Causality-Based Versioning

S AR
S ARD ", Kiran-Kumar Muniswamy-Reddy

I and David A. Holland
(Bl RE”

Harvard School of
Engineering and Applied
Sciences

-
=

Consider this scenario

B | installed a piece of software
® But.. that broke a few other tools!

® Uninstall not good enough
®* The config files were still corrupt

2/25/2009 Causality-Based Versioning - FAST'09

Versioning

2/25/2009 Causality-Based Versioning - FAST'09 3

 Treoisarpgagation \\
ohgwéatnogddgriyou = Causality
- findmehink files

were modi

N _/

2/25/2009 Causality-Based Versioning - FAST'09 4

Causality

Versioning

2/25/2009 Causality-Based Versioning - FAST'09 S

Applications of Versioning + Causality

B System Configuration Management
® Causal data identifies files modified

® \/ersion data allows you to recover the files
modified

® |Intrusion Recovery
= |P Compliance
® Reproduce Research Results

2/25/2009 Causality-Based Versioning - FAST'09 6

Apache split-logfile Vulnerability

® Vulnerability in Apache 1.3

® Vulnerability allows attacker to overwrite
any file with a .log extension

2/25/2009 Causality-Based Versioning - FAST'09 7

Scenario

08AM

09AM

10AM

1MAM

12PM

2/25/2009

open DB.log

Write

(X 4
3 o
7 A

Detect Corruption

Causality-Based Versioning - FAST'09

Write tx

Open-close

08AM

09AM

10AM

12PM

2/25/2009

g Can only\

recover to

%8 AM
V1;DB.log '

[X4

D

K N

7 Vg
)

Detect Corruption

Causality-Based Versioning - FAST'09

Version-on-every write

08AM
09AM

10AM

2/25/2009

-l TN\
can recover to

V1;DB.log

V2;DB.log

Causallty Based Versionmg FAST'09 10

10 AM, but

/\ expensive
_/

Vn;DB.log{

i Vn+1;DB.log

. 1 Vn+2;DB.log

Goal

Combine versioning and causality, taking
advantage of causality information to
create versions at just the right time

2/25/2009 Causality-Based Versioning - FAST'09 "

Contributions

® Two algorithms that create useful versions
® Cycle Avoidance
® Graph Finesse

® Evaluate efficacy and efficiency of these
two algorithms in the context of versioning

2/25/2009 Causality-Based Versioning - FAST'09 12

Outline

® |Introduction

® Background on PASS
® Versioning Algorithms
® Implementation

® Evaluation

® Conclusion

2/25/2009 Causality-Based Versioning - FAST'09 13

PASS Architecture: P reads A e
7))
[Waldo | 3
......... T e

Layer Interceptor filters 2
, events T
 Observer — X

, ‘PoA’ .

Anal) \

e version? |

: Distributor cache I:

VFS Layer

EMS RESE
‘ A*"‘ES HARVAR,y Rey
g 4
S R|A

2/25/2009 Causality-Based Versioning - FAST'09 14

PASS Architecture: P writes B i
[Waldo] %
......... Sy E_u

Layer Interceptor } generate;\ '%

r Observer record IiJ
L _ ‘B>P’ .
sl [Analyzer _ _Version? |
‘PoOA’ Distributor E

VFS Layer

2/25/2009

Outline

® |Introduction

® Background on PASS

® Versioning Algorithms
® Implementation

® Evaluation

® Conclusion

2/25/2009 Causality-Based Versioning - FAST'09 16

Intuition for new algorithms

® The creation of a cycle is an indicator
that a version created at that instant
could be useful later

® Cycles are violations of causality
®* Implies that past depends on future!

2/25/2009 Causality-Based Versioning - FAST'09

Open-Close Versioning

1. On the last close of a file, issue a “freeze”
operation
® Freeze declares end of a version
2. The next open and write triggers a new
version

2/25/2009 Causality-Based Versioning - FAST'09 18

Example scenario

P Q
read A

Each read/write is

read B enclosed by an

Time | |write B

, open and close
write A

read A

read B

2/25/2009 Causality-Based Versioning - FAST'09 19

P Q
Open-Close read A
read B
write B
write A
P read A
read B

-MS RESE
EMS 2}
3y ‘;‘1\)0

(S ¢ FIARVA,
Y G

2/25/2009 Causality-Based Versioning - FAST'09 20

P Q
Open-Close i
read B
write B
write A
Q read A
P read B

(ad &

2/25/2009 Causality-Based Versioning - FAST'09 21

P Q
Open-Close i
read B
write B
write A
read A
P Q read B

IRC

2/25/2009 Causality-Based Versioning - FAST'09 22

Open-Close read A

read B

write B

write A

P Q read A

* read B

2/25/2009 Causality-Based Versioning - FAST'09 23

P Q
Open-Close read A
read B
write B
write A
P Q read A
% read B

2/25/2009 Causality-Based Versioning - FAST'09 24

Open-Close

2/25/2009

Causality-Based Versioning - FAST'09

P Q
read A
read B
write B
write A

25

eMS RESE
g 4.5@ < gARVARgQQQ

W
w

Version-on-every write

® Pros:

® Preserves causality: there are no cycles
® Every read creates a new version of the process
® Every write creates a new version of the file

® There are no duplicates either

" Disadvantage: most versions are
unnecessary

2/25/2009 Causality-Based Versioning - FAST'09 26

Cycle Avoidance Algorithm

® Preserves Causality by avoiding cycles

® Uses local per-object information to make
decisions

® Similar to the timestamp ordering in
databases

" |ntuition:

Freeze an object when we add a dependency
that does not previously exist, i.e., new
causality

2/25/2009 Causality-Based Versioning - FAST'09 27

Cycle Avoidance Example

® On receiving record A1 - B2
® |f no B in A’s history, then freeze A

® Else if B in A's history, then
" |f A's history has B2, discard record (duplicate)
" |f A's history has B3 (version > 2), discard record
" |f A's history has B1 (version < 2), freeze A

2/25/2009 Causality-Based Versioning - FAST'09 28

P Q
Cycle Avoidance read A
read B
write B
write A
P1 P2 read A
read B

(a1 (A3

2/25/2009 Causality-Based Versioning - FAST'09 29

P Q
Cycle Avoidance read A
read B
write B
write A
P2 P3 Qz read A
4 read B

a (s B4

2/25/2009 Causality-Based Versioning - FAST'09 30

Cycle Avoidance

2/25/2009

Causality-Based Versioning - FAST'09

P Q
read A
read B
write B
write A
read B
s ;%52{53&0

31

ﬂ 188
I

Graph Finesse Algorithm

® Uses Global knowledge

B |ntuition:

® Check every new record against a global
dependency graph.

® |f it forms a cycle, just freeze that one node
B Subsumes open-close algorithm

2/25/2009 Causality-Based Versioning - FAST'09 32

Graph Finesse Example

® On receiving record A1 - B2

" |f B2 is already in A’s history, discard record

" Else check for a path from B2 - A1

" |f yes, this a cycle, freeze A1 and change the
record to A2->B2

® |f no cycle, add A1 = B2 to the graph

2/25/2009 Causality-Based Versioning - FAST'09 33

P Q
Graph Finesse i —
write B
write A
read B

2/25/2009 Causality-Based Versioning - FAST'09 34

Cycle Avoidance

P2 \ P3 Q2 Q3

a2 (B2 (a3 7 pa

Gr:

(A "“ @v

f& ﬁARVARgQQ&

W
w

2/25/2009 Causality-Based Versioning - FAST'09 35

Cycle Avoidance Graph Finesse
Uses Local state Uses Global state

Creates a few un- |Creates fewer
necessary versions |versions

Has lower runtime |Can have high run-
overhead time overheads

2/25/2009 Causality-Based Versioning - FAST'09 36

Outline

® |Introduction

® Background on PASS
® Versioning Algorithms
" Implementation

® Evaluation

® Conclusion

2/25/2009 Causality-Based Versioning - FAST'09 37

Implementation

® Implemented on Linux 2.6.23.17

® | asagna is a stackable file system derived
from eCryptfs

® \ersioning file system

® Redo log that keeps track of file versioning
(deltas)

® Redo log for directory modifications (deltas)

2/25/2009 Causality-Based Versioning - FAST'09 38

Outline

® |Introduction

® Background on PASS
® Versioning Algorithms
® Implementation

= Evaluation

® Conclusion

2/25/2009 Causality-Based Versioning - FAST'09 39

Evaluation Goals

® \What are the run-time overheads a user
might see?

® \WWhat are the space overheads?

® How do the algorithms compare during
recovery?

2/25/2009 Causality-Based Versioning - FAST'09 40

Test platform

B Linux 2.6.23.17

® 3Ghz Pentium 4

= 512MB of RAM

= 80GB 7200 RPM IDE Disk

® All results are averages of 5 runs
® | ess than 5% Std. Dev.

2/25/2009 Causality-Based Versioning - FAST'09 41

Modes

® Without causal data
® Ext2: Baseline (Lasagna was stacked on Ext2)
® \VER: plain versioning (open-close)

® With causal data
® OC: open-close
¢ CA: Cycle-Avoidance
* GF: Graph-Finesse
® ALL: Version-on-every write

2/25/2009 Causality-Based Versioning - FAST'09 42

Linux Compile: Elapsed Time

3000 -

Wait
2500 - MEUser
H System

2000 - 11.9%

1500 -

Time (s)

1000 -

500 -

EXT2 VER oC CA GF ALL

2/25/2009 Causality-Based Versioning - FAST'09 43

Linux Compile: Elapsed Time

3000 -

Wait
2500 - pmuser

2000 - .SYStem11 9% 171% 18.3% 21.3%

1500

Time (s)

1000 -

500 -

0,

EXT2 VER ocC CA GF ALL ..

2/25/2009 Causality-Based Versioning - FAST'09 44

Linux Compile: Elapsed Time

3000 -

o
Wait 57.4%

2500 - guser

o
oY gy, 174% 183% 219%

1500 -

Time (s)

1000 -

500 -

EXT2 VER oC CA GF ALL

2/25/2009 Causality-Based Versioning - FAST'09 45

Linux Compile: Space Overheads

3.0 -

N
($)]
\

N
o
\

2.9%

Space (GB)
> &

o
()]
\

0.0 -
EXT2 VER oC CA GF

2/25/2009 Causality-Based Versioning - FAST'09

Linux Compile: Space Overheads

3.0 -

N
()]
\

N
o
\

15.8% 17.6% 15.8%

2.9%

Space (GB)
> &

o
(3]
\

0.0 -

EXT2 VER oC CA GF ALL

2/25/2009 Causality-Based Versioning - FAST'09 47

Linux Compile: Space Overheads

3.0 - 121.6%

2.5 -

N
o
\

15.8% 17.6% 15.8%

2.9%

Space (GB)
> o

(=
(3}
\

o
o
|

EXT2 VER ocC CA GF ALL

2/25/2009 Causality-Based Versioning - FAST'09 48

Mercurial Activity: Elapsed Time

1400.0 | _ \wait
1200.0 = WUser
m System
1000.0 -
25.9%
w 800.0
Q
=
= 600.0
400.0 -
200.0 -
ol = B

EXT2 VER OoC CA GF ALL

2/25/2009 Causality-Based Versioning - FAST'09 49

Mercurial Activity: Elapsed Time

1400.0 - Wait

1200.0 = WUser
W System

89.6%

1000.0 -
25.9% 28.8% 27.9%
800.0 -

Time(s)

600.0 -

400.0 -

200.0 -

0.0 -
EXT2 VER OoC CA GF ALL

2/25/2009 Causality-Based Versioning - FAST'09 50

Mercurial Activity: Elapsed Time

1400.0 Wait

0
1200.0 @ MUser 89.6%
B System 61.3%

25.9% 28.8% 27.9%

EXT2 VER oC CA

2/25/2009 Causality-Based Versioning - FAST'09

Mercurial Activity: Space Overheads

14 -

-
N
\

26.6%

Space (GB)
°c o =
(o2} oo o

S
NN
\

o
N
\

o
o
\

EXT2 VER ocC CA GF ALL <Tiaie

2/25/2009 Causality-Based Versioning - FAST'09 52

Mercurial Activity: Space Overheads

14
1.2 26.6% 31.6% 30.2% 31.9%
1.0 -
0.8 -

0.6 -

Space (GB)

04 -

0.2 -

0.0
EXT2 VER oC CA GF ALL

2/25/2009 Causality-Based Versioning - FAST'09 53

Mercurial Activity: Space Overheads

14 - 53.7%

-
N
\

26.6% <1.6% 30.2% 31.9%

Space (GB)
°c o o =
E SN (o] oo o

o
N
\

o
o
\

EXT2 VER OoC CA GF

2/25/2009 Causality-Based Versioning - FAST'09 54

Recovery Benchmarks

® How the algorithms perform in the scenario
where open close is not sufficient

® Microbenchmark
® Models the apache split-log scenario

2/25/2009 Causality-Based Versioning - FAST'09 35

Recovery MicroBenchmark

o ‘Td write

: pip
write

2/25/2009 Causality-Based Versioning - FAST'09 56

Recovery Microbenchmark: Space Util.

Causal Data | Version Data

OC 60KB 12KB
CA 176KB 470.5MB
GF 184KB 470.5MB

ALL 76.9MB 1.97GB

2/25/2009 Causality-Based Versioning - FAST'09 57

Recovery Times

30

m CA
m GF

Recovery Times (s)

— — N DN

o O1 O O» o O
| \ \ \ \ \

Rollback 1 Rollback 5 RollBack 9

2/25/2009 Causality-Based Versioning - FAST'09 58

Recovery Times

800 -

00 MCA 25.1x
© oo MGF
E 500 "ALL 17.9x
=
> 400 -
S
o 300 9.3x
S 200 -

100

0 _| I ‘ | ‘ _—‘

Rollback 1 Rollback 5 RollBack 9

2/25/2009 Causality-Based Versioning - FAST'09 59

Conclusions

® Combining Versioning and Causality
enables novel functionality

® New algorithms for Causal Versioning

® Cycle Avoidance
= Comparable to open-close
® May create more versions

® Graph Finesse
® Provides greater control on versioning
® Can be inefficient at times

2/25/2009 Causality-Based Versioning - FAST'09

Questions?

Contact:

pass@eecs.harvard.edu
www.eecs.harvard.edu/syrah/pass

2/25/2009 Causality-Based Versioning - FAST'09 61

mailto:pass@eecs.harvard.edu
http://www.eecs.harvard.edu/syrah/pass
http://www.eecs.harvard.edu/syrah/pass

	Slide 1
	Consider this scenario
	Slide 3
	Slide 4
	Slide 5
	Applications of Versioning + Causality
	Apache split-logfile Vulnerability
	Scenario
	Open-close
	Version-on-every write
	Goal
	Contributions
	Outline
	PASS Architecture: P reads A
	PASS Architecture: P writes B
	Slide 16
	Intuition for new algorithms
	Open-Close Versioning
	Example scenario
	Open-Close
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Cycle Avoidance Algorithm
	Cycle Avoidance Example
	Cycle Avoidance
	Slide 30
	Slide 31
	Graph Finesse Algorithm
	Graph Finesse Example
	Graph Finesse
	Slide 35
	Slide 36
	Slide 37
	Implementation
	Slide 39
	Evaluation Goals
	Test platform
	Modes
	Linux Compile: Elapsed Time
	Slide 44
	Slide 45
	Linux Compile: Space Overheads
	Slide 47
	Slide 48
	Mercurial Activity: Elapsed Time
	Slide 50
	Slide 51
	Mercurial Activity: Space Overheads
	Slide 53
	Slide 54
	Recovery Benchmarks
	Recovery MicroBenchmark
	Recovery Microbenchmark: Space Util.
	Recovery Times
	Slide 59
	Conclusions
	Questions?

