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Consider this scenario

B | installed a piece of software
® But.. that broke a few other tools!

® Uninstall not good enough
®* The config files were still corrupt
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Versioning
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Causality

Versioning
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Applications of Versioning + Causality

B System Configuration Management
® Causal data identifies files modified

® \/ersion data allows you to recover the files
modified

® |Intrusion Recovery
= |P Compliance
® Reproduce Research Results
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Apache split-logfile Vulnerability

® Vulnerability in Apache 1.3

® Vulnerability allows attacker to overwrite
any file with a .log extension
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Open-close
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Version-on-every write
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Goal

Combine versioning and causality, taking
advantage of causality information to
create versions at just the right time

2/25/2009 Causality-Based Versioning - FAST'09 "




Contributions

® Two algorithms that create useful versions
® Cycle Avoidance
® Graph Finesse

® Evaluate efficacy and efficiency of these
two algorithms in the context of versioning
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Outline

® |Introduction

® Background on PASS
® Versioning Algorithms
® Implementation

® Evaluation

® Conclusion
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PASS Architecture: P writes B i
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Outline

® |Introduction

® Background on PASS

® Versioning Algorithms
® Implementation

® Evaluation

® Conclusion
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Intuition for new algorithms

® The creation of a cycle is an indicator
that a version created at that instant
could be useful later

® Cycles are violations of causality
®* Implies that past depends on future!
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Open-Close Versioning

1. On the last close of a file, issue a “freeze”
operation
®  Freeze declares end of a version
2. The next open and write triggers a new
version
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Example scenario
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Open-Close read A

read B

write B

write A
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Open-Close

2/25/2009

Causality-Based Versioning - FAST'09

P Q
read A
read B
write B
write A

25

eMS RESE
g 4.5@ < gARVARgQQQ

W
w




Version-on-every write

® Pros:

® Preserves causality: there are no cycles
® Every read creates a new version of the process
® Every write creates a new version of the file

® There are no duplicates either

" Disadvantage: most versions are
unnecessary
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Cycle Avoidance Algorithm

® Preserves Causality by avoiding cycles

® Uses local per-object information to make
decisions

® Similar to the timestamp ordering in
databases

" |ntuition:

Freeze an object when we add a dependency
that does not previously exist, i.e., new
causality
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Cycle Avoidance Example

® On receiving record A1 - B2
® |f no B in A’s history, then freeze A

® Else if B in A's history, then
" |f A's history has B2, discard record (duplicate)
" |f A's history has B3 (version > 2), discard record
" |f A's history has B1 (version < 2), freeze A
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Cycle Avoidance
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Graph Finesse Algorithm

® Uses Global knowledge

B |ntuition:

® Check every new record against a global
dependency graph.

® |f it forms a cycle, just freeze that one node
B Subsumes open-close algorithm
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Graph Finesse Example

®  On receiving record A1 - B2

" |f B2 is already in A’s history, discard record

" Else check for a path from B2 - A1

" |f yes, this a cycle, freeze A1 and change the
record to A2->B2

® |f no cycle, add A1 = B2 to the graph
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Cycle Avoidance
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Cycle Avoidance Graph Finesse
Uses Local state Uses Global state

Creates a few un- |Creates fewer
necessary versions |versions

Has lower runtime |Can have high run-
overhead time overheads
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Outline

® |Introduction

® Background on PASS
® Versioning Algorithms
" Implementation

® Evaluation

® Conclusion
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Implementation

® Implemented on Linux 2.6.23.17

® | asagna is a stackable file system derived
from eCryptfs

® \ersioning file system

® Redo log that keeps track of file versioning
(deltas)

® Redo log for directory modifications (deltas)

2/25/2009 Causality-Based Versioning - FAST'09 38




Outline

® |Introduction

® Background on PASS
® Versioning Algorithms
® Implementation

= Evaluation

® Conclusion
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Evaluation Goals

® \What are the run-time overheads a user
might see?

® \WWhat are the space overheads?

® How do the algorithms compare during
recovery?
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Test platform

B Linux 2.6.23.17

® 3Ghz Pentium 4

= 512MB of RAM

= 80GB 7200 RPM IDE Disk

® All results are averages of 5 runs
® | ess than 5% Std. Dev.
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Modes

® Without causal data
® Ext2: Baseline (Lasagna was stacked on Ext2)
® \VER: plain versioning (open-close)

® With causal data
® OC: open-close
¢ CA: Cycle-Avoidance
* GF: Graph-Finesse
® ALL: Version-on-every write
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Linux Compile: Elapsed Time
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Linux Compile: Elapsed Time
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Linux Compile: Elapsed Time
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Linux Compile: Space Overheads
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Linux Compile: Space Overheads
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Linux Compile: Space Overheads
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Mercurial Activity: Elapsed Time
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Mercurial Activity: Elapsed Time

1400.0 - Wait

1200.0 = WUser
W System

89.6%

1000.0 -
25.9% 28.8% 27.9%
800.0 -

Time(s)

600.0 -

400.0 -

200.0 -

0.0 -
EXT2 VER OoC CA GF ALL

2/25/2009 Causality-Based Versioning - FAST'09 50




Mercurial Activity: Elapsed Time
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Mercurial Activity: Space Overheads
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Mercurial Activity: Space Overheads
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Mercurial Activity: Space Overheads
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Recovery Benchmarks

® How the algorithms perform in the scenario
where open close is not sufficient

® Microbenchmark
® Models the apache split-log scenario
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Recovery MicroBenchmark

o ‘Td write

: pip
write

2/25/2009 Causality-Based Versioning - FAST'09 56



Recovery Microbenchmark: Space Util.

Causal Data | Version Data

OC 60KB 12KB
CA 176KB 470.5MB
GF 184KB 470.5MB

ALL 76.9MB 1.97GB
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Recovery Times
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Recovery Times
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Conclusions

® Combining Versioning and Causality
enables novel functionality

® New algorithms for Causal Versioning

® Cycle Avoidance
= Comparable to open-close
® May create more versions

® Graph Finesse
® Provides greater control on versioning
® Can be inefficient at times
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Questions?

Contact:

pass@eecs.harvard.edu
www.eecs.harvard.edu/syrah/pass
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