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The CLIC Approach

• a hint-aware caching policy for 2nd-tier caches

• no hard coded response to specific hints
• instead, learn which hints signal good caching

opportunities
• benefits:

• handles multiple hint types
• handles new hint types
• handles hints from multiple clients by treating each client’s

hints as distinct

CLIC Hints
CLIC separates the generation of hints (done by the storage
clients) from the interpretation of those hints for caching
purposes (done by the storage server).
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Generating Hints
• Storage client must be modified to generate one or more

types of hints.
• Storage clients attach a hint set to each read or write

request. A hint set includes one hint of each type
generated by the client.

• A storage client may choose to generate any types of hints
that might be of use to the storage server.

Example: Hints from DB2

• buffer pool ID
• object ID: identifies a group of related DB objects
• object type ID: distinguishes table from index
• request type: read, replacement/recovery write
• DB2 buffer priority



Introduction Hinting CLIC Performance Conclusion

Generating Hints
• Storage client must be modified to generate one or more

types of hints.
• Storage clients attach a hint set to each read or write

request. A hint set includes one hint of each type
generated by the client.

• A storage client may choose to generate any types of hints
that might be of use to the storage server.

Example: Hints from DB2

• buffer pool ID
• object ID: identifies a group of related DB objects
• object type ID: distinguishes table from index
• request type: read, replacement/recovery write
• DB2 buffer priority



Introduction Hinting CLIC Performance Conclusion

A CLIC-Managed Cache

lowest priority

highest priority

p1

p5

p2 p9

p6

p8

p4p7

p3

He

Hd

Hc

Hb

Ha • each page is associated with the
hint set which it was
most-recently read or written

• each hint set has a priority
• CLIC evicts pages associated

with the lowest-priority hint sets
• CLIC chooses hint set priorities

using a simple cost/benefit
analysis



Introduction Hinting CLIC Performance Conclusion

A CLIC-Managed Cache

lowest priority

highest priority

p1

p5

p2 p9

p6

p8

p4p7

p3

He

Hd

Hc

Hb

Ha • each page is associated with the
hint set which it was
most-recently read or written

• each hint set has a priority

• CLIC evicts pages associated
with the lowest-priority hint sets

• CLIC chooses hint set priorities
using a simple cost/benefit
analysis



Introduction Hinting CLIC Performance Conclusion

A CLIC-Managed Cache

lowest priority

highest priority

p1

p5

p2 p9

p6

p8

p4p7

p3

He

Hd

Hc

Hb

Ha • each page is associated with the
hint set which it was
most-recently read or written

• each hint set has a priority
• CLIC evicts pages associated

with the lowest-priority hint sets

• CLIC chooses hint set priorities
using a simple cost/benefit
analysis



Introduction Hinting CLIC Performance Conclusion

A CLIC-Managed Cache

lowest priority

highest priority

p1

p5

p2 p9

p6

p8

p4p7

p3

He

Hd

Hc

Hb

Ha • each page is associated with the
hint set which it was
most-recently read or written

• each hint set has a priority
• CLIC evicts pages associated

with the lowest-priority hint sets
• CLIC chooses hint set priorities

using a simple cost/benefit
analysis



Introduction Hinting CLIC Performance Conclusion

Cost/Benefit Analysis

(p,H)

read or write request

next request for p

cache p here??
time

• there is a benefit to caching if the next request for p is a
read request

• the cost of obtaining this benefit is that p must remain
cached until the read request



Introduction Hinting CLIC Performance Conclusion

Cost/Benefit Analysis

is this a read request?

(p,H)

read or write request

next request for p

cache p here??
time

• there is a benefit to caching if the next request for p is a
read request

• the cost of obtaining this benefit is that p must remain
cached until the read request



Introduction Hinting CLIC Performance Conclusion

Cost/Benefit Analysis

is this a read request?

(p,H)

read or write request

next request for p

cache p here??
time

• there is a benefit to caching if the next request for p is a
read request

• the cost of obtaining this benefit is that p must remain
cached until the read request



Introduction Hinting CLIC Performance Conclusion

Assigning Priorities to Hint Sets
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• when request (p, H) occurs, CLIC cannot know the the
cost and benefit of caching p

• instead CLIC estimates the cost and benefit of caching p at
(p, H) based on previous requests with hint set H

• CLIC assigns a priority to each hint set based on the cost
and benefit of previous requests with hint set H

Priority(H) =
Read Hit Rate(H)

Mean Time Until Read Hit(H)
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DB2 Hint Analysis Example
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Efficient Hint Analysis

• To analyze the cost and benefit of hint sets, CLIC must
• track the most recent request and hint set for each page
• track the mean read hit rate and read hit distance for each

hint set

• To reduce space requirements, CLIC

• tracks the most recent request only for cached pages and a
fixed number of additional, uncached paged

• tracks read hit statistics only for frequently occurring hint
sets

• We have also investigated the use of generalization to
reduce the number of distinct hint sets.
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Performance

• we have used trace-driven simulation of the storage server
buffer cache to compare CLIC to other replacement
policies

• methodology
1. modify DB2 and MySQL to generate hints and produce I/O

traces
2. run TPC-C (on-line transaction processing) and TPC-H

(decision support) workloads on the database systems and
collect I/O traces

3. feed the traces to a simulation of second-tier cache, which
implements CLIC, LRU, ARC, TQ and OPT

4. measure the hit ratio achieved by different policies.
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DB2 TPC-C - Large DB2 Buffer Cache
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Summary and Conclusions

• CLIC learns to identify I/O hints that signal good caching
opportunities by tracking the request stream observed by
the second-tier cache

• Because CLIC’s responses to specific hints are not
predefined, it naturally accommodates new hint types and
hints from multiple storage clients.

• for our traces:
• CLIC’s performance usually dominates ARC’s and LRU’s,

sometimes by a factor of 2 or more.
• CLIC dominates the ad hoc, hint-aware TQ algorithm
• CLIC’s space overhead can be kept low ( 1% of storage

server cache size in our experiments)
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