Dynamic Resource Allocation for Database Servers Running on Virtual Storage

Gokul Soundararajan, Daniel Lupei, Saeed Ghanbari, Adrian Daniel Popescu, Jin Chen, Cristiana Amza

University of Toronto

Multi-tier Resource Allocation

Consolidated Environment

Our Focus: Storage Hierarchy

State of the Art

- Previous work studied resources in isolation
 - Memory Partitioning: MRC [ASPLOS'04]
 - Disk Bandwidth: Facade [FAST'03], Argon [FAST'07], etc.
 - ... and many more
- Want to use the storage hierarchy efficiently
- ▶ However, performance depends on all layers
 - Interdependency between resources
 - E.g., Increasing buffer pool reduces number of storage accesses

Motivating Scenario

Motivating Scenario

Contributions

Build performance models dynamically

- Account for interdependencies between resources
- Lightweight but still accurate

Multi-level Resource Allocator

- Uses performance models to guide resource allocation
- Corrects model errors through runtime sampling
- Uses global utility (SLOs) to partition resources
 - Minimize sum of application latencies

Approach

Build performance models

- One per application
- Derive function to predict application latency given configuration

$$L_{avg} = f(\rho_c, \rho_s, \rho_d)$$

▶ Find resource partitioning setting

- Minimize sum of application latencies
- Find best setting using hill climbing

Outline

- Online Performance Models
 - What are they?
 - Why are they hard to build?
- ▶ Multi-level Resource Allocator
- Prototype Implementation
- Experimental Results
- Conclusions

One-Level Cache Model

MRC Cache Model

Two-Level Cache Model

Performance affected by

- DB Buffer Pool Size (m choices)
- Storage Cache (n choices)

Changes the I/O trace at storage

Performance model

- Needs to consider all parameters (m*n choices)
- 1GB caches allocated in 32MB chunks
 - m = 1GB/32MB = 32settings
 - m*n = 1024 distinct settings

Two-Level Cache Model

Overall Performance Model

Outline

- Online Performance Models
- Multi-level Resource Allocator
 - Building performance models
 - Allocating resources using models
- Prototype Implementation
- Experimental Results
- Conclusions

Key Observations

Known cache replacement policies

- Most cache replacement algorithms are LRU
- Only as effective as the largest cache (cache inclusiveness)

Disk is a closed loop system

- Rate of responses is same as rate of requests
- Performance proportional to the disk bandwidth fraction

Cache Inclusiveness

Cache Inclusiveness

Cache Inclusiveness

Approximate Single Cache Model (LRU)

Cache Model (DEMOTE)

Maintain cache exclusiveness

- E.g., using DEMOTEs [USENIX'02]
- Every block brought into buffer pool is not cached below
- Only evictions from buffer pool cached in storage cache

Approximate performance using single cache

-
$$\mathcal{M}_c(\rho_c + \rho_s)$$

Find Best Partitioning Setting

Disk Model

Observation: Closed loop system

- Rate of responses same as rate of requests
- Use interactive response time law

Performance proportional to disk bandwidth fraction

- Measure base disk latency: $L_d(1)$
- Predict latency for smaller bandwidth fractions

$$L_d(\rho_d) = \frac{L_d(1)}{\rho_d}$$

Putting it All Together

Putting it all Together

Inaccuracies in the Model

Cache Model

- Approximations to LRU, i.e., CLOCK
- Large fraction of writes in the workload

Disk Model

- Using Quanta-based scheduler [Wachs et. al, FAST'07]
 - Interference due to disk seeks at small quanta

Inaccuracies localized in known regions

- E.g., Small disk quanta

Iterative Refinement

Build model

Use trace collected at the database buffer pool

Refine the model

- Use cross-validation to measure quality
- Selectively sample where error is high
- Interpolate computed and measured samples
 - Using regression (SVM)

Virtual Storage Prototype

CLIENT SERVER

Experimental Setup

Benchmarks

- UNIFORM (microbenchmark), TPC-W and TPC-C

LAMP Architecture

- Linux, Apache 1.3, MySQL/InnoDB 5.0, and PHP 5.0

Cache Configuration

- MySQL buffer pool = 1GB
- Storage cache = 1GB
- Using InnoDB cache replacement in MySQL, CLOCK in storage cache

Our Algorithms

GLOBAL

- Gather trace at the buffer pool
- Measure base disk latency
- Compute performance using performance model

→ GLOBAL+

- Run GLOBAL
- Evaluate model accuracy
- Refine model using runtime samples

Algorithms for Comparison

MRC

- Partition cache (independently) using miss-ratio curves

DISK

- Partition caches equally, determine best disk quanta

MRC+DISK

- Run MRC then DISK

▶ IDEAL*

Build model with SVM using 16*16*5=1280 sampled configurations

Roadmap of Results

- Multi-level cache allocator
 - Using LRU and DEMOTE cache replacement policies
- Multi-level cache and disk
- Accuracy of computed models

Miss-Ratio Curves

Multi-Level Caching (LRU)

Multi-Level Caching (DEMOTE)

Roadmap of Results

- Multi-level cache allocator
- Multi-level cache and disk
 - Using two identical applications
 - Using different applications
- Accuracy of computed models

UNIFORM/UNIFORM

TPC-W/UNIFORM

TPC-W/TPC-C

Roadmap of Results

- Multi-level cache allocator
- Multi-level cache and disk
- Accuracy of computed models
 - Cache model
 - Disk model

Cache Model Accuracy (TPC-W)

Disk Model Accuracy (TPC-W)

Conclusions

Problem

- Need to consider resources on multiple tiers
- Independent cache/disk allocators are not sufficient
- Dynamic allocation of cache hierarchy and disk
 - Build performance models dynamically
 - Iteratively refine (if necessary)
 - Use models for global resource partitioning
- ▶ Performance up to 2.9 better than single resource allocators

Thank you.