
Tag line, tag line

Alexandros Batsakis NetApp*
Randal Burns Johns Hopkins University
Arkady Kanevsky NetApp
James Lentini NetApp
Thomas Talpey NetApp

A Congestion-Aware
Network File System

1

© 2008 NetApp. All rights reserved.

What Is This Talk About ?

 a framework for scheduling client operations
in a distributed file system based on
serverʼs congestion

2

2

© 2008 NetApp. All rights reserved.

What Is Wrong Now ? Selfishness

 clients try to maximize their own throughput
– send requests to the server greedily
– each request incurs a cost to the system

– network, memory, disk
– do not care about social impact (externalities)

3

C1

C2

S

clients really bound only by
flow rate (their benefit)

3

© 2008 NetApp. All rights reserved.

Clients Have (Good) Excuses

 server takes all responsibility (system-design)
 clients are

– oblivious to server load
– oblivious to other client population

 our objective is to teach clients to behave better
– to care about the social impact of their actions
– to become congestion-aware !

 implementation:
CA-NFS: Congestion-aware Network File System

4

4

© 2008 NetApp. All rights reserved.

CA-NFS Building Blocks

 monitor system usage and quantify congestion
 schedule client operations

5

5

© 2008 NetApp. All rights reserved.

Assessing System Load / Congestion

 how can one measure congestion ?
– throughput, latency, time, cpu%, ... ???
– black box, grey box, ... ???

 how can one compare load across
– heterogeneous workloads ?
– heterogeneous devices ?

 80% CPU usage vs 100 pending disk I/Os ?
– heterogeneous machines ?

6

6

© 2008 NetApp. All rights reserved.

Congestion Pricing

 unify congestion under a single metric

 based on B. Awerbuch, Y. Azar, and S. Plotkin, “Throughput-competitive online routing” , FOCS ʼ93

– congestion price = exp function of the resource utilization
– we adapt it to fit storage systems [auction model - proof in the paper]

– ui
 utilization of resource i
– Pi, Pmax price of resource i, max price
– ki
 degradation factor as the load-increases

 device-specific e.g. disk vs network

7

102 7th USENIX Conference on File and Storage Technologies USENIX Association

tions that uses an online auction model to price conges-
tion in a resource independent way. We adapt this theory
to distributed file systems by considering the path of file
system operations, from the client’s memory to server’s
disk, as a short-lived circuit.

CA-NFS uses a reverse auction model. In a reverse
auction, the buyer advertises a need for a service and the
sellers place bids, like a regular auction. However, the
seller who places the lowest bid wins the auction. Ac-
cordingly in CA-NFS, when the client is about to issue a
request, it compares its local price with the server price.
Depending on who offers the lower price the client ac-
celerates, or defers the operation.

We start by describing an auction for a single resource.
We then build a pricing function for each resource and
assemble these functions into a price for each NFS oper-
ation.

3.1 Algorithmic Foundation

For each resource, we define a simple auction in an
online setting in which the bids arrive sequentially and
unpredictably. In a way, a bid represents the client’s will-
ingness to pay for the use of the resource, i.e. the client’s
local price. A bid will be accepted immediately if it is
higher than the price of the resource at that time.

Our goal is to find an online algorithm that is com-
petitive to the optimal offline algorithm in any fu-
ture request sequence. The performance degradation
of an online algorithm (competitive ratio) is

offline online in which offline is the benefit
from the offline optimal algorithm and online the bene-
fit from the online algorithm. Awerbuch et al. [4] estab-
lish the lower bound at in which is the ratio
between the maximum and minimum benefit realized by
the online algorithm over all inputs. The lower bound is
achieved when reserving of the resource doubles
the price.

The worst case occurs when the offline algorithm sells
the entire resource at the maximum bid , which was re-
jected by the online algorithm. For the online algorithm
to reject this bid, it must have set the price greater than ,
which means it has already sold of the resource
for at least .

online and

offline online

Increasing price exponentially with increased utilization
leads to a competitive ratio logarithmic in .

3.2 A Practical Pricing Function
This model gives us an online strategy that is prov-

ably competitive with the optimal offline algorithm in the
maximum usage of each resource. It has a weak (, not
constant) competitive ratio, but even this weak ratio is
unprecedented in the storage system’s literature. The on-
line algorithm knows nothing about the future, assumes
no correlation between past and future requests, and is
only aware of the current system state.

Based on the theoretical framework, we define the
pricing function for an individual resource in our
framework as

in which the utilization varies between and so that
the price varies between and .

The parameter represents the performance degrada-
tion experienced by the end user as the resource becomes
congested. Thus, appropriate values of should provide
incremental feedback as the resource usage increases.

The heterogeneous resources of distributed file sys-
tems complicate parameter selection. Different resources
become congested at different levels of utilization, which
dictates that parameters need to be set individually. With
very large , the price function stays near zero until the
utilization is almost 1. Then the price goes up very
quickly. With very small , the resource becomes ex-
pensive at lower utilization, which throttles usage prior
to congestion. The network exhibits few negative ef-
fects from increased utilization until near its capacity
and, thus, calls for a higher setting of . Similarly, mem-
ory works well until it’s nearly full at which point it expe-
riences congestion in the form of fragmentation and syn-
chronous stalls from out-of-memory conditions. Disks,
on the other hand, require smaller values of , because
each additional I/O interferes with all subsequent (and
some previous) I/Os, increasing the service time by in-
creasing queue lengths and potentially moving the head
out of position.

CA-NFS users do not need to set the value of explic-
itly, as it is precomputed for most existing device types.
The pricing mechanism is robust to small hardware varia-
tions, e.g to different device brands. During various CA-
NFS deployments, we experimented extensively with the
value of . (We do not present all these experiments as
they are quite tedious.)

We approximate the cumulative cost of all resources
by the highest cost (most congested) resource. The high-
est cost resource corresponds well with the system bot-
tleneck. is the same for all server resources and
the exponential nature of the pricing functions ensures
that resources under load become expensive quickly.

7

© 2008 NetApp. All rights reserved.

Resource Monitoring

 the theory makes no assumptions about the
devices that are monitored
– an expression of the utilization

 real devices:
– network, CPU, memory, disk

 virtual devices (heuristics):
– read-ahead effectiveness
– cache effectiveness {Batsakis et al “Awol” at FAST ʼ08}

 can be extended to any device
– SSDs, Infiniband, …

8

8

© 2008 NetApp. All rights reserved.

Operation Scheduling

 NFS servers operate under false assumptions
– client benefit increases with server throughput
– all client operations are equally important

 client operations come at different priorities
– explicitly: low-priority processes

 out-of-protocol handling (QoS etc.)
 see... future work

– implicitly: synchronous vs asynchronous ops

9

9

© 2008 NetApp. All rights reserved.

Client Operations & Implicit Priorities

 synchronous versus asynchronous ops
 synchronous operations:

– reads, metadata
– must be performed on-demand (applications block)

 asynchronous operations:
– write, read-ahead
– can be time-shifted depending on the client state

 memory usage, application needs, ...

 our goal is to schedule client ops so that
non-time critical (async) I/O traffic does not
interfere with on-demand (sync) requests

10

10

© 2008 NetApp. All rights reserved.

CA-NFS Operation – Reverse Auction

 clients and servers encode their resource
constraints by increasing or decreasing their
prices

 servers advertise their congestion prices to
clients

 clients compare the server prices with their
local prices and they decide to:
– issue read-aheads prudently or aggressively
– defer or accelerate a write

11

11

© 2008 NetApp. All rights reserved.

Write Acceleration

 CA-NFS clients notify the server to sync the
data immediately upon a WRITE

 no client buffering is needed
 preserves the cache contents of the client

(maintain hit rate)
– if the server load is low, why sync later ?
– saves client memory :)

 no double buffering -- maintains client cache
– consumes server resources immediately :-(

12

12

© 2008 NetApp. All rights reserved.

Write Deferral

 CA-NFS clients keep data in local memory only
and do not copy them to the server
– if the server load is high postpone the write
– saves server memory, disk and network I/O :-)
– consumes clients memory :-(
– faces the risk of higher latency for subsequent

COMMIT operations upon close
 but they would be slow anyways (high load)
 some heuristics to throttle small write deferral

13

13

© 2008 NetApp. All rights reserved.

CA-NFS in Practice

14

Client 1 Client 2memory: 80%
RA eff: 10%
hit rate: 40%

price Writes Reads
85 4

memory: 10%
RA eff: 85%
hit rate: 90%

price Writes Reads
20 17

Server memory: 65%
network: 20%

disk: 90%
hit rate: 40%

price Writes Reads
40 12

14

© 2008 NetApp. All rights reserved.

CA-NFS in Practice

15

Client 1 Client 2memory: 50%
RA eff: 10%
hit rate: 40%

price Writes Reads
64 4

memory: 50%
RA eff: 85%
hit rate: 90%

price Writes Reads
60 17

Server memory: 65%
network: 20%

disk: 60%
hit rate: 40%

price Writes Reads
55 12

CA-NFS “exchanges” resource congestion
among clients and the server

15

© 2008 NetApp. All rights reserved.

Experimental Analysis

 two different workloads (filebench)
– fileserver: 1000s of real NFS traces

 creates, deletes, reads, writes, etc.
 many asynchronous operations

– oltp: based on a database I/O model
 many small random reads and writes
 mostly synchronous operations

16

16

© 2008 NetApp. All rights reserved.

Fileserver – Results I

17

17

© 2008 NetApp. All rights reserved.

Fileserver – Results II

18

18

© 2008 NetApp. All rights reserved.

OLTP - Results

19

19

© 2008 NetApp. All rights reserved.

To Do (or Not To Do)

 smart scheduling of async operations is just a
“proof-of-concept”
– policies & priorities for synchronous operations

 e.g. if price > 0.8 then stop application X
– fairness over time

 one client may drive prices up for everybody
– resource reservations by differentiating prices
– proportional sharing based on salaries
– holistic flow control

20

20

© 2008 NetApp. All rights reserved.

Parting Thoughts

 contribution: a framework to build performance
management based on congestion

 case study of an “economic” anomaly
– client benefit does not always increase with

throughput
 client requests come at different priorities

– server cost always increases with load
– benefit-based vs cost-based system design

21

Thank You
Questions?

21

