

Understanding Customer Problem Troubleshooting from Storage System Logs

Weihang Jiang (wjjang3@ujuc.edu)

Weihang Jiang*[†], Chongfeng Hu^{*†}, Shankar Pasupathy[†],

Arkady Kanevsky[†], Zhenmin Li[#], Yuanyuan Zhou^{*}

University of Illinois*

NetApp⁺

Pattern Insight#

Customer problem troubleshooting is critical

- Customer problems result in costly downtime for customers
 - Cost a customer 18.35% of TCO [Crimson '07].
- Customer problems are expensive for system vendors
 - Vendors devote more than 8% of total revenue and 15% of total employee costs on customer problem support [ASP'08].
- Complex modern storage systems make problem troubleshooting more challenging

Storage system is complex

Customer problems occur in different ways

Storage Subsystem
Customer problems include storage failures, partial failures and any other system misbehaviors that users observe and do not expect from a healthy system.

NetApp

Customer problem management workflow

Quantitatively understand problem troubleshooting

Can we systematically use system logs for troubleshooting?

NetApp

I Outline

Motivation

- Understanding customer problem troubleshooting
 - Problem troubleshooting time
 - Problem category
 - Problem impacts
- Use log information for problem troubleshooting
- Conclusions

Data source

Customer problem case database (636,108)

Case ID	Report Date	Resolution/ Workaround Date	Problem cause		Auto-generated	Critical Event	
			High-level	Module-level	ű		_
1	5/1/06 11:21	5/2/06 13:35	Software Bugs	File System	Y	Crash	-
2	5/2/06 11:02	5/7/06 9:01	Hardware Fault	SCSI	N	N/A	Ī
3	5/3/06 15:40	5/8/06 14:48	Misconfiguration	Shelf	N	N/A]/

Storage System Log Archive (306,624 logs)

Analysis dimensions

Problem troubleshooting is time-consuming

Problem category distribution

- Hardware fault (40%) and misconfiguration(21%) are the two most frequent categories, software bugs count for a small percentage(3%).
- User knowledge (11%) and customers' own execution environment (9%).

Problem category and troubleshooting time

- Software bugs take longer time to troubleshoot.
- For all categories, troubleshooting is time-consuming.

Problem impact distribution

e.g., Can not access a disk volume, Can not take snapshot,

- Problems are captured at early stages
 - System crash(3%)
 - Hardware component(44%), unhealthy status(20%)

Problem impact and troubleshooting time

- System crash takes longer time to troubleshoot.
- For all categories, troubleshooting is time-consuming.

- Motivation
- Understanding customer problem troubleshooting
 - Problem troubleshooting time
 - Problem category
 - Problem impacts
- Use log information for problem troubleshooting
- Conclusions

Use log information for problem diagnosis

Customer problem case database (636,108)

Case ID	Report Date	Resolution/ Workaround Date	Problem cause		Auto-generated	Critical Event	
			High-level	Module-level	Tata gamatana	511115011 2115111	
1	5/1/06 11:21	5/1/06 13:35	Software Bugs	File System	Υ	Crash	K
2	5/2/06 11:02	5/2/06 9:01	Hardware Fault	SCSI	N	N/A	Ī
3	5/3/06 15:40	5/8/06 14:48	Misconfiguration	Shelf	N	N/A	$\bigg]$,

Storage System Log Archive (306,624 logs)

What log information to use?

More log events are more useful

How well the signature can uniquely identify cause? F-score = 2 * Precision * Recall / (Precision + Recall) Multiple-Event Log Signature ■ Best Single-Event Log Signature □ Critical Event 90% Multiple Events 45% Single Event 27% Critical Event 15% 80% 100% F-score 50% 40% 30% 20% 10% 0%

C-RAID

S-cifs

S-wafl

S-storage S-streaming S-platform

Critical event alone is not enough.

H-shelf

H-storage H-platform

Using more log events can bring better accuracy.

Logs are noisy

```
Single Event revealing problem root cause

Sat Apr 15 05:58:15 EST [busError] SCSI adapter encountered an unexpected bus phase. Issuing SCSI bus reset.

Sat Apr 15 05:59:10 EST [fs.warn]: volume /vol/vol1 is low on free space. 98% in use.

Sat Apr 15 06:01:10 EST [fs.warn]: volume /vol/vol10 is low on free space. 99% in use.

Sat Apr 15 06:02:14 EST [raidDiskRecovering]: Attempting to bring device 9a back into service.

Sat Apr 15 06:02:14 EST [raidDiskRecovering]: Attempting to bring device 9b back into service.

Sat Apr 15 06:07:19 EST [timeoutError]: device 9a did not respond to requested I/O. I/O will be retried.

Sat Apr 15 06:07:19 EST [noPathsError]: No more paths to device 9a: All retries have failed.

Sat Apr 15 06:07:19 EST [imeoutError]: device 9b did not respond to requested I/O. I/O will be retried.

Sat Apr 15 06:07:19 EST [noPathsError]: No more paths to device 9b. All retries have failed.

Sat Apr 15 06:08:23 EST [filerUp]: Filer is up and running.

Sat Apr 15 06:24:07 EST [crash:ALERT]: Crash String: File system hung in process idle thread1 Critical Event
```


- Logs are noisy
- Important log events are not easy to locate

Single Event revealing problem root cause

Sat Apr 15 05:58:15 EST (busError): SCSI adapter encountered an unexpected bus phase. Issuing SCSI bus reset.

Sat Apr 15 06:24:07 EST [crash:ALERT]: Crash String: File system hung in process idle_thread1 → Critical Event

- Logs are noisy
- Important log events are not easy to locate
- Similar log patterns appear on systems experience the same problems

- Logs are noisy
- Important log events are not easy to locate

Similar log patterns appear on systems experience

Conclusions Conclusions

- Problem troubleshooting is time-consuming.
 - Hardware fault and misconfiguration are common causes
 - Lack of sufficient user knowledge
 - Most problems have low impact, while high-impact problems are more difficult to troubleshoot
- Storage system logs contain useful information for problem troubleshooting
 - Critical event alone is not enough.
 - Log analysis tools that can filter noise and identify similar patterns are essential to improve troubleshooting.

NetApp

Thanks

Questions?

