Tiered Fault Tolerance for
Long-Term Integrity

Byung-Gon Chun (Intel Research Berkeley)

Joint work with
Petros Maniatis (Intel Research Berkeley),
Scott Shenker (UC Berkeley, ICSI),
and John Kubiatowicz (UC Berkeley)

Long-term applications

Are current fault-tolerant replicated service designs
suitable for long-term applications?

Near-term solutions do not fit

* BFT replicated systems: correct if the number of
faulty replicas is always less than some fixed
threshold (1/3 of the replicas)

Near-term solutions do not fit

Node

Node

A new approach to designing
long-term applications

* A reliability of a system’s components over
long spans of time can vary dramatically

* Consider this differentiation for long-term
applications
=> Tiered fault-tolerant system framework

* Apply the framework to construct Bonafide, a
long-term key-value store

Roadmap

 Tiered fault tolerance framework

* Bonafide: a long-term key-value store
— Tiers: Trusted, Semi-trusted, Untrusted

 Evaluation

Monolithic fault-tolerant system model

Node Node Node Node

Tiered fault-tolerant system model

Node Node Node Node

LLL

Sources of differentiation

Different assurance practices

— Formally verified components vs. type-unsafe
software

Care in the deployment of a system

— Tight physical access controls, responsive system
administration vs. unreliable organization

Rolling procurement of hardware and software

— A trusted logical component vs. a less trusted
component

Limited exposure
— Mostly offline vs. online

Reallocation of dependability budget

* Use differentiation to refactor systems into
multiple components in different fault tiers

* Different operational practices for each
component class

Low-trust High-trust
component component
Buggier Formally verified
Larger Limited functionality

Run continuously Run infrequently/briefly

Roadmap

* Bonafide: a long-term key-value store
— Tiers: Trusted, Semi-trusted, Untrusted

 Evaluation

Bonafide

* A key-value store desighed to provide long-
term integrity using the tiered fault framework

— Non-self-certifying data

— A naming service for self-certifying archival
storage

* Simple interface:
— Add(key, value)
— Get(key) -> value

Design Rationale

* Refactor the fuctionality of the service into
— A more reliable fault tier for state changes
— A less reliable fault tier for read-only state queries

e |solation between these two tiers

— Trusted component for protecting state during execution
of the unreliable tier

— Use an algorithm to protect large service state with the
component

* Mask faults of the component in the more reliable tier
— Use a BFT replicated state machine
— Mostly offline, execute in a synchronized fashion

Operation of Bonafide

S: Service U: Update

S U S U S U
o o -
Node 2 -~ - -
Node N -~ - -
(N=3f+1) ,

Time

Components in Bonafide and their
associated fault tiers

Fault bound | Component

0 Watchdog Periodic Invoked
MAS (Moded S phase Read
Attested Storage) U phase Written/Read :
1/3 Update U phase Replicate store
Byzantine Serve ADDs
Unbounded Service S phase Serve GETs
Buffer ADDs

Audit/Repair |

Guarantees

e Guarantees integrity of returned data under
our tiered fault assumption

* Ensures liveness of S phases with fewer than
2/3 faulty replicas during S phases

* Ensures durability if the system creates copies
of data faster than they are lost

Bonafide replica state and process

Trusted storage
Moded-Attested

Storage (MAS)
' 4 2

Authenticated
Search Tree (AST)

‘\{ Buffer b

Untrusted storage

U phase

Top tier: trusted

* Cryptography and trusted hardware

* Watchdog: time source, periodic reboot, sets a
mode bit of MAS

* MAS: a mode bit, a set of storage slots, signing
key
— Store(q, v): store value v at slot g only in U phases

— Lookup(g, z) -> value v of slot g and fresh
attestation (nonce 2)

Bottom tier: get

Get operation (S phase)

<Get,k,z>
<Get,k,z> ‘,u
Client
f+1 (=2) <Get,k,z>
valid matching Reply, K v;prc
responses <Getk,z>

Reply,k,v,prog

Bottom tier: add

Add operation (S phase)

<Add,k

<AA0;K;V

f+1 (=2)
valid matching
responses

<Add,k,v>

<Add, k,v>

Reply,k,v;proef,<rd,z>

Replies with MAS attestation are sent
after the following U phase.

Bottom tier: audit and repair

MAS[I]

Fetch

Middle tier: update process

Reboot

2f + 1 (=3)
PBFT agreements

AST update/
Checkpoint

Time

Evaluating the performance of
Bonafide implementation

* A prototype built with sfslite, PBFT, Berkeley DB
libraries

— Server Add/Get, Audit/Repair, Update processes
— Client proxy process

* Experiment setup

— Four replica nodes (outdated P4 PCs) running Fedora
in a LAN

— 1 million key-value pairs initially populated
— Add/Get time, Audit/repair time, U phase duration

Performance evaluation

Get/Add time Audit/Repair time
Mean (std) Mean (std)
3.1(0.24) 554.5 (54.6)
Add 1.0 (0.21) 1 612.9 (30.3)
10 1147.6 (33.3)
100 3521.5 (201.6)

U phase duration

Time (s)
Mean (std)

Reboot 86.6 (2.1)
Proposal creation 8.0 (4.0)
Agreement 5.2 (1.0)

AST update/Checkpoint 271.1 (24.8)
Total 370.9 (24.0)

Availability

0.98 \

Availability

0.97
—#-U phase period = 9 hours \

0.96 - U phase period = 6 hours
—<U phase period = 3 hours \\

0.95 . . ! . . .
1 2 3 4 5 6 7
U phase duration (minutes)

Related work

* BFT systems

— PBFT, PBFT-PR, COCA

— BFT-2F, A2ZM-PBFT, A2M

— BFT erasure-coded storage
e Differentiating trust levels

— Hybrid system model — wormholes model

— Hybrid fault model

— Different fault thresholds to different sites or clusters
* Long-term stores

— Self-certifying bitstore — Antiquity, Oceanstore, Pergamum,
Glacier, etc.

— LOCKSS, POTSHARDS, CATS

Conclusion

* Present a tiered fault-tolerant system
framework
- A2M (SOSPO07), Bonafide (FAST09), Trinc (NSDI09)

* Build Bonafide, a safer key-value store (of non-
self-certifying data) for long-term integrity
with the framework

Thank you!

