M Integrated shelf battery makes all RAM in blades into
NVRAM

— Metadata server journals updates to in-memory log
« Failover config replicates log to 2nd blade’s memory

* Log contents saved to DirectorBlade’s local disk on panic or power
failure

— OSDFS commits updates (data+metadata) to in-memory log
* Log contents committed to filesystem on panic or power failure
* Disk writes well ordered to maintain consistency
M System configuration in replicated database on subset of
DirectorBlades
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PanFS: Declustered RAID

B Each file striped across different combination of StorageBlades

B Component objects include file data and file parity

B File attributes replicated on first two component objects

B Components grow & new components created as data written

B Declustered, randomized placement distributes RAID workload Read

about
[ I ) e [ [ (e half of
20 0SD [ — each
Stora 1 surviving
ge Pool |—— | | | osD
- — ] ] |
Mirrored — ) Writ
or 9-0SD m:I’ee a
Parity
-
stripes | — [ [ ] [ R I to each
| | | OSD
]
Il |
o I = — Scales up
-=-—-= I in larger
Storage
Pools
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Panasas Scalable Rebuild

B Two main causes of RAID failures
1) 2nd drive failure in same RAID set during reconstruction of 1st failed drive
« Risk of two failures depends on time-to-repair
2) Media failure in same RAID set during reconstruction of 15t failed drive

M Shorter repair time in larger storage

pools
— From 13 hours to 30 minutes 140 MB/sec Rebuild )
B Four techniques to reduce MTTR
; “ 120 | | +One Volume, 1G Files
— Use multiple "RAID CJOne Volume, 100MB Files
engines” (DirectorBlades) in 1007 | AN Volumes, 1GB Files
parallel 80 | X N Volumes, 100MB Files

— Spread disk I/O over more disk 60 |
arms (StorageBlades)

— Reconstruct data blocks only, not
unused space

— Proactively remove failing blades 0 ‘ ‘ ‘ ‘ ‘ ‘
(SMART trips, other heuristics) o 2 4 6 8 10 12 14

# Shelves

39 panasa%
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Lustre

B Open source object-based parallel

file system - o i
— Based on CMU NASD architecture stadata Failover =
. ) N eaiel g ey ossr
— Lots of file system ideas from Coda | Jos: | commodty
and InterMezzo QswElan  |@Cve) |standby) | SAN or disks
— ClusterFS acquired by Sun, 9/2007 Q— Myrin =

O
»
n
N

B Originally Linux-based, Sun now Q— "
porting to Solaris 3 —

0SS3 Failover

B Asymmetric design with separate -
metadata server

B Proprietary RPC network protocol Q'I — .
between client & MDS/OSS 0 - _

B Distributed locking with client-driven networks are supported 0sss///" Raid strage
lock recovery

Lustre Object Storage  5gg7
Servers (0SS, 100’s)

Lustre material from www.lustre.org and various talks
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Lustre: Block Allocation

W Each OSS (object storage server) manages one or more
OSTs (object storage target)
— Typically 2-25 OSTs per OSS (max OST size 8 TB)

— Client communicates with OSS via proprietary RPC protocol

« RPC built on LNET message-passing facility (based on Sandia
Portals)

* LNET supports RDMA over IB, Myrinet, and Quadrics Elan
B OST stores data in modified ext3 file system
M Currently porting OST to ZFS
— User-level ZFS via FUSE on Linux
— In-kernel ZFS on Solaris
B RAID-0 striping across OSTs

— No dynamic space management among OSTs (i.e., no object
migration to balance capacity)

B Snapshots and quota done independently in each OST

panasa%




Lustre: Metadata

B Metadata server (MDS) hosts metadata target (MDT),
which stores namespace tree and file metadata

B MDT uses a modified ext3 filesystem to store Lustre
metadata
— Directory tree of “stub” files that represents Lustre namespace

— Lustre metadata stored in stub file’s extended attributes
* Regular filesystem attributes (owner, group, permissions, size, etc.)
* List of object/OST pairs that contain file’'s data (storage map)

— Single MDS and single MDT per Lustre filesystem
— Clustered MDS with multiple MDTs is on roadmap (Lustre 2.0)

M Distributed lock protocol among MDS, OSS, and clients

— “Intents” convey hints about the high-level file operations so the
right locks can be taken and server round-trips avoided

— |If a failure occurs (MDS or OSS), clients do lock recovery after
failover

) panasa%



Lustre: Caching

B Clients can cache reads, writes, and some metadata operations
B |Locking protocol used to protect cached data and serialize access
— OSS manages locks for objects on its OSTs
— MDS manages locks on directories & inodes
— Client caches locks and can reuse them across multiple 1/0Os
— MDS/OSS recalls locks when conflict occurs
— Lock on logical file range may span several objects/OSTs

B Directory locks allow client to do CREATE without round-trip to
MDS

— Only for unshared directory
— Create not “durable” until file is written & closed
— Non-POSIX semantic but helpful for many applications

B Client cache shared with OS page/buffer cache

e panasa%



Lustre: Reliability

B Block-based RAID underneath OST/MDT
B Failover managed by external software (Linux-HA)
B OSS failover (active/active or clustered)

— OSTs on dual-ported RAID controller

— OSTs on SAN with connectivity to all OSS nodes
B MDS failover (active/passive)

— MDT on dual-ported RAID controller

— Typically use dedicated RAID for MDT due to different workload
B Crash recovery based on logs and transactions

— MDS logs operation (e.g., file delete)

— Later response from OSS cancels log entry

— Some client crashes cause MDS log rollback

— MDT & OST use journaling filesystem to avoid fsck
B LNET supports redundant networks and link failover

44
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Design Comparison

__ |[GPFS____IPVFS

Block mgmt ELEIGT Object based Object based Object based
block map

Metadata With data With data With data Separate

location

Metadata Client Client Client, server Server
written by

Cache Coherent; Cache Coherent; Coherent;
Lo [T [V distributed immutable/ callbacks distributed
protocol locking RO data only locking

Reliability Block RAID  Block RAID Object RAID Block RAID
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Other File Systems

BGFS (Google)
— Single metadata server + 100s of chunk servers
— Specialized semantics (not POSIX)
— Design for failures; all files replicated 3+ times
— Geared towards colocated processing (MapReduce)
mCeph (UCSC)
— OSD-based parallel filesystem
— Dynamic metadata partitioning between MDSs
— OSD-directed replication based on CRUSH
distribution function (no explicit storage map)
B Clustered NAS
— NetApp GX, Isilon, BlueArc, etc.

), panasa%



Other Issues

What about... Development Effort
— Monitoring &
troubleshooting?
— Backups?
— Snapshots? ® Data path

— Disaster recovery & @
replication? " Everything

|
— Capacity management? oee
— System expansion?

— Retiring old equipment?

: panasa%



Themes

"A supercomputer is a device for turning compute-bound

problems into I/O-bound problems."
- Ken Batcher

B Scalable clusters need scalable storage
B Avoid centralized/single anything

M File/object storage API superior to blocks

B Reliability is important

b panasa%
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Performance Measurement

M | ots of different performance metrics
— Sequential bandwidth, random 1I/Os, metadata operations
— Single-threaded vs. multi-threaded
— Single-client vs. multi-client
— N-to-N (file per process) vs. N-to-1 (single shared file)

® Ultimately a method to try to estimate what you
really care about
— “Time to results”, aka “How long does my app take?”

B Benchmarks are best if they model your real
application
— Need to know what kind of 1/O your app does in order to
choose appropriate benchmark

— Similar to CPU benchmarking — e.g., LINPACK
performance may not predict how fast your codes run

50 panasa%



Workloads

B Streaming I/O mMPI 1O
— Single client, one or more — Coordinated opens
streams per client — Shared output files

- I\/Iang/ Clienft_is, file-per-process  m |nterprocess Communication
or shared-file — Producer/consumer files

— Scaling clients — Message drop
— Server throughput, scaling with — Atomic record updates

number of servers

B Random 1/O ® Small I/O | |
— Dependent on caching and — Small whole fl.Ie operatlpns
drive seek performance — Small read/write operations
B Metadata

— Create/Delete workloads
— File tree walk (scans)

51 panasa%



What is a benchmark?

B Standardized way to compare performance of
different systems

M Properties of a good benchmark

— Relevant: captures essential attributes of real
application workload

— Simple: Provides an understandable metric

— Portable & scalable

— Consistent & repeatable results (on same HW)
— Accepted by users & vendors

B Types of benchmark
— Microbenchmark
— Application-based benchmark
— Synthetic workload

, panasa%



Microbenchmarks

B Measures one fundamental operation in isolation

— Read throughput, write throughput, creates/sec, etc.
B Good for:

— Tuning a specific operation

— Post-install system validation

— Publishing a big number in a press release
@ Not as good for:

— Modeling & predicting application performance

— Measuring broad system performance characteristics
B Examples:

— 10zone

— IOR

— Bonnie++

— mdtest

— metarates

53
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Application Benchmarks

® Run real application on real data set, measure time
M Best predictor of application performance on your cluster

M Requires additional resources (compute nodes, etc.)
— Difficult to acquire when evaluating new gear
— Vendor may not have same resources as their customers
B Can be hard to isolate I/O vs. other parts of application

— Performance may depend on compute node speed, memory
size, interconnect, etc.

— Difficult to compare runs on different clusters
B Time consuming — realistic job may run for days, weeks

B May require large or proprietary dataset
— Hard to standardize and distribute

, panasa%



Synthetic Benchmarks

M Selected combination of operations (fractional mix)

— Operations selected at random or using random model (e.g.,
Hidden Markov Model)

— Operations and mix based on traces or sampling real workload

B Can provide better model for application performance
— However, inherently domain-specific
— Need different mixes for different applications & workloads

— The more generic the benchmark, the less useful it is for
predicting app performance

— Difficult to model a combination of applications
W Examples:

— SPEC SFS

— TPC-C, TPC-D

— FLASH I/O

., panasa%



Benchmarks for HPC

Unfortunately, there are few synthetic HPC benchmarks that stress 1/0

HPC Challenge
— Seven sub-benchmarks, all “kernel” benchmarks (LINPACK, matrix transpose,

— Measures compute speed, memory bandwidth, cluster interconnect

FFT, message ping-pong, etc.)

No I/O measurements

SPEC HPC2002

— Three sub-benchmarks (CHEM, ENV, SEIS), all based on real apps
— Only SEIS has a dataset of any size, and even it is tiny

« 2 GB for Medium, 93 GB for X-Large

NAS Parallel Benchmarks

— Mix of kernel and mini-application benchmarks, all CFD-focused

— One benchmark (BTIO) does significant 1/0O (135 GB N-to-1/collective write)

FLASH I/O Benchmark
— Simulates I/0O performed by FLASH (nuclear/astrophysics application, Net-CDF/

Most HPC I/0O benchmarking still done with microbenchmarks

HDF5)

|Ozone, IOR (LLNL), LANL MPI-IO Test, mdtest, etc.

56
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Benchmarking Pitfalls

B Not measuring what you think you are measuring

— Most common with microbenchmarks

— For example, measuring write or read from cache rather than to

storage

— Watch for “faster than the speed of light” results

B Multi-client benchmarks without synchronization across nodes
— Measure aggregate throughput only when all nodes are transferring

data

— Application with 1/O barrier may care more about when last node

finishes

Node 2

P
I‘

B Benchmark that does not model application workload

Node 2

— Different /O size & pattern, different file size, etc.

57
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Analyzing Results

M Sanity-checking results is important

M Figure out the “speed of light” in your system
— Sometimes the bottleneck isn’t where you think it is
M | arge sequential accesses
— Readahead can hide latency
— 7200 RPM SATA 60-100 MB/sec/spindle
— 15000 RPM FC 100-170 MB/sec/spindle
B Small random access
— Seek + rotate limited
— Readahead rarely helps (and sometimes hurts)
— 7200 RPM SATA avg access 15 ms, 75-100 ops/sec/spindle
— 15000 RPM FC avg access 6 ms, 150-200 ops/sec/spindle

58 panasa%



PVFS Test Platform: OSC Opteron Cluster

M 338 nodes, each with
— 4 AMD Opteron CPUs at 2.6 GHz, 8 GB memory

B Gigabit Ethernet network
— Switch Hierarchy with multiple GBit uplinks
M 16 1/O servers (also serving metadata)
— 2 2-core Xeon CPU at 2.4 GHz, 3 GB memory

B 120 TB parallel file system

— Each server has Fibre Channel interconnect to back-
end RAID

Ohio Supercomputer Center

59 panasa%



Panasas Test Platform: Pittsburgh Lab

B Small test system from our Pittsburgh development lab

B 3 Panasas Shelves, each with
— 10 SB-1000a-XC StorageBlades
« (1.5GHz Celeron, 2GB RAM, 2x500GB SATA, 1GE)

— 1 DB-100a DirectorBlade
* (1.8GHz 475, 4GB RAM, 1GE)

— 18-port switch with 10GE uplink

M 48 client nodes
— 2.8 GHz Xeon, 8GB, 1GE

B GE Backbone

— 40 GB/s between
clients and shelves
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—

GPFS Test Platform: ASC Purple

B 1536 nodes, each with

— 8 64-bit Power5 CPUs at
1.9 GHz

— 32 GB memory

M Federation high-speed interconnect

— 4Gbyte/sec theoretical bisection
bandwidth per adapter

— ~5.5 Gbyte/sec measured per I/O server w/dual adapters
W 125 |/O servers, 3 metadata servers

— 8 64-bit Power5 CPUs at 1.9 GHz
— 32 GB memory

300 TB parallel file system

— HW RAIDS5 (4+P, 250 GB SATA Drives)
— 24 RAIDs per I/O server
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Lustre Test Platform: LLNL Thunder

B 1024 nodes each with
— 4 64-bit Itanium2 CPUs at 1.4 GHz
— 8 GB memory

B Quadrics high-speed interconnect
— ~900 MB/s of bidirectional bandwidth

— 16 Gateway nodes with 4 GigE connections to the
Lustre network

W64 object storage servers, 1 metadata server
— |/O server - dual 2.4 Ghz Xeons, 2GBs ram
— Metadata Server - dual 3.2 Ghz Xeons, 4 GBs ram
m170 TB parallel file system
— HW RAIDS (8+P, 250 GB SATA Drives)

— 108 RAIDs per rack
— 8 racks of data disk
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Metadata Performance

B Storage is more than reading & writing

B Metadata operations change the namespace or file
attributes
— Creating, opening, closing, and removing files
— Creating, traversing, and removing directories

— “Stat’ing files (obtaining the attributes of the file, such as
permissions and file size)

B Several users exercise metadata subsystems:
— Interactive use (e.g. “Is -I")
— File-per-process POSIX workloads

— Collectively accessing files through MPI-10 (directly or indirectly)
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fdtree: Serial Metadata Performance

® Written at Lawrence Livermore National Laboratory

B Creates directories and small files in a hierarchical
directory structure and then removes them
— Processes operate independently

® \Written as a bash script
— Uses POSIX interface
— Similar to an untar operation

M Provides insight into responsiveness to user
Interaction

®We ran with “1 3 -d 10 -f 10 -s 10 -0 $DIR”

— Spawned on multiple nodes with LoadLeveler or mpiexec

— Timing is somewhat coarse grained (processes loosely
synced, time measured in whole seconds)
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fdtree Results
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fdtree Analysis

M| ack of caching on clients in PVFS results in
slowest performance

B GPFS and Panasas are the fastest of the four
and show scalabillity at these proc counts
— GPFS faster for creates
— Panasas faster for deletes

— GPFS 4-proc directory remove case was probably
just out of sync

— Panasas does deletes in the background

B Question: How many ops/sec do you need on a
parallel file system?
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mdtest: Parallel Metadata Performance

B Measures performance of multiple tasks creating, stating, and
deleting both files and directories in either a shared directory or
unique (per task) directories

B Demonstrates potential serialization of multiple, uncoordinated
processes for directory access

B Written at Lawrence Livermore National Laboratory
B MPI code, processes synchronize for timing purposes
B We ran three variations, each with 64 processes:
— mdtest -d $DIR-n 100-i3-N 1 -v -u
- Each task creates 100 files in a unique subdirectory
— mdtest -d $DIR-n 100-i3-N 1 -v -c
» One task creates 6400 files in one directory
« Each task opens, removes its own

— mdtest -d $DIR -n 100 -i 3-N 1 -v
« Each task creates 100 files in a single shared directory
B GPFS tests use 16 tasks with 4 tasks on each node

B Panasas tests use 48 tasks on 48 nodes
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mdtest Variations

Unique Directory

Single Process

Shared Directory

root dir

root dir

root dir

2)

i-i

Each process (A B,
C) creates own
subdir in root
directory, then
chdirs into it.

A, B, and C create,
stat, and remove
their own files in the
unique
subdirectories.

b

1)

2)

3)

Process A creates
files for all
processes in root
directory.

Processes A, B,
and C open, stat,
and close their own
files.

Process A removes
files for all
processes.
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1)

g

Each process (A,
B, C) creates,
stats, and removes
its own files in the
root directory.
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mdtest Results
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mdtest Analysis

mPVFS

— No penalty for stat in shared dir
— Lack of client caching hurts stat throughput

BGPFS

— Very high cost to operating in the same directory

— Each client must acquire token & modify dir itself
W[ ustre

— Single MDS and directory lock limit shared dir case
M Panasas

— Coarse-grained metadata clustering not active, since
all procs share common root

— Directory lock on metadata server limits parallelism
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JIOR: File System Bandwidth

B Written at Lawrence Livermore National Laboratory
B Named for the acronym ‘interleaved or random’
B POSIX, MPI-IO, HDF5, and Parallel-NetCDF APlIs

— Shared or independent file access
— Collective or independent I/O (when available)
B Employs MPI for process synchronization
M Used here to obtain peak POSIX I/O rates for shared
and separate files
— Running in segmented (contiguous) I/0O mode
— We ran two variations:
 /IOR -a POSIX-C-i 3-t4M -b 4G -e -v -v -0 $FILE
— Single, shared file
- /IOR-a POSIX-C-i3-t4M-b 4G -e -v -v -F -0 $FILE
— One file per process
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IOR Access Patterns for Shared Files

[“memory buffer] | memory buffer

AN |

Segmented File [alalalalalalal b/ b[b|b]b]b] b IEICHCHCHEIEHE

_Or_

Strided File bi@la bli@labiglabi@a bligla biglal b

B Primary distinction between the two major shared-file patterns
iIs whether each task’s data is contiguous or noncontiguous

B For the segmented pattern, each task stores its blocks of data
in @ contiguous region in the file

®m With the strided access pattern, each task’s data blocks are
spread out through a file and are noncontiguous

B We only show segmented access pattern results
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IOR POSIX Segmented Results
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IOR POSIX Segmented Analysis

B Aggregate performance increases to a point as
more clients are added
— Striping and multiple network links

M EXxpect to see a peak and flatten out after that
peak

B Sometimes early spikes appear due to cache
effects (not seen here)

M |ncast hurts PVFS reads

B Panasas shared file 25-40% slower than
separate file
— IOR not using Panasas lazy coherency extensions
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What’s wrong with POSIX?

M |t's a useful, ubiquitous interface for basic I/O

M|t lacks constructs useful for parallel I/O

— Cluster application is really one program running on
N nodes, but looks like N programs to the filesystem

— No support for noncontiguous /O
— No hinting/prefetching
M Its rules hurt performance for parallel apps
— Atomic writes, read-after-write consistency
— Attribute freshness

BPOSIX should not be used (directly) in parallel
applications that want good performance
— But developers use it anyway
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MPI-IO

H|/O interface specification for use in MPI| apps

B Data model is same as POSIX
— Stream of bytes in a file

M Features:
— Collective I/0
— Noncontiguous I/O with MPI| datatypes and file views
— Nonblocking /0O
— Fortran bindings (and additional languages)

— System for encoding files in a portable format
(external32)
 Not self-describing - just a well-defined encoding of types

B Implementations available on most platforms

(more later)
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Independent and Collective 1/O

ol e femes]iee | ol e[| oo
B S o S B

Independent 1/0O Collective 1/0

B [ndependent I/O operations specify only what a single process will do

— Independent I/O calls do not pass on relationships between I/O on other processes
B Many applications have phases of computation and I/O

— During I/O phases, all processes read/write data

— We can say they are collectively accessing storage
B Collective I/O is coordinated access to storage by a group of processes

— Collective 1/O functions are called by all processes participating in I/O

— Allows I/O layers to know more about access as a whole, more opportunities for
optimization in lower software layers, better performance
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Contiguous and Noncontiguous I/O

| [ |

Contiguous Noncontiguous Noncontiguous Noncontiguous
in File in Memory in Both

B Contiguous I/O moves data from a single memory block into a single file region
B Noncontiguous I/O has three forms:

— Noncontiguous in memory, noncontiguous in file, or noncontiguous in both
M Structured data leads naturally to noncontiguous 1/0O (e.g. block decomposition)
B Describing noncontiguous accesses with a single operation passes more

knowledge to I/O system
e panasa‘s/



Nonblocking and Asynchronous I/O

M Blocking/synchronous I/O operations return when
buffer may be reused
— Data in system buffers or on disk

B Some applications like to overlap I/O and computation
— Hiding writes, prefetching, pipelining

B A nonblocking interface allows for submitting 1/0
operations and testing for completion later

M |f the system also supports asynchronous 1/O,
progress on operations can occur in the background
— Depends on implementation

B Otherwise progress is made at start, test, wait calls
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Under the Covers of MPI-IO

BmMPI-IO implementation gets a lot of information
— Collection of processes reading data
— Structured description of the regions

B mplementation has some options for how to
perform the data reads
— Noncontiguous data access optimizations
— Collective /O optimizations
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Noncontiguous I/O: Data Sieving

M Data sieving is used to
combine lots of small
Memory ﬂ.ﬁ gﬁce;esses Into a single larger

— Remote file systems (parallel or
not) tend to have high latencies

— Reducing # of operations
important
B Similar to how a block-based
file system interacts with
storage

B Generally very effective, but
not as good as having a PFS
that supports noncontiguous

dCCEeSS
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Data Sieving Write Operations

B Data sieving for writes is
more complicated

— Must read the entire region
first

— Then make changes in
buffer

— Then write the block back
B Requires locking in the
file system

— Can result in false sharing
(interleaved access)

B PFS supporting
noncontiguous writes is
preferred
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Collective I/0 and Two-Phase I/O

(R

mixin imimin) e

Initial State Phase 1: Phase 2: Redistribution

Two-Phase Read Algorithm

B Problems with independent, noncontiguous access
— Lots of small accesses
— Independent data sieving reads lots of extra data, can exhibit false sharing
B [|dea: Reorganize access to match layout on disks
— Single processes use data sieving to get data for many
— Often reduces total I/0O through sharing of common blocks
Second “phase” redistributes data to final destinations
Two-phase writes operate in reverse (redistribute then 1/0)
— Typically read/modify/write (like data sieving)
— Overhead is lower than independent access because there is little or no false sharing
B Note that two-phase is usually applied to file regions, not to actual blocks
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MPI-IO Implementations

MPI-10 Interface

m Different MPI-10 implementations exist Common Functionality
B Three better-known ones are: ADIO Interface
— ROMIO from Argonne Natlongl L_aboratory ovEsT Urs T NES T XES
» Leverages MPI-1 communication _
ROMIQ’s layered architecture.

» Supports local file systems, network file systems,
parallel file systems

— UFS module works GPFS, Lustre, and others
* Includes data sieving and two-phase optimizations
— MPI-IO/GPFS from IBM (for AlX only)
* Includes two special optimizations

— Data shipping -- mechanism for coordinating access to a file to
alleviate lock contention (type of aggregation)

— Controlled prefetching -- using MPI file views and access patterns
to predict regions to be accessed in future

— MPI from NEC

* For NEC SX platform and PC clusters with Myrinet, Quadrics, IB, or
TCP/IP

* Includes listless 1/O optimization -- fast handling of noncontiguous 1/O

accesses in MPI layer
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MPI-10 Wrap-Up

B MPI-IO provides a rich interface allowing us to
describe
— Noncontiguous accesses in memory, file, or both
— Collective I/O

B This allows implementations to perform many
transformations that result in better |/O
performance

B Also forms solid basis for high-level I/O libraries
— But they must take advantage of these features!
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Storage Futures

BpNFS
— An extension to the NFSv4 file system protocol

standard that allows direct, parallel /O between
clients and storage devices

— Eliminates the scaling bottleneck found in today’s
NAS systems

— Supports multiple types of back-end storage systems,
including traditional block storage, other file servers,
and object storage systems

B FLASH and other non-volatile devices
— New level in storage hierarchy
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Why a Standard for Parallel 1/0?

B NFS is the only network file system standard
— Proprietary file systems have unique advantages, but can cause
lock-in
B NFS widens the playing field

— Panasas, IBM, EMC want to bring their experience in large scale,
high-performance file systems into the NFS community

— Sun and NetApp want a standard HPC solution
— Broader market benefits vendors
— More competition benefits customers

® \What about open source

— NFSv4 Linux client is very important for NFSv4 adoption, and
therefore pNFS

— Still need vendors that are willing to do the heavy lifting required in
quality assurance for mission critical storage
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NFSv4 and pNFS

BNFS created in '80s to share data among
engineering workstations

BNFSv3 widely deployed

BNFSv4 several years in the making, lots of new stuff
— Integrated Kerberos (or PKI) user authentication

— Integrated File Locking and Open Delegations (stateful
serverl!)

— ACLs (hybrid of Windows and POSIX models)
— Official path to add (optional) extensions

BNFSv4.1 adds even more
— PNFS for parallel 10
— Directory Delegations for efficiency
— RPC Sessions for robustness, better RDMA support
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Whence pNFS

® Gary Grider (LANL) and Lee Ward (Sandia)

— Spoke with Garth Gibson about the idea of parallel IO for NFS in
2003

® Garth Gibson (Panasas/CMU) and Peter Honeyman (UMich/
CITI)

— Hosted pNFS workshop at Ann Arbor in December 2003

B Garth Gibson, Peter Corbett (NetApp), Brent Welch

— Wrote initial pNFS IETF drafts, presented to IETF in July and
November 2004

B Andy Adamson (CITI), David Black (EMC), Garth Goodson
(NetApp), Tom Pisek (Sun), Benny Halevy (Panasas), Dave

Noveck (NetApp), Spenser Shepler (Sun), Brian Pawlowski
(NetApp), Marc Eshel (IBM), ...

— Dean Hildebrand (CITI) did pNFS prototype based on PVFS

— NFSv4 working group commented on drafts in 2005, folded pNFS
into the 4.1 minorversion draft in 2006

W Many others
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PNFS: Standard Storage Clusters

BpNFS is an extension to the Network File System v4
protocol standard

m Allows for parallel and direct access
— From Parallel Network File System clients

— To Storage Devices over multiple storage protocols
— Moves the Network File System server out of the data path

I]ﬂﬂ!!ll!! ; . data

’77@2!
ONFS Yty Block (FC) /
Clients Object (OSD) /
| File (NFS)
NFSv4.1 Server Storage
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The pNFS Standard

® The pNFS standard defines the NFSv4.1 protocol
extensions between the server and client

M The I/O protocol between the client and storage is
specified elsewhere, for example:

— SCSI Block Commands (SBC) over Fibre Channel (FC)
— SCSI Object-based Storage Device (OSD) over iSCSI
— Network File System (NFS)

® The control protocol between the server and storage
devices is also specified elsewhere, for example:
— SCSI Object-based Storage Device (OSD) over iSCSI

7 —
Client \ | A/gt-orage

MetaData Server
panasa%
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PNFS Layouts

M Client gets a layout from the NFS Server

B The layout maps the file onto storage devices and
addresses

M The client uses the layout to perform direct I/O to
storage

B At any time the server can recall the layout

® Client commits changes and returns the layout when it's
done

B pNFS is optional, the client can always use regular
NFSv4 1/O

layout

: ! o
\) Storage

i
Clients NFSv4.1 Server
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PNFS Client

B Common client for different storage back ends
®\Vider availability across operating systems
M Fewer support issues for storage vendors

Client Apps

1. SBC (blocks)

2. OSD (objects)

3. NFS (files)

4. PVFS2 (files)

5. Future backend...

NFSv4.1

Layout metadata
grant & revoke

panasa%
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PNFS is not...

M [mproved cache consistency

— NFS has open-to-close consistency enforced by client
polling of attributes

— NFSv4.1 directory delegations can reduce polling
overhead

B Perfect POSIX semantics in a distributed file system
— NFS semantics are good enough (or, all we’ll give you)

— But note also the POSIX High End Computing Extensions
Working Group

e http://www.openqgroup.orqg/platform/hecewq/

M Clustered metadata
— Not a server-to-server protocol for scaling metadata
— But, it doesn’t preclude such a mechanism
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Is pPNFS Enough?

B Standard for out-of-band metadata
— Great start to avoid classic server bottleneck

— NFS has already relaxed some semantics to favor
performance

— But there are certainly some workloads that will still
hurt

B Standard framework for clients of different
storage backends
— Files
— Objects
— Blocks
— PVFS
— Your project... (e.g., dcache.org)
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Key pNFS Participants

panasa% F=E:

-] center for
. 8N r . .
S B information
SN e chnolo
HELLM i gy
ol integration

B Univ. of Michigan/CITI (Files over PVFS and NFSv4)

® NetApp (Files over NFSv4)

o |IBM (Files, based GPFS)

B EMC (Blocks, based on MPFS/HighRoad)

M Sun (Files over NFSv4, Objects based on OSDv1)

B Panasas (Objects based on Panasas OSDs)

B Carnegie Mellon (performance and correctness testing)
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Current Status

B |[ETF NFSv4.1 I-D accepted as Proposed Standard by IESG (yay!)
— Expect RFC number “any day”
B Reference open source client done by CITI
— CITl owns NFSv4 Linux client and server
B Development progress since FASTO8
— Forward port to closely track HOL Linux kernel tree
— Patch set preparation for review by Linux maintainers
— Lots of stabilization
B Prototype interoperability began in 2006
— San Jose Connect-a-thon Spring 06, '07, 08, ‘09
— Ann Arbor NFS Bake-a-thon September '06
— Austin NFS Bake-a-thon June 07, October ‘08
® Availability
— kernel.org adoption by the end of 2009
— Production releases 2010

99
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The problem with rotating media

M Areal density increases by 40% per year

— Per drive capacity increases by 70% to 100% per year
— 2008:1TB

— 2009: 2 TB (enterprise SATA available 2" half of 2009)

— Drive vendors prepared to continue like this for years to come
M Drive interface speed increases by 10-15% per year

— 2008: 500 GB disk (WD REZ2): 98 MB/sec

— 2009: 1 TB disk (WD RE3): 113 MB/sec

B Takes longer and longer to completely read each new
generation of drive

B Seek times and rotational speeds not increasing all that
much

— 15,000 RPM and 2.5 ms/sec still the norm for high end

— Significant power problems with higher RPM and faster seeks
» Aerodynamic drag and friction loads go as the square of speed
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FLASH is...

B Non-volatile

— Each bit is stored in a “floating
gate” that holds value without
power

— Electrons can leak, so shelf life and
write count is limited

B Page-oriented

— Read, write, and erase operations
apply to large chunks

— Smaller (e.g., 4K) read/write block
based on addressing logic

— Larger (e.g., 256K) erase block to
amortize the time it takes to erase

B Medium speed

— Slower than DRAM

— Faster than disks (especially for
read, not always for write)

— Write speed heavily dependent on
workload

B Relatively cheap

Oxide Layer

101

Control Gate

Floating Gate

Substrate

http://icrontic.com/articles/how_ssds_work
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FLASH Reliability

B SLC - Single Level Cell
— One threshold, one bit
— 10° to 108 write cycles per
page
B MLC — Multi Level Cell

— Multiple thresholds, multiple
bits (2 bits now, 3 & 4 soon)

— N bits requires 2N Vt levels
— 10% write cycles per page
— Denser and cheaper, but
slower and less reliable
B Wear leveling is critical

— Pre-erase blocks before
writing is required

— Page map indirection allows

shuffling of pages to do wear

leveling

Reference Point

Distribution of Cells

SLC: One Bit Per Cell vt

Reference Polints

Distribution of Cells

100 W

MLC: Two Bits Per Cell Vit

http://www.micron.com/nandcom/
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FLASH Speeds

Samsung 4 GB Device

256K
block

4K

pages

4K
register

63

Serial

interface

100 Transfer 4K over |40 MB/sec

usec serial interface

25 usec | Load 4K register | 160 MB/
from Flash sec

125 Read latency 32 MB/sec

usec

200 Store 4K register | 20 MB/sec

usec to FLASH

225 Write latency 16 MB/sec

usec

1.5 Erase 256K block | 170 MB/

msec sec

1.725 Worse case write | 2.3 MB/sec

msec

B Write performance heavily dependent
on workload and wear leveling
algorithms

B Writes are slower with less free space

103
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FLASH In the Storage Hierarchy

B On the compute nodes
— High reliability local storage for OS partition

— Local cache for memory checkpoints?

» Device write speeds vary widely
— 4 MB/sec for a cheap USB
— 80 or 100 MB/sec for MTron or Zeus
— 600 MB/sec for Fusion-io ioDrive

— One Fusion-io board could double cost of node
B On the storage server

— Metadata storage

— Low latency log device

— Replacement for NVRAM? Probably not enough
write bandwidth to absorb all the write data
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FLASH Summary

B FLASH is a midpoint between
DRAM and HDDs

— Attractive because of cost and

Bit Line

non-volatile

— Performance and reliability S
characteristics make the system é?&éﬁéﬁiém
design non-trivial P ASCH

B Phase-change memories are a
newer technology that may
replace FLASH In 2-5 years

— Material that changes magnetic
polarity when voltage applied

» Like old core memory but at the
VLSI scale instead of wires and
magnets

— More like DRAM in access
characteristics (e.g., no block
erase required)

— 100+ million erase cycles
— Sounds promising...

Word Line

Word Line

Courtesy http://en.wikipedia.org/wiki/User:Cyferz
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Wrapping Up

®\We've covered a lot of ground in a short time
— Disk drives & filesystems
— Benchmarking

— Programming middleware
— pNFS and FLASH

B There is no magic in high performance 1/O

— Under the covers it looks a lot like shared memory or
message passing

— Knowing how things work will lead you to better
performance

B Things will continue to get more complicated, but
hopefully easier too!
— Remote access to data
— More layers to 1/O stack
— Domain-specific application interfaces
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Thank you!

Brent Welch, Marc Unangst
{welch,mju}@panasas.com
Panasas, Inc.
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Printed References

B John May, Parallel I/O for High Performance Computing,
Morgan Kaufmann, October 9, 2000.

— Good coverage of basic concepts, some MPI-10, HDF5, and
serial netCDF

B William Gropp, Ewing Lusk, and Rajeev Thakur, Using
MPI-2: Advanced Features of the Message Passing
Interface, MIT Press, November 26, 1999.

— In-depth coverage of MPI-10 API, including a very detailed
description of the MPI-IO consistency semantics
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Online References: Filesystems

® ROMIO MPI-10

— http://www.mcs.anl.gov/romio/

B POSIX I/O Extensions

— http://www.opengroup.org/platform/hecewq/

mPVFS
— http://www.pvfs.org/

B Panasas
— http://www.panasas.com/

M Lustre
— http://www.lustre.org/

u GPFS

— http://www.almaden.ibm.com/storagesystems/file systems/GPFS/
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Online References: Benchmarks

LLNL I/O tests (IOR, fdtree, mdtest)

http://www.lInl.gov/icc/lc/siop/downloads/download.html

Parallel /0O Benchmarking Consortium (noncontig, mpi-tile-io, mpi-md-test)

http://www.mcs.anl.gov/pio-benchmark/

FLASH |/O benchmark

http://www.mcs.anl.gov/pio-benchmark/

http://flash.uchicago.edu/~jbgallag/io_bench/ (original version)

b_eff io test

http://www.hlrs.de/organization/par/services/models/mpi/b eff io/

mpiBLAST

http://www.mpiblast.org

HPC Challenge

http://icl.cs.utk.edu/hpcc/)

SPEC HPC2002

http://www.spec.org/hpc2002/

NAS Parallel Benchmarks

http://www.nas.nasa.gov/Resources/Software/npb.html
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Online References: pNFS

BNFS Version 4.1
— draft-ietf-nfsv4-minorversion1-29.txt
— draft-ietf-nfsv4-pnfs-obj-09.txt
— draft-ietf-nfsv4-pnfs-block-09.txt
— http://tools.ietf.org/wg/nfsv4/

BpNFS Problem Statement

— Garth Gibson (Panasas), Peter Corbett (Netapp),
Internet-draft, July 2004

— http://www.pdl.cmu.edu/pNF S/archive/gibson-pnfs-problem-statement.html

BLinux pNFS Kernel Development

— http://www.citi.umich.edu/projects/asci/pnfs/linux
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