Smoke and Mirrors: Shadowing Files at a Geographically Remote Location Without Loss of Performance

Hakim Weatherspoon

Joint with Lakshmi Ganesh, Tudor Marian, Mahesh Balakrishnan, and Ken Birman

File and Storage Technologies (FAST)

San Francisco, California

February 26th, 2009

Critical Infrastructure Protection and Compliance

- U.S. Department of Treasury Study
 - Financial Sector vulnerable to significant data loss in disaster
 - Need new technical options
- Risks are real, technology available, Why is problem not solved?

Mirroring and speed of light dilemma...

- Want asynchronous performance to local data center
- And want synchronous guarantee

Mirroring and speed of light dilemma...

- Want asynchronous performance to local data center
- And want synchronous guarantee

Challenge

- How can we increase reliability of local-sync protocols?
 - Given many enterprises use local-sync mirroring anyways
- Different levels of local-sync reliability
 - Send update to mirror immediately
 - Delay sending update to mirror deduplication reduces BW

Talk Outline

- Introduction
- Enterprise Continuity
 - How data loss occurs
 - How we prevent it
 - A possible solution
- Evaluation
- Discussion and Future Work
- Conclusion

How does loss occur?

* Rather, where do failures occur?

Rolling disasters

Enterprise Continuity: Network-sync

Enterprise Continuity Middle Ground

- Use network level redundancy and exposure
 - reduces probability data lost due to network failure

Enterprise Continuity Middle Ground

- Network-sync increases data reliability
 - reduces data loss failure modes, can prevent data loss if
 - At the same time primary site fail network drops packet
 - And ensure data not lost in send buffers and local queues
- Data loss can still occur
 - Split second(s) before/after primary site fails...
 - Network partitions
 - Disk controller fails at mirror
 - Power outage at mirror
- Existing mirroring solutions can use network-sync

Smoke and Mirrors File System

- A file system constructed over network-sync
 - Transparently mirrors files over wide-area
 - Embraces concept:
 file is in transit (in the WAN link) but with enough recovery data to ensure that loss rates are as low as for the remote disk case!
 - Group mirroring consistency

Mirroring consistency and Log-Structured File System

append(B1,B2)
append(V1..)

Talk Outline

- Introduction
- Enterprise Continuity
- Evaluation
- Conclusion

Evaluation

- Demonstrate SMFS performance over Maelstrom
 - In the event of disaster, how much data is lost?
 - What is system and app throughput as link loss increases?
 - How much are the primary and mirror sites allowed to diverge?
- Emulab setup
 - 1 Gbps, 25ms to 100ms link connects two data centers
 - Eight primary and eight mirror storage nodes
 - 64 testers submit 512kB appends to separate logs
 - Each tester submits only one append at a time

Data loss as a result of disaster

- 50 ms one-way latency
- FEC(r,c) = (8,3)

- Local-sync unable to recover data dropped by network
- Local-sync+FEC lost data not in transit
- Network-sync did not lose any data
 - Represents a new tradeoff in design space

Data loss as a result of disaster

- 50 ms one-way latency
- -FEC(r,c) = (8, varies)
- -1% link loss

- \star c = 0, No recovery packets: data loss due to packet loss
- \star c = 1, not sufficient to mask packet loss either
- \star c > 2, can mask most packet loss
- * Network-sync can prevent loss in local buffers

High throughput at high latencies

Application Throughput

- App throughput measures application perceived performance
- Network and Local-sync+FEC tput significantly greater than Remote-sync(+FEC)

...There is a tradeoff

Latency Distributions

Latency Distributions

Talk Outline

- Introduction
- Enterprise Continuity
- Evaluation
- Discussion and Future Work
- Conclusion

Discussion and Future Work

- Do (semi-)private lambda networks drop packets?
 - E.g. Teragrid
- Cornell National Lambda Rail (NLR) Rings testbed
 - Up to 0.5% loss
- Scale network-sync solution to 10Gbps and beyond
 - Commodity (multi-core) hardware

Cornell National Lambda Rail (NLR) Rings

Cornell National Lambda Rail (NLR) Rings

Cornell National Lambda Rail (NLR) Rings

Discussion and Future Work

- Do (semi-)private lambda networks drop packets?
 - E.g. Teragrid
- Cornell National Lambda Rail (NLR) Rings testbed
 - Up to 0.5% loss
- Scale network-sync solution to 10Gbps and beyond
 - Commodity (multi-core) hardware

Talk Outline

- Introduction
- Enterprise Continuity
- Evaluation
- Discussion and Future Work
- Conclusion

Conclusion

- Technology response to critical infrastructure needs
- When does the filesystem return to the application?
 - Fast return after sending to mirror
 - Safe return after ACK from mirror
- SMFS return to user after sending enough FEC
- Network-sync:
 - Lossy Network→Lossless Network→Disk!
- Result: Fast, Safe Mirroring independent of link length!

Questions?

Email:

hweather@cs.cornell.edu

Network-sync code available:

http://fireless.cs.cornell.edu/~tudorm/maelstrom

Cornell National Lambda Rail (NLR) Rings testbesb http://www.cs.cornell.edu/~hweather/nlr