
Introduction Hinting CLIC Performance Conclusion

CLIC
CLient-Informed Caching for Storage Servers

Xin Liu Ashraf Aboulnaga Ken Salem Xuhui Li

David R. Cheriton School of Computer Science
University of Waterloo

February 2009



Introduction Hinting CLIC Performance Conclusion

Two-Tier Caching

DBMS
cache

cacheserver
storage

p

Problems:
• cache inclusion
• poor temporal locality

One Solution:
• hinting



Introduction Hinting CLIC Performance Conclusion

Two-Tier Caching

DBMS
cache

cacheserver
storage

p

1. read(p)

Problems:
• cache inclusion
• poor temporal locality

One Solution:
• hinting



Introduction Hinting CLIC Performance Conclusion

Two-Tier Caching

DBMS
cache

cacheserver
storage

p

1. read(p)

2. read(p)

Problems:
• cache inclusion
• poor temporal locality

One Solution:
• hinting



Introduction Hinting CLIC Performance Conclusion

Two-Tier Caching

DBMS
cache

cacheserver
storage

p

1. read(p)

2. read(p) 3. fetch

p

Problems:
• cache inclusion
• poor temporal locality

One Solution:
• hinting



Introduction Hinting CLIC Performance Conclusion

Two-Tier Caching

DBMS
cache

cacheserver
storage

p

1. read(p)

2. read(p) 3. fetch

p

4. fetch

p

Problems:
• cache inclusion
• poor temporal locality

One Solution:
• hinting



Introduction Hinting CLIC Performance Conclusion

Two-Tier Caching

DBMS
cache

cacheserver
storage

p

1. read(p)

2. read(p) 3. fetch

p

4. fetch

p

Problems:
• cache inclusion

• poor temporal locality
One Solution:

• hinting



Introduction Hinting CLIC Performance Conclusion

Two-Tier Caching

DBMS
cache

cacheserver
storage

p

1. read(p)

2. read(p) 3. fetch

p

4. fetch

p

Problems:
• cache inclusion
• poor temporal locality

One Solution:
• hinting



Introduction Hinting CLIC Performance Conclusion

Two-Tier Caching

DBMS
cache

cacheserver
storage

p

1. read(p)

2. read(p) 3. fetch

p

4. fetch

p

Problems:
• cache inclusion
• poor temporal locality

One Solution:
• hinting



Introduction Hinting CLIC Performance Conclusion

Example: Write Hints

DBMS
cache

cacheserver
storage

p

write(p)

p

p

The storage server can use TQ, an ad hoc hint-aware
replacement policy, to exploit write hints.



Introduction Hinting CLIC Performance Conclusion

Example: Write Hints

DBMS
cache

cacheserver
storage

p

write(p)

p

p

write

replacement
this is a

The storage server can use TQ, an ad hoc hint-aware
replacement policy, to exploit write hints.



Introduction Hinting CLIC Performance Conclusion

Example: Write Hints

DBMS
cache

cacheserver
storage

p

write(p)

p

p

write

replacement
this is a

this is a good

candidate for
caching

The storage server can use TQ, an ad hoc hint-aware
replacement policy, to exploit write hints.



Introduction Hinting CLIC Performance Conclusion

Example: Write Hints

DBMS
cache

cacheserver
storage

p

write(p)

p

p

write

replacement
this is a

this is a good

candidate for
caching

The storage server can use TQ, an ad hoc hint-aware
replacement policy, to exploit write hints.



Introduction Hinting CLIC Performance Conclusion

Problems with Ad Hoc Hint-Aware Policies

narrowness: new hints? multiple hints?

brittleness: correct response to hints?
single source: multiple hint generators?

DBMS

cache

cacheserver
storage

DBMS

cache

p q

write(p)

write(q)

p

p

q

q

replacement
write

this is a

this is a
replacement

write

should I cache

p  or  q

????



Introduction Hinting CLIC Performance Conclusion

Problems with Ad Hoc Hint-Aware Policies

narrowness: new hints? multiple hints?
brittleness: correct response to hints?

single source: multiple hint generators?

DBMS

cache

cacheserver
storage

DBMS

cache

p q

write(p)

write(q)

p

p

q

q

replacement
write

this is a

this is a
replacement

write

should I cache

p  or  q

????



Introduction Hinting CLIC Performance Conclusion

Problems with Ad Hoc Hint-Aware Policies

narrowness: new hints? multiple hints?
brittleness: correct response to hints?

single source: multiple hint generators?

DBMS

cache

cacheserver
storage

DBMS

cache

p q

write(p)

write(q)

p

p

q

q

replacement
write

this is a

this is a
replacement

write

should I cache

p  or  q

????



Introduction Hinting CLIC Performance Conclusion

The CLIC Approach

• a hint-aware caching policy for 2nd-tier caches

• no hard coded response to specific hints
• instead, learn which hints signal good caching

opportunities
• benefits:

• handles multiple hint types
• handles new hint types
• handles hints from multiple clients by treating each client’s

hints as distinct

CLIC Hints
CLIC separates the generation of hints (done by the storage
clients) from the interpretation of those hints for caching
purposes (done by the storage server).



Introduction Hinting CLIC Performance Conclusion

The CLIC Approach

• a hint-aware caching policy for 2nd-tier caches
• no hard coded response to specific hints

• instead, learn which hints signal good caching
opportunities

• benefits:
• handles multiple hint types
• handles new hint types
• handles hints from multiple clients by treating each client’s

hints as distinct

CLIC Hints
CLIC separates the generation of hints (done by the storage
clients) from the interpretation of those hints for caching
purposes (done by the storage server).



Introduction Hinting CLIC Performance Conclusion

The CLIC Approach

• a hint-aware caching policy for 2nd-tier caches
• no hard coded response to specific hints
• instead, learn which hints signal good caching

opportunities

• benefits:
• handles multiple hint types
• handles new hint types
• handles hints from multiple clients by treating each client’s

hints as distinct

CLIC Hints
CLIC separates the generation of hints (done by the storage
clients) from the interpretation of those hints for caching
purposes (done by the storage server).



Introduction Hinting CLIC Performance Conclusion

The CLIC Approach

• a hint-aware caching policy for 2nd-tier caches
• no hard coded response to specific hints
• instead, learn which hints signal good caching

opportunities
• benefits:

• handles multiple hint types
• handles new hint types
• handles hints from multiple clients by treating each client’s

hints as distinct

CLIC Hints
CLIC separates the generation of hints (done by the storage
clients) from the interpretation of those hints for caching
purposes (done by the storage server).



Introduction Hinting CLIC Performance Conclusion

The CLIC Approach

• a hint-aware caching policy for 2nd-tier caches
• no hard coded response to specific hints
• instead, learn which hints signal good caching

opportunities
• benefits:

• handles multiple hint types
• handles new hint types
• handles hints from multiple clients by treating each client’s

hints as distinct

CLIC Hints
CLIC separates the generation of hints (done by the storage
clients) from the interpretation of those hints for caching
purposes (done by the storage server).



Introduction Hinting CLIC Performance Conclusion

CLIC Illustrated

DBMS
cache

cacheserver
storage

p

read(p)

this is a
blargh gorp

read

I don’t know 

blargh or gorp

blargh  gorp

reads have been good

candidates, so I will

cache p

but previous



Introduction Hinting CLIC Performance Conclusion

Generating Hints
• Storage client must be modified to generate one or more

types of hints.
• Storage clients attach a hint set to each read or write

request. A hint set includes one hint of each type
generated by the client.

• A storage client may choose to generate any types of hints
that might be of use to the storage server.

Example: Hints from DB2

• buffer pool ID
• object ID: identifies a group of related DB objects
• object type ID: distinguishes table from index
• request type: read, replacement/recovery write
• DB2 buffer priority



Introduction Hinting CLIC Performance Conclusion

Generating Hints
• Storage client must be modified to generate one or more

types of hints.
• Storage clients attach a hint set to each read or write

request. A hint set includes one hint of each type
generated by the client.

• A storage client may choose to generate any types of hints
that might be of use to the storage server.

Example: Hints from DB2

• buffer pool ID
• object ID: identifies a group of related DB objects
• object type ID: distinguishes table from index
• request type: read, replacement/recovery write
• DB2 buffer priority



Introduction Hinting CLIC Performance Conclusion

A CLIC-Managed Cache

lowest priority

highest priority

p1

p5

p2 p9

p6

p8

p4p7

p3

He

Hd

Hc

Hb

Ha • each page is associated with the
hint set which it was
most-recently read or written

• each hint set has a priority
• CLIC evicts pages associated

with the lowest-priority hint sets
• CLIC chooses hint set priorities

using a simple cost/benefit
analysis



Introduction Hinting CLIC Performance Conclusion

A CLIC-Managed Cache

lowest priority

highest priority

p1

p5

p2 p9

p6

p8

p4p7

p3

He

Hd

Hc

Hb

Ha • each page is associated with the
hint set which it was
most-recently read or written

• each hint set has a priority

• CLIC evicts pages associated
with the lowest-priority hint sets

• CLIC chooses hint set priorities
using a simple cost/benefit
analysis



Introduction Hinting CLIC Performance Conclusion

A CLIC-Managed Cache

lowest priority

highest priority

p1

p5

p2 p9

p6

p8

p4p7

p3

He

Hd

Hc

Hb

Ha • each page is associated with the
hint set which it was
most-recently read or written

• each hint set has a priority
• CLIC evicts pages associated

with the lowest-priority hint sets

• CLIC chooses hint set priorities
using a simple cost/benefit
analysis



Introduction Hinting CLIC Performance Conclusion

A CLIC-Managed Cache

lowest priority

highest priority

p1

p5

p2 p9

p6

p8

p4p7

p3

He

Hd

Hc

Hb

Ha • each page is associated with the
hint set which it was
most-recently read or written

• each hint set has a priority
• CLIC evicts pages associated

with the lowest-priority hint sets
• CLIC chooses hint set priorities

using a simple cost/benefit
analysis



Introduction Hinting CLIC Performance Conclusion

Cost/Benefit Analysis

(p,H)

read or write request

next request for p

cache p here??
time

• there is a benefit to caching if the next request for p is a
read request

• the cost of obtaining this benefit is that p must remain
cached until the read request



Introduction Hinting CLIC Performance Conclusion

Cost/Benefit Analysis

is this a read request?

(p,H)

read or write request

next request for p

cache p here??
time

• there is a benefit to caching if the next request for p is a
read request

• the cost of obtaining this benefit is that p must remain
cached until the read request



Introduction Hinting CLIC Performance Conclusion

Cost/Benefit Analysis

is this a read request?

(p,H)

read or write request

next request for p

cache p here??
time

• there is a benefit to caching if the next request for p is a
read request

• the cost of obtaining this benefit is that p must remain
cached until the read request



Introduction Hinting CLIC Performance Conclusion

Assigning Priorities to Hint Sets

is this a read request?

(p,H)

read or write request

next request for p

cache p here??
time

• when request (p, H) occurs, CLIC cannot know the the
cost and benefit of caching p

• instead CLIC estimates the cost and benefit of caching p at
(p, H) based on previous requests with hint set H

• CLIC assigns a priority to each hint set based on the cost
and benefit of previous requests with hint set H

Priority(H) =
Read Hit Rate(H)

Mean Time Until Read Hit(H)



Introduction Hinting CLIC Performance Conclusion

Assigning Priorities to Hint Sets

is this a read request?

(p,H)

read or write request

next request for p

cache p here??
time

• when request (p, H) occurs, CLIC cannot know the the
cost and benefit of caching p

• instead CLIC estimates the cost and benefit of caching p at
(p, H) based on previous requests with hint set H

• CLIC assigns a priority to each hint set based on the cost
and benefit of previous requests with hint set H

Priority(H) =
Read Hit Rate(H)

Mean Time Until Read Hit(H)



Introduction Hinting CLIC Performance Conclusion

Assigning Priorities to Hint Sets

is this a read request?

(p,H)

read or write request

next request for p

cache p here??
time

• when request (p, H) occurs, CLIC cannot know the the
cost and benefit of caching p

• instead CLIC estimates the cost and benefit of caching p at
(p, H) based on previous requests with hint set H

• CLIC assigns a priority to each hint set based on the cost
and benefit of previous requests with hint set H

Priority(H) =
Read Hit Rate(H)

Mean Time Until Read Hit(H)



Introduction Hinting CLIC Performance Conclusion

DB2 Hint Analysis Example

STOCK table replacement writes

ORDERLINE table reads



Introduction Hinting CLIC Performance Conclusion

Efficient Hint Analysis

• To analyze the cost and benefit of hint sets, CLIC must
• track the most recent request and hint set for each page
• track the mean read hit rate and read hit distance for each

hint set

• To reduce space requirements, CLIC

• tracks the most recent request only for cached pages and a
fixed number of additional, uncached paged

• tracks read hit statistics only for frequently occurring hint
sets

• We have also investigated the use of generalization to
reduce the number of distinct hint sets.



Introduction Hinting CLIC Performance Conclusion

Efficient Hint Analysis

• To analyze the cost and benefit of hint sets, CLIC must
• track the most recent request and hint set for each page
• track the mean read hit rate and read hit distance for each

hint set
• To reduce space requirements, CLIC

• tracks the most recent request only for cached pages and a
fixed number of additional, uncached paged

• tracks read hit statistics only for frequently occurring hint
sets

• We have also investigated the use of generalization to
reduce the number of distinct hint sets.



Introduction Hinting CLIC Performance Conclusion

Efficient Hint Analysis

• To analyze the cost and benefit of hint sets, CLIC must
• track the most recent request and hint set for each page
• track the mean read hit rate and read hit distance for each

hint set
• To reduce space requirements, CLIC

• tracks the most recent request only for cached pages and a
fixed number of additional, uncached paged

• tracks read hit statistics only for frequently occurring hint
sets

• We have also investigated the use of generalization to
reduce the number of distinct hint sets.



Introduction Hinting CLIC Performance Conclusion

Efficient Hint Analysis

• To analyze the cost and benefit of hint sets, CLIC must
• track the most recent request and hint set for each page
• track the mean read hit rate and read hit distance for each

hint set
• To reduce space requirements, CLIC

• tracks the most recent request only for cached pages and a
fixed number of additional, uncached paged

• tracks read hit statistics only for frequently occurring hint
sets

• We have also investigated the use of generalization to
reduce the number of distinct hint sets.



Introduction Hinting CLIC Performance Conclusion

Performance

• we have used trace-driven simulation of the storage server
buffer cache to compare CLIC to other replacement
policies

• methodology
1. modify DB2 and MySQL to generate hints and produce I/O

traces
2. run TPC-C (on-line transaction processing) and TPC-H

(decision support) workloads on the database systems and
collect I/O traces

3. feed the traces to a simulation of second-tier cache, which
implements CLIC, LRU, ARC, TQ and OPT

4. measure the hit ratio achieved by different policies.



Introduction Hinting CLIC Performance Conclusion

DB2 TPC-C - Medium DB2 Buffer Cache

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

20%

40%

60%

80%

100%

S
er

ve
r 

C
ac

he
 R

ea
d 

H
it

 R
at

io

DB2_C300
OPT
TQ
LRU
ARC
CLIC



Introduction Hinting CLIC Performance Conclusion

DB2 TPC-H - Medium DB2 Buffer Cache

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

20%

40%

60%

80%

100%

S
er

ve
r 

C
ac

he
 R

ea
d 

H
it

 R
at

io

DB2_H400

OPT
TQ
LRU
ARC
CLIC



Introduction Hinting CLIC Performance Conclusion

DB2 TPC-C - Small DB2 Buffer Cache

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

20%

40%

60%

80%

100%

S
er

ve
r 

C
ac

he
 R

ea
d 

H
it

 R
at

io

DB2_C60

OPT
TQ
LRU
ARC
CLIC



Introduction Hinting CLIC Performance Conclusion

DB2 TPC-C - Large DB2 Buffer Cache

60k 120k 180k 240k 300k

Server Cache Size (pages)

0%

20%

40%

60%

80%

100%

S
er

ve
r 

C
ac

he
 R

ea
d 

H
it

 R
at

io

DB2_C540

OPT
TQ
LRU
ARC
CLIC



Introduction Hinting CLIC Performance Conclusion

Summary and Conclusions

• CLIC learns to identify I/O hints that signal good caching
opportunities by tracking the request stream observed by
the second-tier cache

• Because CLIC’s responses to specific hints are not
predefined, it naturally accommodates new hint types and
hints from multiple storage clients.

• for our traces:
• CLIC’s performance usually dominates ARC’s and LRU’s,

sometimes by a factor of 2 or more.
• CLIC dominates the ad hoc, hint-aware TQ algorithm
• CLIC’s space overhead can be kept low ( 1% of storage

server cache size in our experiments)


	Introduction
	Hinting
	CLIC
	Performance
	Conclusion

