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I/O for Computational Science 

  Parallel file systems support middleware and 
applications 
–  Understanding this context helps motivate some of their 

features 
  Goals of the storage system as a whole: 

–  Scalability 
–  Parallelism (high bandwidth) 
–  Usability 

Application 

Parallel File System 
I/O Hardware 

High-level I/O Library 
I/O Middleware (MPI-IO) 

Parallel File System 

I/O Hardware 

Application 

I/O Forwarding 
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Parallel File System 

 Manage storage hardware 
–  Present unified view 
–  Stripe files for performance 
–  Handle failures 

 In the context of the I/O software stack 
–  Focus on concurrent, independent access 
–  Publish an interface that middleware can use 

effectively 
–  Knowledge of collective I/O usually very limited 

High-level I/O Library 
I/O Middleware (MPI-IO) 

Parallel File System 

I/O Hardware 

Application 

I/O Forwarding 



I/O Forwarding 

 Present in some of the largest systems 
 Newest layer in the stack 
 Provides bridge between system and storage in machines 

such as the Blue Gene/P 
 Allows for a point of aggregation, hiding true number of 

clients from underlying file system 
 Poor implementations can lead to unnecessary 

serialization, hindering performance 

High-level I/O Library 
I/O Middleware (MPI-IO) 

Parallel File System 

I/O Hardware 

Application 

I/O Forwarding 
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I/O Middleware 

  Match the programming model 
  Facilitate concurrent access 

–  Collective I/O 
–  Atomicity rules 

  Expose a generic interface 
–  Good building block for high-level libraries 

  Efficiently map middleware operations into PFS ones 

High-level I/O Library 
I/O Middleware (MPI-IO) 

Parallel File System 

I/O Hardware 

Application 

I/O Forwarding 
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High Level Libraries 

 Match storage abstraction 
to domain 
–  Multidimensional datasets 
–  Typed variables 
–  Attributes 

 Provide self-describing, structured files 
 Map to middleware interface 
 Implement higher-level optimizations 

–  Caching attributes of variables 
–  Chunking of datasets 

High-level I/O Library 
I/O Middleware (MPI-IO) 

Parallel File System 

I/O Hardware 

Application 

I/O Forwarding 
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Role of the File System 



Parallel File System Design Issues 

 Same problems as local filesystem 
–  Block allocation 
–  Metadata management 
–  Data reliability and error correction 

 Additional requirements 
–  Cache coherency 
–  High availability 
–  Scalable capacity & performance 
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Network Attached Storage (NAS) 
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Clustered NAS 

NAS 
Heads 
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SAN Shared Disk File Systems 
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SAN 

Metadata 
server 

cluster 
network 



Object-based Storage Clusters 
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Metadata 
server(s) 

Object storage devices 



Object Storage Architecture 

Block Based Disk Object Based Disk 

Source: Intel 

Operations 
 Create object 

   Delete object 
   Read object 
   Write object 
   Get Attribute 
   Set Attribute 

Addressing 
 [object, byte range] 

Allocation 
 Internal 

Operations 
 Read block 

   Write block 

Addressing 
  Block range 

Allocation 
 External 
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What’s in an OSD? 
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+ 

Lustre OSS 
PVFS storage node 

Seagate 
prototype 

Panasas 
StorageBlade 



SCSI T10 OSD Security Model  
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Client 

OSD 

Security 
Manager 

Shared Secret,  
refreshed periodically 

Authorization Req 

Capability, 
CAP_key Req, 

Capability, 
MACcap_key(Req) 



Strengths of Object Storage 

 Scalable block allocation 

 Data relationships exposed to OSD 

 Extensible metadata 

 Fine-grained security 

 Command set friendly to embedded devices 
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Production Parallel File Systems 

 All four systems scale to support the very largest 
compute clusters 
–  LLNL Purple, LANL RoadRunner, Sandia Red Storm, etc. 

 All but GPFS delegate block management to 
“object-like” data servers or OSDs 

 Approaches to metadata vary 
 Approaches to fault tolerance vary 
 Emphasis on features & “turn-key” deployment vary 

GPFS 
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IBM GPFS 

 General Parallel File System 
 Legacy: IBM Tiger multimedia 

filesystem 
 Commercial product 
 Lots of configuration flexibility 

–  AIX, SP3, Linux 
–  Direct storage, Virtual Shared 

Disk, Network Shared Disk 
–  Clustered NFS re-export 

 Block interface to storage 
nodes 

 Distributed locking 

23 



GPFS: Block Allocation 

  I/O server exports exports local disk via block-oriented protocol 
  Block allocation map shared by all nodes 

–  Block map split into N regions 
–  Each region has 1/Nth of each I/O server’s blocks 

 Writing node performs block allocation 
–  Locks a region of the block map to find free blocks 
–  Updates inode & indirect blocks 
–  If # regions ~= # client nodes, block map sharing reduced or eliminated 

  Stripe each file across multiple I/O servers (RAID-0) 
  Large block size (1-4 MB) typically used 

–  Increases transfer size per I/O server 
–  Match block size to RAID stripe width 
–  Minimizes block allocation overhead 
–  Not great for small files 
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GPFS: Metadata Management 

 Symmetric model with distributed locking 
 Each node acquires locks and updates metadata 

structures itself 
 Global token manager manages locking assignments 

–  Client accessing a shared resource contacts token manager 
–  Token manager gives token to client, or tells client current 

holder of token 
–  Token owner manages locking, etc. for that resource 
–  Client acquires read/write lock from token owner before 

accessing resource 
 inode updates optimized for multiple writers 

–  Shared write lock on inode 
–  “Metanode token” for file controls which client updates inode 
–  Other clients send inode updates to metanode 
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GPFS: Caching 

 Clients cache reads and writes 
 Strong coherency, based on distributed locking 
 Client acquires R/W lock before accessing data 
 Optimistic locking algorithm 

–  First node accesses 0-1M, locks 0…EOF 
–  Second node accesses 8M-9M 

• First node reduces its lock to 0…8191K 
• Second node locks 8192K…EOF 

–  Lock splitting assumes client will continue accessing 
in current pattern (forward or backward sequential) 

 Client cache (“page pool”) pinned and separate 
from OS page/buffer cache 
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GPFS: Reliability 

 RAID underneath I/O server to handle disk failures & 
sector errors 

 Replication across I/O servers supported, but typically 
only used for metadata 

 I/O server failure handled via dual-attached RAID or 
SAN 
–  Backup I/O server takes over primary’s disks if it fails 

 Nodes journal metadata updates before modifying FS 
structures 
–  Journal is per-node, so no sharing/locking issues 
–  Journal kept in shared storage (i.e., on the I/O servers) 
–  If node crashes, another node replays its journal to make FS 

consistent 
 Quorum/consensus protocol to determine set of “online” 

nodes 
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PVFS 

 Parallel Virtual Filesystem 
 Open source 
 Linux based 
 Community development 

–  Led by Argonne National Lab 
 Asymmetric architecure (data servers & clients) 
 Data servers use object-like API 
 Focus on needs of HPC applications 

–  Interface optimized for MPI-IO semantics, not POSIX 
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PVFS: Block Allocation 

 I/O server exports file/object oriented API 
–  Storage object (“dataspace”) on an I/O server addressed 

by numeric handle 
–  Dataspace can be stream of bytes or key/value pairs 
–  Create dataspace, delete dataspace, read/write 

 Files & directories mapped onto dataspaces 
–  File may be single dataspace, or chunked/striped over 

several 
 Each I/O server manages block allocation for its 

local storage 
 I/O server uses local filesystem to store dataspaces 
 Key/value dataspace stored using Berkeley DB 

table 
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PVFS: Metadata Management 

 Directory dataspace contains list of names & 
metafile handles 

 Metafile dataspace contains 
–  Attributes (permissions, owner, xattrs) 
–  Distribution function parameters 
–  Datafile handles 

 Datafile(s) store file data 
–  Distribution function determines pattern 
–  Default is 64 KB chunk size and round-robin placement 

 Directory and metadata updates are atomic 
–  Eliminates need for locking 
–  May require “losing” node in race to do significant cleanup 

 System configuration (I/O server list, etc.) stored in 
static file on all I/O servers 
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PVFS: Caching 

 Client only caches immutable metadata and 
read-only files 

 All other I/O (reads, writes) go through to I/O 
node 

 Strong coherency (writes are immediately visible 
to other nodes) 

 Flows from PVFS2 design choices 
–  No locking 
–  No cache coherency protocol 

 I/O server can cache data & metadata for local 
dataspaces 

 All prefetching must happen on I/O server 
 Reads & writes limited by client’s interconnect 
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PVFS: Reliability 

 Similar to GPFS 
–  RAID underneath I/O server to handle disk failures & 

sector errors 
–  Dual attached RAID to primary/backup I/O server to 

handle I/O server failures 
 Linux HA used for generic failover support 
 Sequenced operations provide well-defined 

crash behavior 
–  Example: Creating a new file 

• Create datafiles 
• Create metafile that points to datafiles 
•  Link metafile into directory (atomic) 

–  Crash can result in orphans, but no other 
inconsistencies 
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Panasas ActiveScale (PanFS) 
 Commercial product based on CMU NASD research 
 Complete “appliance” solution (HW + SW), blade server 

form factor 
–  DirectorBlade = metadata server 
–  StorageBlade = OSD 

 Coarse grained metadata 
clustering 

 Linux native client for 
parallel I/O 

 NFS & CIFS re-export 
 Integrated battery/UPS 
 Integrated 10GE switch 
 Global namespace 
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iSCSI/OSD 

OSDFS 
Storage 
Nodes 
1000+ 

SysMgr 

PanFS 

NFS/CIFS 

Client 

Manager Nodes 
100+ 

Client 

Compute Nodes 

RPC 

Up to 12,000 



PanFS: Block Allocation 

 OSD exports object-oriented API based on T10 OSD 
–  Objects have a number (object ID), data, and attributes 
–  CREATE OBJECT, REMOVE OBJECT, READ, WRITE, GET 

ATTRIBUTE, SET ATTRIBUTE, etc. 
–  Commands address object ID and data range in object 
–  Capabilities provide fine-grained revocable access control 

 OSD manages private local storage 
–  Two SATA drives, 500/750/1000 GB each, 1-2 TB total capacity 

 Specialized filesystem (OSDFS) stores objects 
–  Delayed floating block allocation 
–  Efficient copy-on-write support 

 Files and directories stored as “virtual objects” 
–  Virtual object striped across multiple container objects on 

multiple OSDs 
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PanFS: Metadata Management 

 Directory is a list of names & object IDs in a RAID-1 
virtual object 

 Filesystem metadata stored as object attributes 
–  Owner, ACL, timestamps, etc. 
–  Layout map describing RAID type & OSDs that hold the 

file 
 Metadata server (DirectorBlade) 

–  Checks client permissions & provides map/capabilities 
–  Performs namespace updates & directory modifications 
–  Performs most metadata updates 

 Client modifies some metadata directly (length, 
timestamps) 

 Coarse-grained metadata clustering based on 
directory hierarchy 
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PanFS: Caching 

 Clients cache reads & writes 
 Strong coherency, based on callbacks 

–  Client registers callback with metadata server 
–  Callback type identifies sharing state (unshared, read-

only, read-write) 
–  Server notifies client when file or sharing state changes 

 Sharing state determines caching allowed 
–  Unshared: client can cache reads & writes 
–  Read-only shared: client can cache reads 
–  Read-write shared: no client caching 
–  Specialized “concurrent write” mode for cooperating apps 

(e.g. MPI-IO) 
 Client cache shared with OS page/buffer cache  
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PanFS: Reliability 

 RAID-1 & RAID-5 across OSDs to handle disk failures 
–  Any failure in StorageBlade is handled via rebuild 
–  Declustered parity allows scalable rebuild 

 “Vertical parity” inside OSD to handle sector errors 
 Integrated shelf battery makes all RAM in blades into 

NVRAM 
–  Metadata server journals updates to in-memory log 

•  Failover config replicates log to 2nd blade’s memory 
•  Log contents saved to DirectorBlade’s local disk on panic or power 

failure 
–  OSDFS commits updates (data+metadata) to in-memory log 

•  Log contents committed to filesystem on panic or power failure 
•  Disk writes well ordered to maintain consistency 

 System configuration in replicated database on subset of 
DirectorBlades 
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H
 G

 k E 

PanFS: Declustered RAID 

  Each file striped across different combination of StorageBlades 
  Component objects include file data and file parity 
  File attributes replicated on first two component objects 
  Components grow & new components created as data written 
  Declustered, randomized placement distributes RAID workload 

C
 F E 

20 OSD  
Storage Pool 

Mirrored 
or 9-OSD 
Parity 
Stripes 

Read 
about 
half of 
each 
surviving 
OSD 

Write a 
little 
to each 
OSD 

Scales up 
in larger 
Storage 
Pools 
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Panasas Scalable Rebuild 

  Shorter repair time in larger storage 
pools 
–  From 13 hours to 30 minutes 

  Four techniques to reduce MTTR 
–  Use multiple “RAID 

engines” (DirectorBlades) in 
parallel 

–  Spread disk I/O over more disk 
arms (StorageBlades) 

–  Reconstruct data blocks only, not 
unused space 

–  Proactively remove failing blades 
(SMART trips, other heuristics) 

  Two main causes of RAID failures  
1)   2nd drive failure in same RAID set during reconstruction of 1st failed drive 

•  Risk of two failures depends on time-to-repair 
2)  Media failure in same RAID set during reconstruction of 1st failed drive  

MB/sec Rebuild 
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Lustre 

 Open source object-based parallel 
file system 
–  Based on CMU NASD architecture 
–  Lots of file system ideas from Coda 

and InterMezzo 
–  ClusterFS acquired by Sun, 9/2007 

 Originally Linux-based, Sun now 
porting to Solaris 

  Asymmetric design with separate 
metadata server 

  Proprietary RPC network protocol 
between client & MDS/OSS 

  Distributed locking with client-driven 
lock recovery 

MDS 2 
(standby) 

Lustre Object Storage 
Servers (OSS, 100’s) 

Metadata 
Servers 

Failover 

MDS 1 
(active) 

Commodity 
SAN or disks 

Enterprise class 
Raid storage 

Failover 

QSW Elan 

Myrinet 

IB 

GigE 

OSS1 

OSS2 

OSS3 

OSS4 

OSS5 

OSS6 

OSS7 

Multiple storage 
networks are supported 

Lustre material from www.lustre.org and various talks 
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Lustre: Block Allocation 

 Each OSS (object storage server) manages one or more 
OSTs (object storage target) 
–  Typically 2-25 OSTs per OSS (max OST size 8 TB) 
–  Client communicates with OSS via proprietary RPC protocol 

•  RPC built on LNET message-passing facility (based on Sandia 
Portals) 
•  LNET supports RDMA over IB, Myrinet, and Quadrics Elan 

 OST stores data in modified ext3 file system 
 Currently porting OST to ZFS 

–  User-level ZFS via FUSE on Linux 
–  In-kernel ZFS on Solaris 

 RAID-0 striping across OSTs 
–  No dynamic space management among OSTs (i.e., no object 

migration to balance capacity) 
 Snapshots and quota done independently in each OST 

41 



Lustre: Metadata 

 Metadata server (MDS) hosts metadata target (MDT), 
which stores namespace tree and file metadata 

 MDT uses a modified ext3 filesystem to store Lustre 
metadata 
–  Directory tree of “stub” files that represents Lustre namespace 
–  Lustre metadata stored in stub file’s extended attributes 

•  Regular filesystem attributes (owner, group, permissions, size, etc.) 
•  List of object/OST pairs that contain file’s data (storage map) 

–  Single MDS and single MDT per Lustre filesystem 
–  Clustered MDS with multiple MDTs is on roadmap (Lustre 2.0) 

 Distributed lock protocol among MDS, OSS, and clients 
–  “Intents” convey hints about the high-level file operations so the 

right locks can be taken and server round-trips avoided 
–  If a failure occurs (MDS or OSS), clients do lock recovery after 

failover 
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Lustre: Caching 

  Clients can cache reads, writes, and some metadata operations 
  Locking protocol used to protect cached data and serialize access 

–  OSS manages locks for objects on its OSTs 
–  MDS manages locks on directories & inodes 
–  Client caches locks and can reuse them across multiple I/Os 
–  MDS/OSS recalls locks when conflict occurs 
–  Lock on logical file range may span several objects/OSTs 

  Directory locks allow client to do CREATE without round-trip to 
MDS 
–  Only for unshared directory 
–  Create not “durable” until file is written & closed 
–  Non-POSIX semantic but helpful for many applications 

  Client cache shared with OS page/buffer cache  
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Lustre: Reliability 

  Block-based RAID underneath OST/MDT 
  Failover managed by external software (Linux-HA) 
 OSS failover (active/active or clustered) 

–  OSTs on dual-ported RAID controller 
–  OSTs on SAN with connectivity to all OSS nodes 

 MDS failover (active/passive) 
–  MDT on dual-ported RAID controller 
–  Typically use dedicated RAID for MDT due to different workload 

  Crash recovery based on logs and transactions 
–  MDS logs operation (e.g., file delete) 
–  Later response from OSS cancels log entry 
–  Some client crashes cause MDS log rollback 
–  MDT & OST use journaling filesystem to avoid fsck 

  LNET supports redundant networks and link failover 
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Design Comparison 

GPFS PVFS Panasas Lustre 
Block mgmt Shared 

block map 
Object based Object based Object based 

Metadata 
location 

With data With data With data Separate 

Metadata 
written by 

Client Client Client, server Server 

Cache 
coherency & 
protocol 

Coherent;  
distributed 
locking 

Cache 
immutable/
RO data only 

Coherent; 
callbacks 

Coherent; 
distributed 
locking 

Reliability Block RAID Block RAID Object RAID Block RAID 
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Other File Systems 

 GFS (Google) 
–  Single metadata server + 100s of chunk servers 
–  Specialized semantics (not POSIX) 
–  Design for failures; all files replicated 3+ times 
–  Geared towards colocated processing (MapReduce) 

 Ceph (UCSC) 
–  OSD-based parallel filesystem 
–  Dynamic metadata partitioning between MDSs 
–  OSD-directed replication based on CRUSH 

distribution function (no explicit storage map) 
 Clustered NAS 

–  NetApp GX, Isilon, BlueArc, etc. 
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Other Issues 

What about… 
–  Monitoring & 

troubleshooting? 
–  Backups? 
–  Snapshots? 
–  Disaster recovery & 

replication? 
–  Capacity management? 
–  System expansion? 
–  Retiring old equipment? 
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Themes 

 Scalable clusters need scalable storage 

 Avoid centralized/single anything 

 File/object storage API superior to blocks 

 Reliability is important 
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"A supercomputer is a device for turning compute-bound 
problems into I/O-bound problems." 

- Ken Batcher 
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Performance Measurement 

 Lots of different performance metrics 
–  Sequential bandwidth, random I/Os, metadata operations 
–  Single-threaded vs. multi-threaded 
–  Single-client vs. multi-client 
–  N-to-N (file per process) vs. N-to-1 (single shared file) 

 Ultimately a method to try to estimate what you 
really care about 
–  “Time to results”, aka “How long does my app take?” 

 Benchmarks are best if they model your real 
application 
–  Need to know what kind of I/O your app does in order to 

choose appropriate benchmark 
–  Similar to CPU benchmarking – e.g., LINPACK 

performance may not predict how fast your codes run 
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Workloads 

 Streaming I/O 
–  Single client, one or more 

streams per client 
–  Many clients, file-per-process 

or shared-file 
–  Scaling clients 
–  Server throughput, scaling with 

number of servers 
 Random I/O 

–  Dependent on caching and 
drive seek performance 

 Metadata 
–  Create/Delete workloads 
–  File tree walk (scans) 

 MPI IO 
–  Coordinated opens 
–  Shared output files 

 Interprocess Communication 
–  Producer/consumer files 
–  Message drop 
–  Atomic record updates 

 Small I/O 
–  Small whole file operations 
–  Small read/write operations 
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What is a benchmark? 

 Standardized way to compare performance of 
different systems 

 Properties of a good benchmark 
–  Relevant: captures essential attributes of real 

application workload 
–  Simple: Provides an understandable metric 
–  Portable & scalable 
–  Consistent & repeatable results (on same HW) 
–  Accepted by users & vendors 

 Types of benchmark 
–  Microbenchmark 
–  Application-based benchmark 
–  Synthetic workload 
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Microbenchmarks 

 Measures one fundamental operation in isolation 
–  Read throughput, write throughput, creates/sec, etc. 

 Good for: 
–  Tuning a specific operation 
–  Post-install system validation 
–  Publishing a big number in a press release 

  Not as good for: 
–  Modeling & predicting application performance 
–  Measuring broad system performance characteristics 

  Examples: 
–  IOzone 
–  IOR 
–  Bonnie++ 
–  mdtest 
–  metarates 
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Application Benchmarks 

 Run real application on real data set, measure time 
 Best predictor of application performance on your cluster 
 Requires additional resources (compute nodes, etc.) 

–  Difficult to acquire when evaluating new gear 
–  Vendor may not have same resources as their customers 

 Can be hard to isolate I/O vs. other parts of application 
–  Performance may depend on compute node speed, memory 

size, interconnect, etc. 
–  Difficult to compare runs on different clusters 

 Time consuming – realistic job may run for days, weeks 
 May require large or proprietary dataset 

–  Hard to standardize and distribute 
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Synthetic Benchmarks 

 Selected combination of operations (fractional mix) 
–  Operations selected at random or using random model (e.g., 

Hidden Markov Model) 
–  Operations and mix based on traces or sampling real workload 

 Can provide better model for application performance 
–  However, inherently domain-specific 
–  Need different mixes for different applications & workloads 
–  The more generic the benchmark, the less useful it is for 

predicting app performance 
–  Difficult to model a combination of applications 

 Examples: 
–  SPEC SFS 
–  TPC-C, TPC-D 
–  FLASH I/O 
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Benchmarks for HPC 

  Unfortunately, there are few synthetic HPC benchmarks that stress I/O 
  HPC Challenge 

–  Seven sub-benchmarks, all “kernel” benchmarks (LINPACK, matrix transpose, 
FFT, message ping-pong, etc.) 

–  Measures compute speed, memory bandwidth, cluster interconnect 
–  No I/O measurements 

  SPEC HPC2002 
–  Three sub-benchmarks (CHEM, ENV, SEIS), all based on real apps 
–  Only SEIS has a dataset of any size, and even it is tiny 

•  2 GB for Medium, 93 GB for X-Large 

  NAS Parallel Benchmarks  
–  Mix of kernel and mini-application benchmarks, all CFD-focused 
–  One benchmark (BTIO) does significant I/O (135 GB N-to-1/collective write) 

  FLASH I/O Benchmark 
–  Simulates I/O performed by FLASH (nuclear/astrophysics application, Net-CDF/

HDF5) 
  Most HPC I/O benchmarking still done with microbenchmarks 

–  IOzone, IOR (LLNL), LANL MPI-IO Test, mdtest, etc. 
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Benchmarking Pitfalls 

 Not measuring what you think you are measuring 
–  Most common with microbenchmarks 
–  For example, measuring write or read from cache rather than to 

storage 
–  Watch for “faster than the speed of light” results 

 Multi-client benchmarks without synchronization across nodes 
–  Measure aggregate throughput only when all nodes are transferring 

data 
–  Application with I/O barrier may care more about when last node 

finishes 

Node 1 

Node 2 

Node 3 

Node 1 

Node 2 

Node 3 

 Benchmark that does not model application workload 
–  Different I/O size & pattern, different file size, etc. 
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Analyzing Results 

 Sanity-checking results is important 
 Figure out the “speed of light” in your system 

–  Sometimes the bottleneck isn’t where you think it is 
 Large sequential accesses 

–  Readahead can hide latency 
–  7200 RPM SATA    60-100 MB/sec/spindle 
–  15000 RPM FC  100-170 MB/sec/spindle 

 Small random access 
–  Seek + rotate limited 
–  Readahead rarely helps (and sometimes hurts) 
–  7200 RPM SATA  avg access 15 ms,   75-100 ops/sec/spindle 
–  15000 RPM FC  avg access   6 ms, 150-200 ops/sec/spindle 
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PVFS Test Platform: OSC Opteron Cluster 

 338 nodes, each with 
–  4 AMD Opteron CPUs at 2.6 GHz, 8 GB memory 

 Gigabit Ethernet network 
–  Switch Hierarchy with multiple GBit uplinks 

 16 I/O servers (also serving metadata) 
–  2 2-core Xeon CPU at 2.4 GHz, 3 GB memory 

 120 TB parallel file system 
–  Each server has Fibre Channel interconnect to back-

end RAID 



Panasas Test Platform: Pittsburgh Lab 

 Small test system from our Pittsburgh development lab 
 3 Panasas Shelves, each with 

–  10 SB-1000a-XC StorageBlades 
•  (1.5GHz Celeron, 2GB RAM, 2x500GB SATA, 1GE) 

–  1 DB-100a DirectorBlade 
•  (1.8GHz 475, 4GB RAM, 1GE) 

–  18-port switch with 10GE uplink 
 48 client nodes 

–  2.8 GHz Xeon, 8GB, 1GE 
 GE Backbone 

–  40 GB/s between  
clients and shelves 
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GPFS Test Platform: ASC Purple 

 1536 nodes, each with 
–  8 64-bit Power5 CPUs at 

1.9 GHz 
–  32 GB memory 

 Federation high-speed interconnect 
–  4Gbyte/sec theoretical bisection 

bandwidth per adapter 
–  ~5.5 Gbyte/sec measured per I/O server w/dual adapters 

 125 I/O servers, 3 metadata servers 
–  8 64-bit Power5 CPUs at 1.9 GHz 
–  32 GB memory 

 300 TB parallel file system 
–  HW RAID5 (4+P, 250 GB SATA Drives) 
–  24 RAIDs per I/O server 
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Lustre Test Platform: LLNL Thunder 

 1024 nodes each with 
–  4 64-bit Itanium2 CPUs at 1.4 GHz 
–  8 GB memory 

 Quadrics high-speed interconnect 
–  ~900 MB/s of bidirectional bandwidth 
–  16 Gateway nodes with 4 GigE connections to the 

Lustre network 
 64 object storage servers, 1 metadata server 

–  I/O server - dual 2.4 Ghz Xeons, 2GBs ram 
–  Metadata Server - dual 3.2 Ghz Xeons, 4 GBs ram 

 170 TB parallel file system 
–  HW RAID5 (8+P, 250 GB SATA Drives) 
–  108 RAIDs per rack 
–  8 racks of data disk 



Metadata Performance 

 Storage is more than reading & writing 
 Metadata operations change the namespace or file 

attributes 
–  Creating, opening, closing, and removing files 
–  Creating, traversing, and removing directories 
–  “Stat”ing files (obtaining the attributes of the file, such as 

permissions and file size) 
 Several users exercise metadata subsystems: 

–  Interactive use (e.g. “ls -l”) 
–  File-per-process POSIX workloads 
–  Collectively accessing files through MPI-IO (directly or indirectly) 
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fdtree: Serial Metadata Performance 

 Written at Lawrence Livermore National Laboratory 
 Creates directories and small files in a hierarchical 

directory structure and then removes them 
–  Processes operate independently 

 Written as a bash script 
–  Uses POSIX interface 
–  Similar to an untar operation 

 Provides insight into responsiveness to user 
interaction 

 We ran with “-l 3 -d 10 -f 10 -s 10 -o $DIR” 
–  Spawned on multiple nodes with LoadLeveler or mpiexec 
–  Timing is somewhat coarse grained (processes loosely 

synced, time measured in whole seconds) 

64 



fdtree Results 
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fdtree Analysis 

 Lack of caching on clients in PVFS results in 
slowest performance 

 GPFS and Panasas are the fastest of the four 
and show scalability at these proc counts 
–  GPFS faster for creates 
–  Panasas faster for deletes 
–  GPFS 4-proc directory remove case was probably 

just out of sync 
–  Panasas does deletes in the background 

 Question: How many ops/sec do you need on a 
parallel file system? 
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mdtest: Parallel Metadata Performance 
 Measures performance of multiple tasks creating, stating, and 

deleting both files and directories in either a shared directory or 
unique (per task) directories 

  Demonstrates potential serialization of multiple, uncoordinated 
processes for directory access 

 Written at Lawrence Livermore National Laboratory 
 MPI code, processes synchronize for timing purposes 
 We ran three variations, each with 64 processes: 

–  mdtest -d $DIR -n 100 -i 3 -N 1 -v -u 
•  Each task creates 100 files in a unique subdirectory 

–  mdtest -d $DIR -n 100 -i 3 -N 1 -v -c 
•  One task creates 6400 files in one directory 
•  Each task opens, removes its own 

–  mdtest -d $DIR -n 100 -i 3 -N 1 -v 
•  Each task creates 100 files in a single shared directory 

 GPFS tests use 16 tasks with 4 tasks on each node 
  Panasas tests use 48 tasks on 48 nodes 
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mdtest Variations 

root dir 

Shared Directory 

A B C 

a0 
a99 

a1 b0 
b99 

b1 c0 
c99 

c1 

1)  Each process (A, 
B, C) creates, 
stats, and removes 
its own files in the 
root directory. 

A B C 

root dir 
subdir0 
a0 

a99 
a1 b0 

b99 
b1 c0 

c99 
c1 

subdir0 subdir0 

Unique Directory 

1)  Each process (A, B, 
C) creates own 
subdir in root 
directory, then 
chdirs into it. 

2)  A, B, and C create, 
stat, and remove 
their own files in the 
unique 
subdirectories. 

A B C 

root dir 

a0 
a99 

a1 b0 
b99 

b1 c0 
c99 

c1 

Single Process 

1)  Process A creates 
files for all 
processes in root 
directory. 

2)  Processes A, B, 
and C open, stat, 
and close their own 
files. 

3)  Process A removes 
files for all 
processes. 



mdtest Results 

69 

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

9000 

10000 

Create 
File 

Stat File Remove 
File 

Create Dir Stat Dir Remove 
Dir 

O
pe

ra
tio

ns
/S

ec
on

d 

Panasas mdtest Performance 

Unique Directory 
Single Process 
Shared Directory 



mdtest Analysis 

 PVFS 
–  No penalty for stat in shared dir 
–  Lack of client caching hurts stat throughput 

 GPFS 
–  Very high cost to operating in the same directory 
–  Each client must acquire token & modify dir itself 

 Lustre 
–  Single MDS and directory lock limit shared dir case 

 Panasas 
–  Coarse-grained metadata clustering not active, since 

all procs share common root 
–  Directory lock on metadata server limits parallelism 
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IOR: File System Bandwidth 

 Written at Lawrence Livermore National Laboratory 
 Named for the acronym ‘interleaved or random’ 
 POSIX, MPI-IO, HDF5, and Parallel-NetCDF APIs 

–  Shared or independent file access 
–  Collective or independent I/O (when available) 

 Employs MPI for process synchronization 
 Used here to obtain peak POSIX I/O rates for shared 

and separate files 
–  Running in segmented (contiguous) I/O mode 
–  We ran two variations: 

•  ./IOR -a POSIX -C -i 3 -t 4M -b 4G -e -v -v -o $FILE 
–  Single, shared file 

•  ./IOR -a POSIX -C -i 3 -t 4M -b 4G -e -v -v -F -o $FILE 
–  One file per process 
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IOR Access Patterns for Shared Files 

 Primary distinction between the two major shared-file patterns 
is whether each task’s data is contiguous or noncontiguous 

 For the segmented pattern, each task stores its blocks of data 
in a contiguous region in the file 

 With the strided access pattern, each task’s data blocks are 
spread out through a file and are noncontiguous 

 We only show segmented access pattern results 
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IOR POSIX Segmented Results 
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IOR POSIX Segmented Analysis 

 Aggregate performance increases to a point as 
more clients are added 
–  Striping and multiple network links 

 Expect to see a peak and flatten out after that 
peak 

 Sometimes early spikes appear due to cache 
effects (not seen here) 

 Incast hurts PVFS reads 
 Panasas shared file 25-40% slower than 

separate file 
–  IOR not using Panasas lazy coherency extensions 
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What’s wrong with POSIX? 

 It’s a useful, ubiquitous interface for basic I/O 
 It lacks constructs useful for parallel I/O 

–  Cluster application is really one program running on 
N nodes, but looks like N programs to the filesystem 

–  No support for noncontiguous I/O 
–  No hinting/prefetching 

 Its rules hurt performance for parallel apps 
–  Atomic writes, read-after-write consistency 
–  Attribute freshness 

 POSIX should not be used (directly) in parallel 
applications that want good performance 
–  But developers use it anyway 
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MPI-IO 

 I/O interface specification for use in MPI apps 
 Data model is same as POSIX 

–  Stream of bytes in a file 
 Features: 

–  Collective I/O 
–  Noncontiguous I/O with MPI datatypes and file views 
–  Nonblocking I/O 
–  Fortran bindings (and additional languages) 
–  System for encoding files in a portable format 

(external32) 
• Not self-describing - just a well-defined encoding of types 

 Implementations available on most platforms 
(more later) 
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Independent and Collective I/O 

  Independent I/O operations specify only what a single process will do 
–  Independent I/O calls do not pass on relationships between I/O on other processes  

  Many applications have phases of computation and I/O 
–  During I/O phases, all processes read/write data 
–  We can say they are collectively accessing storage 

  Collective I/O is coordinated access to storage by a group of processes 
–  Collective I/O functions are called by all processes participating in I/O 
–  Allows I/O layers to know more about access as a whole, more opportunities for 

optimization in lower software layers, better performance 

P0 P1 P2 P3 P4 P5 P0 P1 P2 P3 P4 P5 

Independent I/O Collective I/O 
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Process 0 Process 0 Process 0 Process 0 

Contiguous Noncontiguous 
in File 

Noncontiguous 
in Memory 

Noncontiguous 
in Both 

Contiguous and Noncontiguous I/O 

  Contiguous I/O moves data from a single memory block into a single file region 
  Noncontiguous I/O has three forms: 

–  Noncontiguous in memory, noncontiguous in file, or noncontiguous in both 
  Structured data leads naturally to noncontiguous I/O (e.g. block decomposition) 
  Describing noncontiguous accesses with a single operation passes more 

knowledge to I/O system 
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Nonblocking and Asynchronous I/O 

 Blocking/synchronous I/O operations return when 
buffer may be reused 
–  Data in system buffers or on disk 

 Some applications like to overlap I/O and computation 
–  Hiding writes, prefetching, pipelining 

 A nonblocking interface allows for submitting I/O 
operations and testing for completion later 

 If the system also supports asynchronous I/O, 
progress on operations can occur in the background 
–  Depends on implementation 

 Otherwise progress is made at start, test, wait calls 
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Under the Covers of MPI-IO 

 MPI-IO implementation gets a lot of information 
–  Collection of processes reading data 
–  Structured description of the regions 

 Implementation has some options for how to 
perform the data reads 
–  Noncontiguous data access optimizations 
–  Collective I/O optimizations 



Noncontiguous I/O: Data Sieving 

  Data sieving is used to 
combine lots of small 
accesses into a single larger 
one 
–  Remote file systems (parallel or 

not) tend to have high latencies 
–  Reducing # of operations 

important 
  Similar to how a block-based 

file system interacts with 
storage 

  Generally very effective, but 
not as good as having a PFS 
that supports noncontiguous 
access 

Buffer 

Memory 

File 

Data Sieving Read Transfers 
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Data Sieving Write Operations 

Buffer 

Memory 

File 

Data Sieving Write Transfers 

 Data sieving for writes is 
more complicated 
–  Must read the entire region 

first 
–  Then make changes in 

buffer 
–  Then write the block back 

 Requires locking in the 
file system 
–  Can result in false sharing 

(interleaved access) 
 PFS supporting 

noncontiguous writes is 
preferred 
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Collective I/O and Two-Phase I/O 

  Problems with independent, noncontiguous access 
–  Lots of small accesses 
–  Independent data sieving reads lots of extra data, can exhibit false sharing 

  Idea: Reorganize access to match layout on disks 
–  Single processes use data sieving to get data for many 
–  Often reduces total I/O through sharing of common blocks 

  Second “phase” redistributes data to final destinations 
  Two-phase writes operate in reverse (redistribute then I/O) 

–  Typically read/modify/write (like data sieving) 
–  Overhead is lower than independent access because there is little or no false sharing 

  Note that two-phase is usually applied to file regions, not to actual blocks 

Two-Phase Read Algorithm 

p0 p1 p2 p0 p1 p2 p0 p1 p2 

Phase 1: I/O Initial State Phase 2: Redistribution 
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Common Functionality 
ADIO Interface 

UFS 

MPI-IO Interface 

NFS XFS PVFS 
ROMIO’s layered architecture. 

MPI-IO Implementations 

  Different MPI-IO implementations exist 
  Three better-known ones are: 

–  ROMIO from Argonne National Laboratory 
•  Leverages MPI-1 communication 
•  Supports local file systems, network file systems, 

parallel file systems 
–  UFS module works GPFS, Lustre, and others 

•  Includes data sieving and two-phase optimizations 
–  MPI-IO/GPFS from IBM (for AIX only) 

•  Includes two special optimizations 
–  Data shipping -- mechanism for coordinating access to a file to 

alleviate lock contention (type of aggregation) 
–  Controlled prefetching -- using MPI file views and access patterns 

to predict regions to be accessed in future 
–  MPI from NEC 

•  For NEC SX platform and PC clusters with Myrinet, Quadrics, IB, or 
TCP/IP 
•  Includes listless I/O optimization -- fast handling of noncontiguous I/O 

accesses in MPI layer 



MPI-IO Wrap-Up 

 MPI-IO provides a rich interface allowing us to 
describe 
–  Noncontiguous accesses in memory, file, or both 
–  Collective I/O 

 This allows implementations to perform many 
transformations that result in better I/O 
performance 

 Also forms solid basis for high-level I/O libraries 
–  But they must take advantage of these features! 
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Storage Futures 

 pNFS  
–  An extension to the NFSv4 file system protocol 

standard that allows direct, parallel I/O between 
clients and storage devices 

–  Eliminates the scaling bottleneck found in today’s 
NAS systems 

–  Supports multiple types of back-end storage systems, 
including traditional block storage, other file servers, 
and object storage systems 

 FLASH and other non-volatile devices 
–  New level in storage hierarchy 
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Why a Standard for Parallel I/O? 

 NFS is the only network file system standard 
–  Proprietary file systems have unique advantages, but can cause 

lock-in 
 NFS widens the playing field 

–  Panasas, IBM, EMC want to bring their experience in large scale, 
high-performance file systems into the NFS community 

–  Sun and NetApp want a standard HPC solution 
–  Broader market benefits vendors 
–  More competition benefits customers 

 What about open source 
–  NFSv4 Linux client is very important for NFSv4 adoption, and 

therefore pNFS 
–  Still need vendors that are willing to do the heavy lifting required in 

quality assurance for mission critical storage 
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NFSv4 and pNFS 

 NFS created in ’80s to share data among 
engineering workstations 

 NFSv3 widely deployed 
 NFSv4 several years in the making, lots of new stuff 

–  Integrated Kerberos (or PKI) user authentication 
–  Integrated File Locking and Open Delegations (stateful 

server!) 
–  ACLs (hybrid of Windows and POSIX models) 
–  Official path to add (optional) extensions 

 NFSv4.1 adds even more 
–  pNFS for parallel IO 
–  Directory Delegations for efficiency 
–  RPC Sessions for robustness, better RDMA support 
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Whence pNFS 

 Gary Grider (LANL) and Lee Ward (Sandia) 
–  Spoke with Garth Gibson about the idea of parallel IO for NFS in 

2003 
 Garth Gibson (Panasas/CMU) and Peter Honeyman (UMich/

CITI) 
–  Hosted pNFS workshop at Ann Arbor in December 2003 

 Garth Gibson, Peter Corbett (NetApp), Brent Welch 
–  Wrote initial pNFS IETF drafts, presented to IETF in July and 

November 2004 
 Andy Adamson (CITI), David Black (EMC), Garth Goodson 

(NetApp), Tom Pisek (Sun), Benny Halevy (Panasas), Dave 
Noveck (NetApp), Spenser Shepler (Sun), Brian Pawlowski 
(NetApp), Marc Eshel (IBM), … 
–  Dean Hildebrand (CITI) did pNFS prototype based on PVFS 
–  NFSv4 working group commented on drafts in 2005, folded pNFS 

into the 4.1 minorversion draft in 2006 
 Many others 
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pNFS: Standard Storage Clusters 

 pNFS is an extension to the Network File System v4 
protocol standard 

 Allows for parallel and direct access 
–  From Parallel Network File System clients 
–  To Storage Devices over multiple storage protocols 
–  Moves the Network File System server out of the data path 

pNFS 
Clients 

Block (FC) / 
Object (OSD) / 

File (NFS) 
Storage NFSv4.1 Server 

data 

metadata control 
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The pNFS Standard 

 The pNFS standard defines the NFSv4.1 protocol 
extensions between the server and client 

 The I/O protocol between the client and storage is 
specified elsewhere, for example: 
–  SCSI Block Commands (SBC) over Fibre Channel (FC) 
–  SCSI Object-based Storage Device (OSD) over iSCSI 
–  Network File System (NFS) 

 The control protocol between the server and storage 
devices is also specified elsewhere, for example: 
–  SCSI Object-based Storage Device (OSD) over iSCSI 

Client Storage 

MetaData Server 
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pNFS Layouts 
 Client gets a layout from the NFS Server 
 The layout maps the file onto storage devices and 

addresses 
 The client uses the layout to perform direct I/O to 

storage 
 At any time the server can recall the layout 
 Client commits changes and returns the layout when it’s 

done 
 pNFS is optional, the client can always use regular 

NFSv4 I/O 

Clients 
Storage 

NFSv4.1 Server 

layout 
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pNFS Client 

 Common client for different storage back ends 
 Wider availability across operating systems 
 Fewer support issues for storage vendors 

Client Apps 

Layout 
Driver 

pNFS Client 

pNFS Server 

Cluster 
Filesystem 

1. SBC (blocks) 
2. OSD (objects) 
3. NFS (files)

4. PVFS2 (files) 
5. Future backend…


Layout metadata 
grant & revoke


NFSv4.1
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pNFS is not… 

 Improved cache consistency 
–  NFS has open-to-close consistency enforced by client 

polling of attributes 
–  NFSv4.1 directory delegations can reduce polling 

overhead 
 Perfect POSIX semantics in a distributed file system 

–  NFS semantics are good enough (or, all we’ll give you) 
–  But note also the POSIX High End Computing Extensions 

Working Group 
•  http://www.opengroup.org/platform/hecewg/ 

 Clustered metadata 
–  Not a server-to-server protocol for scaling metadata 
–  But, it doesn’t preclude such a mechanism 
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Is pNFS Enough? 

 Standard for out-of-band metadata 
–  Great start to avoid classic server bottleneck 
–  NFS has already relaxed some semantics to favor 

performance 
–  But there are certainly some workloads that will still 

hurt 
 Standard framework for clients of different 

storage backends 
–  Files 
–  Objects 
–  Blocks 
–  PVFS 
–  Your project… (e.g., dcache.org) 

97 



Key pNFS Participants 

 Univ. of Michigan/CITI (Files over PVFS and NFSv4) 
 NetApp (Files over NFSv4) 
 IBM (Files, based GPFS) 
 EMC (Blocks, based on MPFS/HighRoad) 
 Sun (Files over NFSv4, Objects based on OSDv1) 
 Panasas (Objects based on Panasas OSDs) 
 Carnegie Mellon (performance and correctness testing) 
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Current Status 

  IETF NFSv4.1 I-D accepted as Proposed Standard by IESG (yay!) 
–  Expect RFC number “any day” 

  Reference open source client done by CITI 
–  CITI owns NFSv4 Linux client and server 

  Development progress since FAST08 
–  Forward port to closely track HOL Linux kernel tree 
–  Patch set preparation for review by Linux maintainers 
–  Lots of stabilization 

  Prototype interoperability began in 2006 
–  San Jose Connect-a-thon Spring ’06, ’07, ’08, ‘09 
–  Ann Arbor NFS Bake-a-thon September ’06 
–  Austin NFS Bake-a-thon June ’07, October ‘08 

  Availability 
–  kernel.org adoption by the end of 2009 
–  Production releases 2010 

99 



The problem with rotating media 

 Areal density increases by 40% per year 
–  Per drive capacity increases by 70% to 100% per year 
–  2008: 1 TB 
–  2009: 2 TB (enterprise SATA available 2nd half of 2009) 
–  Drive vendors prepared to continue like this for years to come 

 Drive interface speed increases by 10-15% per year 
–  2008: 500 GB disk (WD RE2):  98 MB/sec 
–  2009: 1 TB disk (WD RE3):  113 MB/sec 

 Takes longer and longer to completely read each new 
generation of drive 

 Seek times and rotational speeds not increasing all that 
much 
–  15,000 RPM and 2.5 ms/sec still the norm for high end 
–  Significant power problems with higher RPM and faster seeks 

•  Aerodynamic drag and friction loads go as the square of speed 
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FLASH is… 

  Non-volatile 
–  Each bit is stored in a “floating 

gate” that holds value without 
power 

–  Electrons can leak, so shelf life and 
write count is limited 

  Page-oriented 
–  Read, write, and erase operations 

apply to large chunks 
–  Smaller (e.g., 4K) read/write block 

based on addressing logic 
–  Larger (e.g., 256K) erase block to 

amortize the time it takes to erase 
  Medium speed 

–  Slower than DRAM 
–  Faster than disks (especially for 

read, not always for write) 
–  Write speed heavily dependent on 

workload 
  Relatively cheap 
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FLASH Reliability 

 SLC – Single Level Cell 
–  One threshold, one bit 
–  105 to 106 write cycles per 

page 
 MLC – Multi Level Cell 

–  Multiple thresholds, multiple 
bits (2 bits now, 3 & 4 soon) 

–  N bits requires 2N Vt levels 
–  104 write cycles per page 
–  Denser and cheaper, but 

slower and less reliable 
 Wear leveling is critical 

–  Pre-erase blocks before 
writing is required 

–  Page map indirection allows 
shuffling of pages to do wear 
leveling 
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FLASH Speeds 

Samsung 4 GB Device 
100 
usec 

Transfer 4K over 
serial interface 

40 MB/sec 

25 usec Load 4K register 
from Flash 

160 MB/
sec 

125 
usec 

Read latency 32 MB/sec 

200 
usec 

Store 4K register 
to FLASH 

20 MB/sec 

225 
usec 

Write latency 16 MB/sec 

1.5 
msec 

Erase 256K block 170 MB/
sec 

1.725 
msec 

Worse case write 2.3 MB/sec 

256K  
block 

4K  
pages 

4K  
register 

Serial interface 

0 
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  Write performance heavily dependent 
on workload and wear leveling 
algorithms 

  Writes are slower with less free space 



FLASH in the Storage Hierarchy 

 On the compute nodes 
–  High reliability local storage for OS partition 
–  Local cache for memory checkpoints? 

• Device write speeds vary widely 
–  4 MB/sec for a cheap USB 
–  80 or 100 MB/sec for MTron or Zeus 
–  600 MB/sec for Fusion-io ioDrive 

–  One Fusion-io board could double cost of node 
 On the storage server 

–  Metadata storage 
–  Low latency log device 
–  Replacement for NVRAM?  Probably not enough 

write bandwidth to absorb all the write data 
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FLASH Summary 

  FLASH is a midpoint between 
DRAM and HDDs 
–  Attractive because of cost and 

non-volatile 
–  Performance and reliability 

characteristics make the system 
design non-trivial 

  Phase-change memories are a 
newer technology that may 
replace FLASH in 2-5 years 
–  Material that changes magnetic 

polarity when voltage applied 
•  Like old core memory but at the 

VLSI scale instead of wires and 
magnets 

–  More like DRAM in access 
characteristics (e.g., no block 
erase required) 

–  100+ million erase cycles 
–  Sounds promising… 
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Courtesy http://en.wikipedia.org/wiki/User:Cyferz 



Wrapping Up 

 We've covered a lot of ground in a short time 
–  Disk drives & filesystems 
–  Benchmarking 
–  Programming middleware 
–  pNFS and FLASH 

 There is no magic in high performance I/O 
–  Under the covers it looks a lot like shared memory or 

message passing 
–  Knowing how things work will lead you to better 

performance 
 Things will continue to get more complicated, but 

hopefully easier too! 
–  Remote access to data 
–  More layers to I/O stack 
–  Domain-specific application interfaces 
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Thank you! 

Brent Welch, Marc Unangst 
{welch,mju}@panasas.com 

Panasas, Inc. 
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Printed References 

  John May, Parallel I/O for High Performance Computing, 
Morgan Kaufmann, October 9, 2000. 
–  Good coverage of basic concepts, some MPI-IO, HDF5, and 

serial netCDF 
  William Gropp, Ewing Lusk, and Rajeev Thakur, Using 

MPI-2: Advanced Features of the Message Passing 
Interface, MIT Press, November 26, 1999. 
–  In-depth coverage of MPI-IO API, including a very detailed 

description of the MPI-IO consistency semantics 



Online References: Filesystems 

 ROMIO MPI-IO 
–  http://www.mcs.anl.gov/romio/ 

 POSIX I/O Extensions 
–  http://www.opengroup.org/platform/hecewg/ 

 PVFS 
–  http://www.pvfs.org/ 

 Panasas 
–  http://www.panasas.com/ 

 Lustre 
–  http://www.lustre.org/ 

 GPFS 
–  http://www.almaden.ibm.com/storagesystems/file_systems/GPFS/ 

109 



Online References: Benchmarks 

  LLNL I/O tests (IOR, fdtree, mdtest) 
–  http://www.llnl.gov/icc/lc/siop/downloads/download.html 

  Parallel I/O Benchmarking Consortium (noncontig, mpi-tile-io, mpi-md-test) 
–  http://www.mcs.anl.gov/pio-benchmark/ 

  FLASH I/O benchmark 
–  http://www.mcs.anl.gov/pio-benchmark/ 
–  http://flash.uchicago.edu/~jbgallag/io_bench/ (original version) 

  b_eff_io test 
–  http://www.hlrs.de/organization/par/services/models/mpi/b_eff_io/ 

  mpiBLAST 
–  http://www.mpiblast.org 

  HPC Challenge 
–  http://icl.cs.utk.edu/hpcc/) 

  SPEC HPC2002 
–  http://www.spec.org/hpc2002/ 

  NAS Parallel Benchmarks 
–  http://www.nas.nasa.gov/Resources/Software/npb.html 
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Online References: pNFS 

 NFS Version 4.1 
–  draft-ietf-nfsv4-minorversion1-29.txt 
–  draft-ietf-nfsv4-pnfs-obj-09.txt 
–  draft-ietf-nfsv4-pnfs-block-09.txt 
–  http://tools.ietf.org/wg/nfsv4/ 

 pNFS Problem Statement 
–  Garth Gibson (Panasas), Peter Corbett (Netapp), 

Internet-draft, July 2004 
–  http://www.pdl.cmu.edu/pNFS/archive/gibson-pnfs-problem-statement.html 

 Linux pNFS Kernel Development 
–  http://www.citi.umich.edu/projects/asci/pnfs/linux 
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