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Multi-tier Resource Allocation

Consolidated Environment

Web Server

Application Server

Database Server
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Composed of 
several tiers
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Share resources 
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Can lead to 
interference



Storage

Database

Our Focus: Storage Hierarchy

Application-A Application-B
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State of the Art

‣ Previous work studied resources in isolation

- Memory Partitioning: MRC [ASPLOS’04]

- Disk Bandwidth: Facade [FAST’03], Argon [FAST’07], etc.

- ... and many more

‣ Want to use the storage hierarchy efficiently

‣However, performance depends on all layers

- Interdependency between resources

- E.g., Increasing buffer pool reduces number of storage accesses
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Motivating Scenario
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Motivating Scenario
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Contributions

‣ Build performance models dynamically

- Account for interdependencies between resources

- Lightweight but still accurate

‣Multi-level Resource Allocator

- Uses performance models to guide resource allocation

- Corrects model errors through runtime sampling

- Uses global utility (SLOs) to partition resources

- Minimize sum of application latencies
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Approach
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‣ Build performance models

- One per application

- Derive function to predict application latency given configuration

‣ Find resource partitioning setting

- Minimize sum of application latencies

- Find best setting using hill climbing

Lavg = f(ρc, ρs, ρd)



Outline

‣ Online Performance Models

- What are they?

- Why are they hard to build?

‣Multi-level Resource Allocator

‣ Prototype Implementation

‣ Experimental Results

‣Conclusions
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One-Level Cache Model
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MRC Cache Model
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Two-Level Cache Model

‣ Performance affected by

- DB Buffer Pool Size (m choices)

- Storage Cache (n choices)

‣ Performance model

- Needs to consider all parameters (m*n choices)

- 1GB caches allocated in 32MB chunks

- m = 1GB/32MB = 32 settings

- m*n = 1024 distinct settings 
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Two-Level Cache Model
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Overall Performance Model
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Outline

‣ Online Performance Models

‣Multi-level Resource Allocator

- Building performance models

- Allocating resources using models

‣ Prototype Implementation

‣ Experimental Results

‣Conclusions
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Key Observations

‣ Known cache replacement policies

- Most cache replacement algorithms are LRU

- Only as effective as the largest cache (cache inclusiveness)

‣Disk is a closed loop system

- Rate of responses is same as rate of requests

- Performance proportional to the disk bandwidth fraction
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Cache Inclusiveness
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Cache Inclusiveness
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Cache Inclusiveness
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Approximate Single Cache Model (LRU)
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Cache Model (DEMOTE)
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‣ Maintain cache exclusiveness

- E.g., using DEMOTEs [USENIX’02]

- Every block brought into buffer pool is not cached below

- Only evictions from buffer pool cached in storage cache

‣ Approximate performance using single cache

- Mc(ρc + ρs)



Find Best Partitioning Setting
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‣ Observation: Closed loop system

- Rate of responses same as rate of requests

- Use interactive response time law

‣ Performance proportional to disk bandwidth fraction

- Measure base disk latency: 

- Predict latency for smaller bandwidth fractions

Disk Model
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Putting it All Together
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Putting it all Together

Application
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Inaccuracies in the Model

‣ Cache Model

- Approximations to LRU, i.e., CLOCK

- Large fraction of writes in the workload

‣Disk Model

- Using Quanta-based scheduler [Wachs et. al, FAST’07]

- Interference due to disk seeks at small quanta

‣ Inaccuracies localized in known regions

- E.g., Small disk quanta
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Iterative Refinement

‣ Build model

- Use trace collected at the database buffer pool

‣ Refine the model

- Use cross-validation to measure quality

- Selectively sample where error is high

- Interpolate computed and measured samples

- Using regression (SVM)
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Virtual Storage Prototype
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Experimental Setup

‣ Benchmarks

- UNIFORM (microbenchmark), TPC-W and TPC-C

‣ LAMP Architecture

- Linux, Apache 1.3, MySQL/InnoDB 5.0, and PHP 5.0

‣ Cache Configuration

- MySQL buffer pool = 1GB

- Storage cache = 1GB

- Using InnoDB cache replacement in MySQL, CLOCK in storage 
cache
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Our Algorithms
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‣ GLOBAL

- Gather trace at the buffer pool

- Measure base disk latency

- Compute performance using performance model

‣ GLOBAL+

- Run GLOBAL

- Evaluate model accuracy

- Refine model using runtime samples



Algorithms for Comparison
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‣ MRC

- Partition cache (independently) using miss-ratio curves

‣DISK

- Partition caches equally, determine best disk quanta

‣MRC+DISK

- Run MRC then DISK

‣ IDEAL*

- Build model with SVM using 16*16*5=1280 sampled configurations



Roadmap of Results
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‣ Multi-level cache allocator

- Using LRU and DEMOTE cache replacement policies

‣ Multi-level cache and disk

‣ Accuracy of computed models



Miss-Ratio Curves
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Multi-Level Caching (LRU)
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Multi-Level Caching (DEMOTE)
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Roadmap of Results
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‣ Multi-level cache allocator

‣ Multi-level cache and disk

- Using two identical applications

- Using different applications

‣ Accuracy of computed models
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TPC-W/UNIFORM
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TPC-W/TPC-C
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Roadmap of Results
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‣ Multi-level cache allocator

‣ Multi-level cache and disk

‣ Accuracy of computed models

- Cache model

- Disk model



Cache Model Accuracy (TPC-W)

41

 0
 128
 256
 384
 512
 640
 768
 896

 1024

 0  128  256  384  512  640  768  896 1024

St
or

ag
e 

Ca
ch

e 
Si

ze
 (M

B)

Buffer Pool Size (MB)

 0

 10

 20

 30

 40

 50

Er
ro

r (
%

)

Localized in the 
middle



Disk Model Accuracy (TPC-W)
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Conclusions

‣ Problem

- Need to consider resources on multiple tiers

- Independent cache/disk allocators are not sufficient

‣ Dynamic allocation of cache hierarchy and disk

- Build performance models dynamically

- Iteratively refine (if necessary)

- Use models for global resource partitioning

‣ Performance up to 2.9 better than single resource allocators
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Thank you.
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