
USENIX Association 	 FAST ’09: 7th USENIX Conference on File and Storage Technologies	 239

WorkOut: I/O Workload Outsourcing for Boosting RAID Reconstruction
Performance

Suzhen Wu1, Hong Jiang2, Dan Feng1∗, Lei Tian12, Bo Mao1

1Key Laboratory of Data Storage Systems, Ministry of Education of China
1School of Computer Science & Technology, Huazhong University of Science & Technology

2Department of Computer Science & Engineering, University of Nebraska-Lincoln
∗Corresponding author: dfeng@hust.edu.cn

{suzhen66, maobo.hust}@gmail.com, {jiang, tian}@cse.unl.edu, ltian@hust.edu.cn

Abstract
User I/O intensity can significantly impact the perfor-
mance of on-line RAID reconstruction due to contention
for the shared disk bandwidth. Based on this observa-
tion, this paper proposes a novel scheme, called WorkOut
(I/O Workload Outsourcing), to significantly boost RAID
reconstruction performance. WorkOut effectively out-
sources all write requests and popular read requests orig-
inally targeted at the degraded RAID set to a surrogate
RAID set during reconstruction. Our lightweight pro-
totype implementation of WorkOut and extensive trace-
driven and benchmark-driven experiments demonstrate
that, compared with existing reconstruction approaches,
WorkOut significantly speeds up both the total recon-
struction time and the average user response time. Im-
portantly, WorkOut is orthogonal to and can be easily
incorporated into any existing reconstruction algorithms.
Furthermore, it can be extended to improving the perfor-
mance of other background support RAID tasks, such as
re-synchronization and disk scrubbing.

1 Introduction
As a fundamental technology for reliability and availabil-
ity, RAID [30] has been widely deployed in modern stor-
age systems. A RAID-structured storage system ensures
that data will not be lost when disks fail. One of the key
responsibilities of RAID is to recover the data that was
on a failed disk, a process known as RAID reconstruc-
tion.

The performance of RAID reconstruction techniques
depends on two factors. First, the time it takes to com-
plete the reconstruction of a failed disk, since longer re-
construction times translate to a longer “window of vul-
nerability”, in which a second disk failure may cause per-
sistent data loss. Second, the impact of the reconstruction
process on the foreground workload, i.e., to what degree
are user requests affected by the ongoing reconstruction.

Current approaches for RAID reconstruction fall into
two different categories: [11, 12]: off-line reconstruction,
when the RAID devotes all of its resources to perform-

ing reconstruction without serving any I/O requests from
user applications, and on-line reconstruction, when the
RAID continues to service user I/O requests during re-
construction.

Off-line reconstruction has the advantage that it’s
faster than on-line reconstruction, but it is not practical
in environments with high availability requirements, as
the entire RAID set needs to be taken off-line during re-
construction.

On the other hand, on-line reconstruction allows fore-
ground traffic to continue during reconstruction, but
takes longer to complete than off-line reconstruction as
the reconstruction process competes with the foreground
workload for I/O bandwidth. In our experiments we find
that on-line reconstruction (with heavy user I/O work-
loads) can be as much as 70 times (70×) slower than
off-line reconstruction (without user I/O workloads) (see
Section 2.2). Moreover, while on-line reconstruction al-
lows foreground workload to be served, the performance
of the foreground workload might be significantly re-
duced. In our experiments, we see cases where the user
response time increases by a factor of 3 (3×) during on-
line reconstruction(see Section 2.2).

Improving the performance of on-line RAID recon-
struction is becoming a growing concern in the light of
recent technology trends: reconstruction times are ex-
pected to increase in the future, as the capacity of drives
grows at a much higher rate than other performance pa-
rameters, such as bandwidth, seek time and rotational la-
tency [10]. Moreover, with the ever growing number of
drives in data centers, reconstruction might soon become
the common mode of operation in large-scale systems
rather than the exception [4, 9, 18, 32, 34].

A number of approaches have been proposed to im-
prove the performance of RAID reconstruction, includ-
ing for example optimizing the reconstruction work-
flow [12, 22], the reconstruction sequence [3, 41] or the
data layout [14, 49]. We note that all these approaches
focus on a single RAID set. In this paper we propose a
new approach to improving reconstruction performance,

240	 FAST ’09: 7th USENIX Conference on File and Storage Technologies	 USENIX Association

exploiting the fact that most data centers contain a large
number of RAID sets.

Inspired by recent work on data migration [2, 24, 46]
and write off loading [27], we propose WorkOut, a frame-
work to significantly improve on-line reconstruction per-
formance by I/O Workload Outsourcing. The main idea
behind WorkOut is to temporarily redirect all write re-
quests and popular read requests originally targeted at
the degraded RAID set to a surrogate RAID set. The sur-
rogate RAID set can be free space on another live RAID
set or a set of spare disks.

The benefits of WorkOut are two-fold. WorkOut re-
duces the impact of reconstruction on foreground traffic
because most user requests can be served from the surro-
gate RAID set and hence no longer compete with the re-
construction process for disk bandwidth. WorkOut also
speeds up the reconstruction process, since more band-
width on the degraded RAID set can be devoted to the
reconstruction process.

In more detail, WorkOut has the following salient fea-
tures:

(1) WorkOut tackles one of the most important factors
adversely affecting reconstruction performance,
namely, I/O intensity, that, to the best of our knowl-
edge, has not been adequately addressed by the pre-
vious studies [3, 41].

(2) WorkOut has a distinctive advantage of improv-
ing both reconstruction time and user response
time. It is a very effective reconstruction optimiza-
tion scheme focusing on optimizing write-intensive
workloads, a roadblock for many of the existing re-
construction approaches [41].

(3) WorkOut is orthogonal and complementary to and
can be easily incorporated into most existing RAID
reconstruction approaches to further improve their
performance.

(4) In addition to boosting RAID reconstruction perfor-
mance, WorkOut is very lightweight and can be eas-
ily extended to improve the performance of other
background tasks, such as re-synchronization [7]
and disk scrubbing [36], that are also becoming
more frequent and lengthier for the same reasons
that reconstruction is becoming more frequent and
lengthier.

Extensive trace-driven and benchmark-driven exper-
iments conducted on our lightweight prototype im-
plementation of WorkOut show that WorkOut sig-
nificantly outperforms the existing reconstruction ap-
proaches PR [22] and PRO [42] in both reconstruction
time and user response time.

The rest of this paper is organized as follows. Back-
ground and motivation are presented in Section 2. We de-
scribe the design of WorkOut in Section 3. Performance

evaluations of WorkOut based on a prototype implemen-
tation are presented in Section 4. We analyze the relia-
bility of WorkOut in Section 5 and present related work
in Section 6. We point out directions for future research
in Section 7 and summarize the main contributions of the
paper in Section 8.

2 Background and Motivation
In this section, we provide some background and key ob-
servations that motivate our work and facilitate our pre-
sentation of WorkOut in later sections.

2.1 Disk failures in the real world
Recent studies of field data on partial or complete disk
failures in large-scale storage systems indicate that disk
failures happen at a significant rate [4, 9, 18, 32, 34].
Schroeder & Gibson [34] found that annual disk re-
placement rates in the real world exceed 1%, with 2%-
4% on average and up to 13% in some systems, much
higher than 0.88%, the annual failure rates (AFR) spec-
ified by the manufacturer’s datasheet. Bairavasundaram
et al. [4] observed that the probability of latent sector
errors, which can lead to disk replacement, is 3.45% in
their study. Those failure rates, combined with the con-
tinuously increasing number of drives in large-scale stor-
age systems, raise concerns that in future storage sys-
tems, recovery mode might become the common mode
of operation [9].

Another concern arises from recent studies showing a
significant amount of correlation in drive failures, indi-
cating that, after one disk fails, another disk failure will
likely occur soon [4, 9, 18]. Gibson [9] also points out
that the probability of a second disk failure in a RAID
system during reconstruction increases along with the
reconstruction time: approximately 0.5% for one hour,
1.0% for 3 hours and 1.4% for 6 hours.

All the above trends make fast recovery from disk fail-
ures an increasingly important factor in building storage
systems.

2.2 Mutually adversary impact of reconstruc-
tion and user I/O requests

During on-line RAID reconstruction, reconstruction re-
quests and user I/O requests compete for the bandwidth
of the surviving disks and adversely affect each other.
User I/O requests increase the reconstruction time while
the reconstruction process increases the user response
time.

Figure 1 shows the reconstruction times and user re-
sponse times of a 5-disk RAID5 set with a stripe unit size
of 64KB in three cases: (1) off-line reconstruction, (2)
on-line reconstruction at the highest speed (when RAID
favors the reconstruction process), and (3) on-line recon-
struction at the lowest speed (when RAID favors user

USENIX Association 	 FAST ’09: 7th USENIX Conference on File and Storage Technologies	 241

0

30

60

90

120

150

180

Off-Line On-line
fastest

On-line
slowest

Reconstruction Option

R
ec

o
n

st
r
u

ct
io

n
 T

im
e

(m
in

u
te

)

0

15

30

45

60

R
es

p
o

n
se

 T
im

e
(m

s)Reconstruction Time Response Time

Figure 1: Reconstruction and its performance impact.

I/O requests). In this experiment we limit the capac-
ity of each disk to 10GB. User I/O requests are gener-
ated by Iometer [17] with 20% sequential and 60%/40%
read/write requests of 8KB each. As shown in Figure 1,
the user response time increases significantly along with
the reconstruction speed, 3 times (3×) more than that in
the normal mode. The on-line reconstruction process at
the lowest speed takes 70 times (70×) longer than its off-
line counterpart.

How reconstruction is performed impacts both the re-
liability and availability of storage systems [11]. Stor-
age system reliability is formally defined as MTTDL (the
mean time to data loss) and increases with decreasing
MTTR (the mean time to repair). Ironically, decreasing
the MTTR (i.e., speeding up reconstruction) by throttling
foreground user requests can lead SLA (Service Level
Agreement) violations, which in many environments are
also perceived as reduced availability. Ideally, one would
like to reduce both the reconstruction time and user re-
sponse time in order to improve the reliability and avail-
ability of RAID-structured storage systems.

In Figure 2, we take a closer look at how user I/O
intensity affects the performance of RAID reconstruc-
tion. The experimental setup is the same as that in Fig-
ure 1, except that we impose different I/O request inten-
sities. Moreover, the RAID reconstruction process is set
to yield to user I/O requests (i.e., RAID favors user I/O
requests). From Figure 2, we see that both the recon-
struction time and user response time increase with IOPS
(I/O Per Second). When increasing the user IOPS from
9 to 200, reaches its maximum of 200, the reconstruc-
tion time increases by a factor of 20.9 and average user
response time increases by a factor of 3.76.

From the above experiments and analysis, we believe
that reducing the amount of user I/O requests directed
to the degraded RAID set is an effective approach to si-
multaneously reducing the reconstruction time and alle-
viating the user performance degradation, thus improv-
ing both reliability and availability. However, naively
redirecting all requests from the degraded RAID to a
surrogate RAID might overload the surrogate RAID and
runs the risk that a lot of work is wasted by redirect-
ing requests that will never be accessed again. Our idea
is therefore to exploit locality in the request stream and
redirect only requests for popular data.

0

30

60

90

120

150

180

9 43 59 150 200

I/O Intensity (IOPS)

R
ec

o
o

n
st

ru
c
ti

o
n

 T
im

e
(m

in
u

te
)

0

15

30

45

60

R
es

p
o
n

se
 T

im
e

(m
s)

Reconstruction Time Response Time

Figure 2: I/O intensity impact on reconstruction.

2.3 Workload locality
Previous studies indicate that access locality is one of the
key web workload characteristics [1, 5, 6] and observe
that 10% of files accessed on a web server approximately
account for 90% of the requests and 90% of the bytes
transferred [1]. Such studies also find that 20%-40% of
the files are accessed only once for web workloads [6].

To exploit access locality, caches have been widely
employed to improve storage system performance. Stor-
age caches, while proven very effective in capturing
workload locality, is so small in capacity compared with
the typical storage device that it usually cannot cap-
ture all workload locality. Thus the locality underneath
the storage cache can still be effectively mined and uti-
lized [23, 41]. For example, based on the study on C-
Miner [23] that mines block correlation below the stor-
age cache, correlation-directed prefetching and data lay-
out help reduce the user response time of the baseline
case by 12-25%. By utilizing the workload locality at
the block level, PRO [41] reduces the reconstruction time
by up to 44.7% and the user response time by 3.6-23.9%
simultaneously.

Based on these observations, WorkOut only redirects
the popular read data to the surrogate RAID set to exploit
access locality of read requests bound to the most pop-
ular data. For simplicity, popular data in our design is
defined as the data that has been read at least twice dur-
ing reconstruction. Different from read requests, write
requests can be served by any persistent storage device.
Thus WorkOut redirects all write requests to the surro-
gate RAID set.

3 WorkOut
In this section, we first outline the main principles guid-
ing the design of WorkOut. Then we present an archi-
tectural overview of WorkOut, followed by a description
of the WorkOut organization and algorithm. The design
choice and data consistency issues of WorkOut are dis-
cussed at the end of this section.

3.1 Design principles
WorkOut focuses on outsourcing I/O workloads and aims
to achieve reliability, availability, extendibility and flexi-
bility, as follows.

242	 FAST ’09: 7th USENIX Conference on File and Storage Technologies	 USENIX Association

Reliability. To reduce the window of vulnerability and
thus improve the system reliability, the reconstruction
time must be significantly reduced. Since user I/O inten-
sity severely affects the reconstruction process, WorkOut
aims to reduce the I/O intensity on the degraded RAID
set by redirecting I/O requests away from the degraded
RAID set.

Availability. To avoid a drop in user perceived perfor-
mance and violation of SLAs, the user response time dur-
ing reconstruction must be significantly reduced. Work-
Out strives to achieve this goal by significantly reducing,
if not eliminating, the contention between external user
I/O requests and internal reconstruction requests, by out-
sourcing I/O workloads to a surrogate RAID set.

Extendibility. Since I/O intensity affects the per-
formance of not only the reconstruction process but
also other background support RAID tasks, such as re-
synchronization and disk scrubbing, the idea of WorkOut
should be readily extendable to improve the performance
of these RAID tasks.

Flexibility. Due to the high cost and inconvenience
involved in modifying the organization of an existing
RAID, it is desirable to completely avoid such modifica-
tion and instead utilize a separate surrogate RAID set ju-
diciously and flexibly. In the WorkOut design, the surro-
gate RAID set can be a dedicated RAID1 set, a dedicated
RAID5 set or a live RAID set that uses the free space of
another operational (live) RAID set. Using a RAID as
the surrogate set ensures that the redirected write data
is safe-guarded with redundancy, thus guaranteeing the
consistency of the redirected data. How to choose an
appropriate surrogate RAID set is based on the require-
ments on overhead, performance, reliability, and main-
tainability and trade-offs between them.

3.2 WorkOut architecture overview
Figure 3 shows an overview of WorkOut’s architecture.
In our design, WorkOut is an augmented module to the
RAID controller software operating underneath the stor-
age cache in a system with multiple RAID sets. Work-
Out interacts with the reconstruction module, but is im-
plemented independently of it. WorkOut can be incor-
porated into any RAID controller software, including
various reconstruction approaches, and also other back-
ground support RAID tasks. In this paper, we focus
on the reconstruction process and a discussion on how
WorkOut works with some other background support
RAID tasks can be found in Section 4.7.

WorkOut consists of five key functional components:
Administration Interface, Popular Data Identifier, Surro-
gate Space Manager, Request Redirector and Reclaimer,
as shown in Figure 3. Administration Interface pro-
vides an interface for system administrators to config-
ure the WorkOut design options. Popular Data Identifier

F
ai

le
d

D
is

k

D
is

k

D
is

k

D
is

k

D
is

k

D
is

k

S
p
ar

e

D
is

k

+

Missed Read Write & Popular Read

Degraded RAID Set Surrogate RAID Set

RAID Controller Software

Reconstruction

WorkOut

Popular Data
Identifier

Surrogate
Space Manager

Request Redirector Reclaimer
Trigger

Administration
Interface

Admin
Cache/Buffer

Application

Re-synchronization

Disk scrubbing

Internal I/O

Figure 3: An architecture overview of WorkOut.

is responsible for identifying the popular read data. Re-
quest Redirector is responsible for redirecting all write
requests and popular read requests to the surrogate RAID
set, while Reclaimer is responsible for reclaiming all
redirected write data back after the reconstruction pro-
cess completes. Surrogate Space Manager is responsi-
ble for allocating and managing a space on the surro-
gate RAID set for each current reconstruction process
and controlling the data layout of the redirected data in
the allocated space.

WorkOut is automatically activated by the reconstruc-
tion module when the reconstruction thread is initiated
and de-activated when the reclaim process completes. In
other words, WorkOut is active throughout the entire re-
construction and reclaim periods. Moreover, the reclaim
thread is triggered by the reconstruction module when
the reconstruction process completes.

In WorkOut, the idea of a dedicated surrogate RAID
set is targeted at a typical data center where the surro-
gate set can be shared by multiple degraded RAID sets
on either a space-division or a time-division basis. The
degraded RAID set and surrogate RAID set are not a
one-to-one mapping. The device overhead is incurred
only during reconstruction of a degraded RAID set and
typically amounts to a small fraction of the surrogate set
capacity. For example, extensive experiments on our pro-
totype implementation of WorkOut show that, of all the
traces and benchmarks, no more than 4% of the capac-
ity of a 4-disk surrogate RAID5 set is used during the
WorkOut reconstruction.

Based on the pre-configured parameters by system ad-
ministrators, the Surrogate Space Manager allocates a
disjoint space for each degraded RAID set that requests
a surrogate RAID set, thus preventing the redirected data
from being overwritten by redirected data from other de-
graded RAID sets. Noticeably, the space allocated to a
degraded RAID set is not fixed and can be expanded. For

USENIX Association 	 FAST ’09: 7th USENIX Conference on File and Storage Technologies	 243

D_Table R_LRU

Figure 4: Data structures of WorkOut.

example, the Surrogate Space Manager first allocates an
estimated space required for a typical degraded RAID set
and, if the allocated space is used up to a preset thresh-
old (e.g., 90%), it will allocate some extra space to this
RAID set. In this paper, we mainly consider the sce-
nario where there is at most one degraded RAID set at
any given time. Implementing and evaluating WorkOut
in a large-scale storage system with multiple concurrent
degraded RAID sets are work in process.

3.3 The WorkOut organization and algorithm
WorkOut relies on two key data structures to redirect re-
quests and identify popular data, namely, D Table and
R LRU, as shown in Figure 4. D Table contains the log
of all redirected data, including the following four im-
portant variables. D Offset and S Offset indicate the off-
sets of the redirected data in the degraded RAID set and
the surrogate RAID set, respectively. Length indicates
the length of the redirected data and D Flag indicates
whether it is the redirected write data from the user ap-
plication (D Flag is set to be true) or the redirected read
data from the degraded RAID set (D Flag is set to be
false). R LRU is an LRU list that stores the informa-
tion (D offset and Length of read data) of the most recent
read requests. Based on R LRU, popular read data can
be identified and redirected to the surrogate RAID set.

WorkOut focuses on outsourcing user I/O requests
during reconstruction and does not modify the recon-
struction algorithm. How to perform the reconstruction
process remains the responsibility of the reconstruction
module and depends on the specific reconstruction algo-
rithm, and is thus not described further in this paper.

During reconstruction, all write requests are redirected
to the surrogate RAID set after determining whether they
should overwrite their previous location or write to a new
location according to D Table. Whereas, for each read
request, D Table is first checked to determine whether
the read data is in the surrogate RAID set. If the read
request does not hit D Table, it will be served by the de-
graded RAID set. If it hits R LRU, the read data is con-
sidered popular and redirected to the surrogate RAID set,
and the corresponding data information is inserted into
D Table. If the entire targeted read data is already in the
surrogate RAID set, the read request will be served by
the surrogate RAID set. Otherwise, if only a portion of
the read data is in the surrogate RAID set, i.e., it partially
hits D Table, the read request will be split and served by
both the sets. In order to achieve better performance, the

redirected data is laid out sequentially like LFS [33] in
the allocated space on the surrogate RAID set.

The redirected write data is only temporarily stored
in the surrogate RAID set and thus should be reclaimed
back to the newly recovered RAID set (i.e., the for-
merly degraded RAID set) after the reconstruction pro-
cess completes. To ensure data consistency, the log of
reclaimed data is deleted from D Table after the write
succeeds. Since the redirected read data is already in the
degraded RAID set, it need not be reclaimed as long as
logs of such data are deleted from D Table to indicate
that the data in the surrogate RAID set is invalid. In or-
der not to affect the performance of the newly recovered
RAID set, the priority of the reclaim process is set to
be the lowest, which will not affect the reliability of the
redirected data as explained in Section 5.

During the reclaim period, all requests on the newly
recovered RAID set must be checked carefully in
D Table to ensure data consistency. If a write request
hits D Table and its D Flag is true, meaning that it will
rewrite the old data that is still in the surrogate RAID set,
the corresponding log in D Table must be deleted after
writing the data to the correct location on the newly re-
covered RAID set, to prevent the new write data from
being overwritten by the reclaimed data. In addition, if a
read request hits D Table and its D Flag is true, meaning
that the up-to-date data of the read request has not been
reclaimed back, the read request will be served by the
surrogate RAID set.

3.4 Design choices
WorkOut can redirect data to different persistent config-
urations of storage devices, such as a dedicated surrogate
RAID1 set, a dedicated surrogate RAID5 set and a live
surrogate RAID set.

A dedicated surrogate RAID1 set. In this case,
WorkOut stores the redirected data in two mirroring
disks, namely, a dedicated surrogate RAID1 set. The ad-
vantage of this design option is its high reliability, simple
space management and moderate device overhead (i.e., 2
disks), while its disadvantage is obvious: relatively low
performance gain due to the lack of I/O parallelism.

A dedicated surrogate RAID5 set. In favor of relia-
bility and performance (access parallelism), a dedicated
surrogate RAID5 set with several disks can be deployed
to store the redirected data. The space management is
simple while the device overhead (e.g., 4 disks) is rela-
tively high.

A live surrogate RAID set. WorkOut can utilize
the free space of another live surrogate RAID set in a
large-scale storage system consisting of multiple RAID
sets and does not incur any additional device overhead
that the first two design options cannot avoid. In this
case, WorkOut gains high reliability owing to its redun-

244	 FAST ’09: 7th USENIX Conference on File and Storage Technologies	 USENIX Association

Optional surrogate RAID set Device Overhead Performance Reliability Maintainability
A dedicated surrogate RAID1 set medium medium high simple
A dedicated surrogate RAID5 set high high high simple

A live surrogate RAID set low low medium-high complicated

Table 1: Characteristic comparisons of three optional surrogate RAID sets used in WorkOut.

dancy, but requires complicated maintenance. Due to the
contention between the redirected requests from the de-
graded RAID set and the native I/O requests targeted at
the live surrogate RAID set, the performance in this case
is lower than that in the former two design options.

The three design options are all feasible and can be
made available for system administrators to choose from
through the Administration Interface based on their char-
acteristics and tradeoffs, as summarized in Table 1. In
this paper, the prototype implementation and perfor-
mance evaluations are centered around the dedicated sur-
rogate RAID5 set, although sample results from the other
two design choices are also given to show the quantita-
tive differences among them.

3.5 Data consistency
Data consistency in WorkOut includes two aspects: (1)
Redirected data must be reliably stored in the surrogate
RAID set, (2) The key data structures should be safely
stored until the reclaim process completes.

First, in order to avoid data loss caused by a disk fail-
ure in the surrogate RAID set, all redirected write data in
the surrogate RAID set should be protected by a redun-
dancy scheme, such as RAID1 or RAID5. To simplify
the design and implementation, the redirected read data
is stored in the same manner as the redirected write data.
If a disk failure in the surrogate RAID set occurs, data
will no longer be redirected to the surrogate RAID set
and the write data that was already redirected should be
reclaimed back to the degraded RAID set or redirected
to another surrogate RAID set if possible. Our prototype
implementation adopts the first option. We will analyze
the reliability of WorkOut in Section 5.

Second, since we must ensure never to lose the con-
tents of D Table during the entire period when Work-
Out is activated, it is stored in a NVRAM to prevent
data loss in the event of a power supply failure. Fortu-
nately, D Table is in general very small (see Section 4.8)
and thus will not incur significant hardware cost. More-
over, since the performance of battery-backed RAM, a
de facto standard form of NVRAM for storage con-
trollers [8, 15, 16], is roughly the same as the main mem-
ory, the write penalty due to D Table updates can be neg-
ligible.

4 Performance Evaluations
In this section, we evaluate the performance of pro-
totype implementation of WorkOut through extensive
trace-driven and benchmark-driven experiments.

4.1 Prototype implementation
We have implemented WorkOut by embedding it into the
Linux Software RAID (MD) as a built-in module. In or-
der not to impact the RAID performance in normal mode,
WorkOut is activated only when the reconstruction pro-
cess is initiated. During reconstruction, WorkOut tracks
user I/O requests in the make request function and issues
them to the degraded RAID set or the surrogate RAID set
based on the request type and D Table.

By setting the reconstruction bandwidth range, MD
assigns different disk bandwidth to serve user I/O re-
quests and reconstruction requests and ensures that the
reconstruction speed is confined within the set range
(i.e., between the minimum and maximum reconstruc-
tion bandwidth). For example, if the reconstruction
bandwidth range is set to be the default of 1MB/s-
200MB/s, MD will favor user I/O requests while en-
suring that the reconstruction speed is at least 1MB/s.
Under heavy I/O workloads, MD will keep the recon-
struction speed at approximately 1MB/s but allows it to
be much higher than 1MB/s when I/O intensity is low.
At one extreme when there is no user I/O, the recon-
struction speed will be roughly equal to the disk trans-
fer rate (e.g., 78MB/s in our prototype system). Equiva-
lently, the minimum reconstruction bandwidth of XMB/s
(e.g., 1MB/s, 10MB/s, 100MB/s) refers to a reconstruc-
tion range of XMB/s-200MB/s in MD. When the mini-
mum reconstruction bandwidth is set to 100MB/s, which
is not achievable for most disks, MD utilizes any disk
bandwidth available for the reconstruction process.

To better examine the WorkOut performance on ex-
isting RAID reconstruction algorithms, we incorporate
WorkOut into MD’s default reconstruction algorithm PR,
and PRO-powered PR (PRO for short) that is also imple-
mented in MD. PR (Pipeline Reconstruction) [22] takes
advantage of the sequential property of track retrievals
to pipeline the reading and writing processes. PRO
(Popularity-based multi-threaded Reconstruction Opti-
mization) [41, 42] allows the reconstruction process to
rebuild the frequently accessed areas prior to other areas.

4.2 Experimental setup and methodology
We conduct our performance evaluation of WorkOut on
a platform of server-class hardware with an Intel Xeon
3.0GHz processor and 1GB DDR memory. We use
2 Highpoint RocketRAID 2220 SATA cards to house
15 Seagate ST3250310AS SATA disks. The rotational
speed of these disks is 7200 RPM, with a sustained trans-

USENIX Association 	 FAST ’09: 7th USENIX Conference on File and Storage Technologies	 245

Trace Trace Characteristic
Write Ratio IOPS Aver. Req. Size(KB)

Fin1 67.18% 69 6.2
Fin2 17.61% 125 2.2
Web 0% 113 15.1

Table 2: The trace characteristics.

fer rate of 78MB/s, and the individual disk capacity is
250GB. A separate IDE disk is used to house the operat-
ing system (Fedora Core 4 Linux, kernel version 2.6.11)
and other software (MD and mdadm). For the footprint
of the workloads, we limit the capacity of each disk to
10GB in the experiments. In our prototype implemen-
tation, the main memory is used to substitute a battery-
backed RAM for simplicity.

Generally speaking, there are two models for trace re-
play: open-loop and closed-loop [26, 35]. The former
has the potential to overestimate the user response time
measure since the I/O arrival rate is independent of the
underlying system and thus can cause the request queue
(and hence the queuing delays) to grow rapidly when sys-
tem load is high. The opposite is true for closed systems
as the I/O arrival rate is dictated by the processing speed
of the underlying system and the request queue is gen-
erally limited in length (i.e., equal to the number of in-
dependent request threads). In this paper, we use both
an open-loop model (trace replay with RAIDmeter [41])
and a closed-loop model (TPC-C-like benchmark [43])
to evaluate the performance of WorkOut.

The traces used in our experiments are obtained from
the Storage Performance Council [29, 39]. The two fi-
nancial traces (Fin1 and Fin2) were collected from OLTP
applications running at a large financial institution and
the WebSearch2 trace (or Web) was collected from a ma-
chine running a web search engine. The three traces rep-
resent different access patterns in terms of write ratio,
IOPS and average request size, as shown in Table 2. The
write ratio of the Fin1 trace is the highest, followed by
the Fin2 trace. The read-dominated Web trace exhibits
the strongest locality in its access pattern. Since the re-
quest rate in the Web trace is too high to be sustained by
our degraded RAID set, we only use one part of it that
is attributed to device zero while the part due to devices
one and two is ignored.

Since the three traces have very limited footprints, that
is the user I/O requests are congregated on a small part
of the RAID set (e.g., less than 10% of an 8-disk RAID5
set for the Fin1 trace), their replays may not realistically
represent a typical reconstruction scenario where user re-
quests may be spread out over the entire disk address
space. To fully and evenly cover the address space of the
RAID set, we scale up the address coverage of the I/O
requests by multiplying the address of each request with
an appropriate scaling factor (constant) without chang-
ing the size of each request. While the main adverse

impact of this trace scaling is likely to be on those re-
quests that are originally sequential but can subsequently
become non-sequential after scaling, the percentage of
such sequential requests in the three traces of this study
is relatively small at less than 4% [45]. Thus, we believe
that the adverse impact of the trace scaling is rather lim-
ited in this study and far outweighed by the benefits of
the scaling that attempts to represent a more realistic re-
construction scenario. We find in our experiments that
the observed trends are similar for the original and the
scale trace, suggesting that neither is likely to generate
noticeably different conclusions for the study. Neverthe-
less, we choose to present the results of the latter for the
aforementioned reasons.

The trace replay tool is RAIDmeter [41, 42] that re-
plays traces at block-level and evaluates the user re-
sponse time of the storage device. The RAID reconstruc-
tion performance is evaluated in terms of the following
two metrics: reconstruction time and average user re-
sponse time during reconstruction.

The TPC-C-like benchmark is implemented with
TPCC-UVA [31] and the Postgres database. It gen-
erates mixed transactions based on the TPC-C specifi-
cation [43]. 20 warehouses are built on the Postgres
database with the ext3 file system on the degraded RAID
set. Transactions, such as PAYMENT, NEW ORDER
and DELIVERY, generate read and write requests. To
evaluate the WorkOut performance, we compare the
transaction rates (transactions per minute) that are gen-
erated at the end of the benchmark execution.

4.3 Trace-driven evaluations
We first conduct experiments on an 8-disk RAID5 set
with a stripe unit size of 64KB while running PR, PRO
and WorkOut-powered PR and PRO respectively. Ta-
ble 3 and Table 4, respectively, show the reconstruction
time and average user response time under the minimum
reconstruction bandwidth of 1MB/s, driven by the three
traces. We configure a 4-disk dedicated RAID5 set with
a stripe unit size of 64KB as the surrogate RAID set to
boost the reconstruction performance of the 8-disk de-
graded RAID set.

From Table 3, one can see that WorkOut speeds up the
reconstruction time by a factor of up to 5.52, 1.64 and
1.30 for the Fin1, Fin2 and Web traces, respectively. The
significant improvement achieved on the Fin1 trace, with
a reconstruction time of 203.1s vs. 1121.8s for PR and
188.3s vs. 1109.6s for PRO, is due to the fact that 84%
of requests (69% of writes plus 15% of reads) are redi-
rected away from the degraded RAID set (see Figure 5),
which enables the speed of the on-line reconstruction to
approach that of the off-line counterpart. In our experi-
ments, the off-line reconstruction time is 136.4 seconds
for PR on the same platform. Moreover, WorkOut out-

246	 FAST ’09: 7th USENIX Conference on File and Storage Technologies	 USENIX Association

Traces Reconstruction Time (second)
Off-line PR WorkOut+PR speedup PRO WorkOut+PRO speedup

Fin1 1121.8 203.1 5.52 1109.6 188.3 5.89
Fin2 136.4 745.2 453.3 1.64 705.8 431.2 1.64
Web 9935.6 7623.2 1.30 9888.3 7851.4 1.26

Table 3: The reconstruction time results.

Traces Average User Response Time (millisecond)
Normal Degraded PR WorkOut+PR speedup PRO WorkOut+PRO speedup

Fin1 7.9 9.5 12.7 4.4 2.87 9.8 4.6 2.15
Fin2 8.1 13.4 25.8 9.7 2.66 23.0 10.2 2.25
Web 18.5 27.0 38.6 28.3 1.36 35.6 29.1 1.22

Table 4: The average user response time results.

0%

20%

40%

60%

80%

100%

P
er

ce
n

ta
g

e
 (

%
 o

f
to

ta
l)

69%

15%15%
21%

34%

Fin1 Fin2 Web

(
N

o
 r

e
d

ir
e
ct

 w
ri

te
)

Write

Read

Figure 5: Percentage of redirected requests for WorkOut,
under the minimum reconstruction bandwidth of 1MB/s.

sources 36% and 34% of user I/O requests away from the
degraded RAID set for the Fin2 and Web traces, which
is much fewer than that for the Fin1 trace, thus reducing
the reconstruction time accordingly.

Table 4 shows that, compared with PR, WorkOut
speeds up the average user response time by a factor of
up to 2.87, 2.66 and 1.36 for the Fin1, Fin2 and Web
traces, respectively. For Fin1 and Fin2, the average user
response times during reconstruction under WorkOut are
even better than that in the normal or degraded period.
The reasons why WorkOut achieves significant improve-
ment on user response times are threefold. First, a sig-
nificant amount of requests are redirected away from the
degraded RAID set, as shown in Figure 5. The response
times of redirected requests are no longer affected by
the reconstruction process that competes for the available
bandwidth with user I/O requests on the degraded RAID
set. Second, redirected data is laid out sequentially in the
surrogate RAID set, thus further speeding up the user re-
sponse time. Third, since many requests are outsourced,
the I/O queue on the degraded RAID set is shortened
accordingly, thus reducing the response times of the re-
maining I/O requests served by the degraded RAID set.
Therefore, the average user response time with WorkOut
is significantly lower than that without WorkOut, espe-
cially for the Fin1 trace.

Table 3 and Table 4 show that WorkOut-powered PRO
performs similarly to WorkOut-powered PR. The reason
is that WorkOut redirects all write requests and popular
read requests to the surrogate RAID set, thus reducing

0

100

200

300

400

500

600

700

800

R
e
co

n
st

ru
ct

io
n

 T
im

e
(s

)

1MB/s 10MB/s 100MB/s

PR

PRO

WorkOut

(a) Reconstruction time

0

200

400

600

800

1000

1200

1400

1600

A
v

e
ra

g
e

R
es

p
o

n
se

 T
im

e
 (

m
s)

1MB/s 10MB/s 100MB/s

PR

PRO

WorkOut

(b) Average user response time

Figure 6: Comparisons of reconstruction times and aver-
age user response times with respect to different min-
imum reconstruction bandwidth (1MB/s, 10MB/s and
100MB/s) driven by the Fin2 trace.

the degree of popularity of I/O workloads retained on
the degraded RAID set that can be exploited by PRO.
Based on this observation, in the following experiments,
we only compare WorkOut-powered PR (short for Work-
Out) with PR and PRO.

4.4 Sensitivity study
WorkOut’s performance is likely influenced by several
important factors, including the available reconstruction
bandwidth, the size of the degraded RAID set, the stripe
unit size, and the RAID level. Due to lack of space,
we limit our study of these parameters to the Fin2 trace.
Other traces show similar trends as the Fin2 trace.

Reconstruction bandwidth. To evaluate how the
minimum reconstruction bandwidth affects reconstruc-
tion performance, we conduct experiments that measure
reconstruction times and average user response times as
a function of different minimum reconstruction band-
width, 1MB/s, 10MB/s and 100MB/s, respectively. Fig-
ure 6 plots the experimental results on an 8-disk RAID5
set with a stripe unit size of 64KB.

Figure 6(a)shows that WorkOut speeds up the recon-
struction time more significantly with a lower minimum
reconstruction bandwidth than with a higher one. The
reason is that the reconstruction process already exploits
all available disk bandwidth when the reconstruction
bandwidth is higher, thus leaving very small room for
the reconstruction time to be further improved.

USENIX Association 	 FAST ’09: 7th USENIX Conference on File and Storage Technologies	 247

0

100

200

300

400

500

600

700

800

900
R

ec
o

n
st

ru
ct

io
n

 T
im

e
(s

)

5 8 11

PR

PRO

WorkOut

(a) Reconstruction time

0

5

10

15

20

25

30

35

40

45

A
v

e
ra

g
e
 R

es
p

o
n

se
 T

im
e
 (

m
s)

5 8 11

PR

PRO

WorkOut

(b) Average user response time

Figure 7: Comparisons of reconstruction times and av-
erage user response times with respect to the number of
disks (5, 8, 11) driven by the Fin2 trace.

From Figure 6(b), in contrast, the user response time
increases rapidly with the increasing minimum recon-
struction bandwidth for both PR and PRO, but much
more slowly for WorkOut. WorkOut speeds up the user
response time significantly, by a factor of up to 10.2 and
7.38 over PR and PRO, respectively, when the minimum
reconstruction bandwidth is set to 100MB/s. From this
viewpoint, the user response time with WorkOut is much
less sensitive to the minimum reconstruction bandwidth
than that without WorkOut. In other words, if the recon-
struction bandwidth is set very high or the storage system
is reliability-oriented, that is the reconstruction process
is given more bandwidth to favor the system reliability,
the user response time improvement by WorkOut will be
much more significant. Moreover, the user response time
during reconstruction for PR and PRO is so long that it
will likely violate SLA and thus become unacceptable to
end users.

Number of disks. To examine the sensitivity of Work-
Out to the number of disks of the degraded RAID set, we
conduct experiments on RAID5 sets consisting of differ-
ent numbers of disks (5, 8 and 11) with a stripe unit size
of 64KB under the minimum reconstruction bandwidth
of 1MB/s. Figure 7 shows the experimental results for
PR, PRO and WorkOut.

Figure 7(a) and Figure 7(b) show that for all three ap-
proaches, the reconstruction time increases and the user
response time decreases for higher number of disks in
the degraded RAID set. The reason is that more disks
in a RAID set imply not only a larger RAID group size
and thus more disk read operations to reconstruct a failed
drive, but also higher parallelism for the I/O process.
However, WorkOut is less sensitive to the number of
disks than PR and PRO.

Stripe unit size. To examine the impact of the stripe
unit size, we conduct experiments on an 8-disk RAID5
set with stripe unit sizes of 16KB and 64KB, respec-
tively. The experimental results show that WorkOut out-
performs PR and PRO in reconstruction time as well
as average user response time for both stripe unit sizes.
Moreover, the reconstruction times and average user re-

0

300

600

900

1200

1500

R
ec

o
n

st
r
u

c
ti

o
n

 T
im

e
(s

)

RAID10 RAID6

PR

WorkOut

(a) Reconstruction time

0

5

10

15

20

25

30

35

40

A
v

er
a

g
e

R
e
sp

o
n

se
 T

im
e

(m
s)

RAID10 RAID6

PR

WorkOut

(b) Average user response time

Figure 8: Comparisons of reconstruction times and aver-
age user response times with respect to different RAID
levels (10, 6) driven by the Fin2 trace.

sponse times of WorkOut are almost unchanged, suggest-
ing that WorkOut is not sensitive to the stripe unit size.

RAID level. To evaluate WorkOut with differ-
ent RAID levels, we conduct experiments on a 4-disk
RAID10 set and an 8-disk RAID6 set with the same
stripe unit size of 64KB under the minimum reconstruc-
tion bandwidth of 1MB/s. In the RAID6 experiments, we
measure the reconstruction performance when two disks
fail concurrently.

From Figure 8, one can see that WorkOut speeds
up both the reconstruction times and average user re-
sponse times for the two sets. The difference in the
amount of performance improvement seen for RAID10
and RAID6 is caused by the different user I/O intensi-
ties, since the RAID10 and RAID6 sets have different
numbers of disks. The user I/O intensity on individual
disks in the RAID10 set is higher than that in the RAID6
set, thus leading to longer reconstruction times.

On the other hand, since each read request to the failed
disks in a RAID6 set must wait for its data to be rebuilt
on-the-fly, the user response time is severely affected for
PR, while this performance degradation is significantly
lower under WorkOut due to its external I/O outsourc-
ing. For the RAID10 set, however, the situation is quite
different. Since the read data can be directly returned
from the surviving disks, Workout provides smaller im-
provements in user response time for RAID10 than for
RAID6.

4.5 Different design choices for the surrogate
RAID set

All experiments reported up to this point in this paper
adopt a dedicated surrogate RAID5 set. To examine
the impact of different types of surrogate RAID set on
the WorkOut performance, we also conduct experiments
with a dedicated surrogate RAID1 set (two mirroring
disks) and a live surrogate RAID set (replaying the Fin1
trace on a 4-disk RAID5 set). Similar to the experiments
conducted in the PARAID [46] and write off-loading [27]
studies, we reserve the 10% portion of storage space at
the end of the live RAID5 set to store data redirected by
WorkOut. The degraded RAID set is an 8-disk RAID5

248	 FAST ’09: 7th USENIX Conference on File and Storage Technologies	 USENIX Association

0

5

10

15

20

25

30

35

40

45

A
v

e
ra

g
e

R
es

p
o

n
se

 T
im

e
(m

s)

Fin1 Fin2 Web

Dedicated RAID1

Dedicated RAID5

Live RAID5

PR

Figure 9: A comparison of average user response times
for different types of surrogate RAID set.

set with a stripe unit size of 64KB and under the mini-
mum reconstruction bandwidth of 1MB/s.

The experimental results show that the reconstruction
times achieved by WorkOut are almost the same for the
three types of surrogate RAID set and outperform PR as
expected, shown in Table 3, since WorkOut outsources
the same amount of requests during reconstruction. The
results for user response times are somewhat different, as
shown in Figure 9. The dedicated surrogate RAID5 set
results in the best user response times for the three traces.

From Figure 9, one can see that the dedicated surro-
gate RAID sets (both RAID1 and RAID5) outperform
the live surrogate RAID set in user response time. The
reason is the contention between the native I/O requests
and the redirected requests in the live surrogate RAID
set. Serving the native I/O requests not only increases
overload on the surrogate RAID set, compared with the
dedicated surrogate RAID set, but also destroys some of
the sequentiality in LFS style writes. The redirected re-
quests also increase the overall I/O intensity on the live
surrogate RAID set and affect its performance. Our ex-
perimental results show that the performance impact on
the live surrogate RAID set is 43.9%, 23.6% and 36.8%
on average when the degraded RAID set replays the Fin1,
Fin2 and Web traces, respectively. The experimental re-
sults are consistent with the comparisons in Table 1.

4.6 Benchmark-driven evaluations
In addition to trace-driven experiments, we also conduct
experiments on an 8-disk RAID5 set with a stripe unit
size of 64KB under the minimum reconstruction band-
width of 1MB/s, driven by a TPC-C-like benchmark.

From Figure 10(a), one can see that PRO performs al-
most the same as PR due to the random access charac-
teristics of the TPC-C-like benchmark. Since WorkOut
outsources all write requests that are generated by the
transactions, both the degraded RAID set and surrogate
RAID set serve the benchmark application, thus increas-
ing the transaction rate. WorkOut outperforms PR and
PRO in terms of transaction rate, with an improvement
of 46.6% and 36.9% respectively. It also outperforms
the original system in the normal mode (the normalized
baseline) and the degraded mode, with an improvement
of 4.0% and 22.6% respectively.

0%

20%

40%

60%

80%

100%

120%

N
o

r
m

a
li

z
e
d

 T
r
a

n
s
a

c
ti

o
n

 R
a

te

Normal

Degraded

PR

PRO

WorkOut

(a) Transaction Rate

0

2000

4000

6000

8000

10000

12000

R
e
co

n
st

ru
ct

io
n

 T
im

e
(s

)

(b) Reconstruction time

Figure 10: Comparisons of reconstruction times and
transaction rates driven by the TPC-C-like benchmark.

0

2000

4000

6000

8000

10000

R
e
-s

y
n

c
h

r
o

n
iz

a
ti

o
n

 T
im

e
(s

)

Fin1 Fin2 Web

Original

WorkOut

(a) Re-synchronization time

0

5

10

15

20

25

30

35

A
v

er
a

g
e
 R

es
p

o
n

se
 T

im
e

(m
s)

Fin1 Fin2 Web

Original

WorkOut

(b) Average user response time

Figure 11: Comparisons of re-synchronization times and
average user response times during re-synchronization.

On the other hand, since the TPC-C-like benchmark is
highly I/O intensive, all disks in the RAID set are driven
to saturation, thus the reconstruction speed is kept at
around its minimum allowable bandwidth of 1MB/s for
PR and PRO. As shown in Figure 10(b), the reconstruc-
tion times for PR and PRO are similar, at 9835 seconds
and 9815 seconds, respectively, while that for WorkOut
is 8526 seconds, with approximately 15% improvement
over PR and PRO. WorkOut gains much less in recon-
struction time with the benchmark-driven experiments
than with the trace-driven experiments. The main rea-
son lies in the fact that the very high I/O intensity of the
benchmark application constantly pushes the RAID set
to operate at or close to its saturation point, leaving very
little disk bandwidth for the reconstruction process even
with some of the transaction requests being outsourced
to the surrogate RAID set.

4.7 Re-synchronization with WorkOut
To demonstrate how WorkOut optimizes other back-
ground support RAID tasks, such as RAID re-
synchronization, we conduct experiments on an 8-disk
RAID5 set with a stripe unit size of 64KB under the min-
imum re-synchronization bandwidth of 1MB/s, driven
by the three traces. We configure a dedicated 4-disk
RAID5 set with a stripe unit size of 64KB as the
surrogate RAID set. The experimental results of re-
synchronization times and average user response times
during re-synchronization are shown in Figure 11(a) and
Figure 11(b), respectively.

Although the re-synchronization process performs
somewhat differently from the reconstruction process,

USENIX Association 	 FAST ’09: 7th USENIX Conference on File and Storage Technologies	 249

re-synchronization requests also compete for the disk re-
sources with user I/O requests. By redirecting a signifi-
cant amount of user I/O requests away from the RAID set
during re-synchronization, WorkOut can reduce both the
re-synchronization times and user response times. The
results are very similar to that in the reconstruction ex-
periments, so are the reasons behind them.

4.8 Overhead analysis
Device overhead. WorkOut is designed for use in a
large-scale storage system consisting of many RAID sets
that share one surrogate RAID composed of spare disks.
In such an environment, the device overhead introduced
by WorkOut is small given that a single surrogate RAID
can be shared by many production RAID sets. Neverthe-
less, for a small-scale storage system composed of only
one or two RAID sets with few hot spare disks, the device
overhead of a dedicated surrogate RAID set in WorkOut
cannot be ignored. In this case, to be cost-effective, we
recommend the use of a dedicated surrogate RAID1 set
instead of a dedicated surrogate RAID5 set, since the de-
vice overhead of the former (i.e., 2 disks) is lower than
that of the latter (e.g., 4 disks in our experiments).

To quantify the cost-effectiveness of WorkOut in
this resource-restricted environment, we conduct exper-
iments and compare the performance of WorkOut (8-
disk data RAID5 set plus 4-disk surrogate RAID5 set)
with that of PR (12-disk data RAID5 set), i.e., we use
the same number of disks in both systems. Experiments
are run under the minimum reconstruction bandwidth of
1MB/s and driven by the Fin2 trace. The results show
that WorkOut speeds up the reconstruction time of PR
significantly, by a factor of 1.66. The average user re-
sponse time during reconstruction achieved by WorkOut
is 16.5% shorter than that achieved by PR, while the av-
erage user response time during the normal period in the
8-disk RAID5 set is 20.1% longer than that in the 12-disk
RAID5 set due to the reduced access parallelism of the
former. In summary, we can conclude that WorkOut is
cost-effective in both large-scale and small-scale storage
systems.

Memory overhead. To prevent data loss, WorkOut
uses non-volatile memory to store D Table, thus incur-
ring extra memory overhead. The amount of memory
consumed is largest when the minimum reconstruction
bandwidth is set to 1MB/s, since in this case the re-
construction time is the longest and the amount of redi-
rected data is the largest. In the above experiments on
the RAID5 set with individual disk capacity of 10GB, the
maximum memory overheads are 0.14MB, 0.62MB and
1.69MB for the Fin1, Fin2 and Web traces, respectively.
However, the memory overhead incurred by WorkOut is
only temporary and will be removed after the reclaim
process completes. With the rapid increase in memory

size and decrease in cost of non-volatile memories, this
memory overhead is arguably reasonable and acceptable
to end users.

Implementation overhead. WorkOut contains 780
lines of added or modified code to the source code of
the Linux software RAID (MD), with most lines of code
added to md.c and raidx.c while 37 lines of data struc-
ture code added to md k.h and raidx.h. Since most of
the added code is independent of the underlying RAID
layout, they are easy to be shared by different RAID lev-
els. Moreover, the added code is independent of the re-
construction module, so it is easy to adapt the code for
use with other background support RAID tasks. All that
needs to be done is modifying the corresponding flag that
triggers WorkOut. Due to the independent implementa-
tion of the WorkOut module, it is portable to other soft-
ware RAID implementations in other operating systems.

5 Reliability Analysis
In this section, we adopt the MTTDL metric to estimate
the reliability of WorkOut. We assume that disk failures
are independent events following an exponential distri-
bution of rate µ, and repairs follow an exponential distri-
bution of rate ν. For simplicity, we do not consider the
latent sector error in the system model.

According to the conclusion about the reliability of
RAID5 [50], MTTDL of an 8-disk RAID5 set achieved
by PR and PRO is:

MTTDLRAID5−8 =
15µ + ν

56µ2
(1)

Figure 12 shows the state transition diagram for a
WorkOut-enabled storage system configuration consist-
ing of an 8-disk data RAID5 set and a 4-disk surrogate
RAID5 set. Note that by design WorkOut always re-
claims the redirected write data from the surrogate RAID
set upon a surrogate disk failure. Once the reclaim pro-
cess is completed there is no more valid data of the de-
graded RAID set on the surrogate RAID set. Therefore,
there is no need to reconstruct data on the failed disk of
the surrogate RAID set. This means that the degraded
surrogate RAID set can be recovered by simply replac-
ing the failed disk with a new one, resulting in a newly
recovered operational 4-disk surrogate RAID5 set ready
to be used by the 8-disk degraded data RAID5 set. As
a result, the state transition diagram only shows the re-
claim process but not the reconstruction process of the
4-disk surrogate RAID5 set.

State <0> represents the normal state of the system
when its 8 data disks are all operational. A failure of any
of the 8 data disks would bring the system to state <1>

and a subsequent failure of any of the remaining 7 data
disks would result in data loss. A failure of any of the 4
surrogate disks in state <0> does not affect the system

250	 FAST ’09: 7th USENIX Conference on File and Storage Technologies	 USENIX Association

Data Loss0 1
8µ

ν

7µ

3 2

10µ4µ8µ

4

3µ4µ

κκ

κ
8µ

Figure 12: State transition diagram for a WorkOut-
enabled storage system configuration consisting of an 8-
disk RAID5 set and a 4-disk surrogate RAID5 set. Note:
The 4-disk surrogate RAID5 set does not need to recon-
struct the data on the failed disk as long as the redirected
write data in the surrogate RAID5 set is reclaimed back
to the 8-disk degraded data RAID set.

reliability of the 8-disk RAID5 set as long as the redi-
rected write data on the former is reclaimed back to the
latter and thus it is omitted from the state transition dia-
gram. In state <1>, a failure of any of the 4 surrogate
disks would bring the system to state <2>. A second
failure in either the 8-disk data RAID5 set (1 out of 7)
or the 4-disk surrogate RAID5 set (1 out of 3) in state
<2> would result in data loss. In state <2>, WorkOut
reclaims the redirected write data back to the 8-disk data
RAID set, which brings the system back to state <1>

and follows an exponential distribution of rate κ1. This
transition implicitly assumes that, while redirected write
data is being reclaimed from the surrogate set to the data
set, the reconstruction process on the latter is temporar-
ily suspended. This simplifying assumption is justifiable
and will not affect the result noticeably since the reclaim
time is much shorter than the reconstruction time on the
8-disk data RAID set. Finishing the reconstruction pro-
cess of the 8-disk data RAID5 set would bring the system
from state <1> to state <3>, where the redirected write
data has not been reclaimed. Then finishing the reclaim
process would bring it back to state <0>, which follows
an exponential distribution of rate κ2. In state <3>, a
failure of any of the 8 data disks would bring the sys-
tem to state <1>, and a failure of any of the 4 surrogate
disks would bring the system to state <4>, where the
redirected write data is not protected by redundancy. In
state <4>, WorkOut also reclaims the redirected write
data back to the 8-disk data RAID set, which bring the
system back to state <0> and follows an exponential
distribution of rate κ3. In state <4>, a failure of any
of the 8 data disks would bring the system to state <2>

and a second disk failure in the 4-disk surrogate RAID5
set would result in data loss.

Since κ1, κ2 and κ3 all represent the rate at which the
redirected write data is reclaimed, it is reasonable to as-
sume that they are equal to a fixed reclaim rate κ, since
the amount of redirected write data should be roughly the

0

1

2

3

4

5

6

N
o

r
m

a
li

z
e
d

 M
T

T
D

L

Fin1 Fin2 Web2

PR

PRO

WorkOut

Figure 13: Comparisons of the mean times to data
loss. Note: The normalized baselines are the MTTDLs
achieved by PR driven by the three traces respectively.

same and the rate of transferring this data should also be
the same under reasonable circumstances for all the three
cases. Since the expression for MTTDL of Figure 12 is
too complex (ratio of two large polynomials) to be dis-
played here, we present the computed values of MTTDL
in the following figure instead.

Figure 13 plots comparisons of MTTDLs achieved by
PR, PRO and WorkOut, which are normalized to the
MTTDLs achieved by PR driven by the three traces re-
spectively. The disk failure rate µ is assumed to be one
failure every one hundred thousand hours, which is a
conservative estimate to the values quoted by disk man-
ufactures. Disk repair times, when the individual disk
capacity is 250GB, are 25 times the results listed in Ta-
ble 3, where the capacity of each disk is limited to 10GB.
κ is assumed to be equal to the corresponding ν, which
is actually overestimated. From Figure 13, one can see
that WorkOut increases MTTDL and improves reliabil-
ity with the decreasing MTTR, especially for the write-
intensive trace (i.e., Fin1). Moreover, if we alter κ to
be several times smaller or larger than ν, the black bar
remains almost unchanged, suggesting that the reclaim
time does not affect the reliability of the RAID system
and thus can be excluded from the reconstruction time.

6 Related Work
Reconstruction algorithms and task scheduling. A
large number of different approaches for improving re-
construction performance have been studied. Some of
these approaches focus on improved RAID reconstruc-
tion algorithms, such as DOR (Disk-Oriented Recon-
struction) [12], PR [22], PRO [41] and others [3, 13, 14,
20, 38, 47, 48, 49]. Other approaches focus on better data
layout in a RAID set [13, 47, 49]. Moreover, many task
scheduling techniques have been proposed to optimize
the background applications [25, 40, 44].

While all the the above algorithms focus on improv-
ing performance by optimizing the organization of work
within a single RAID set, our work takes a different ap-
proach. The goal behind WorkOut is to increase perfor-
mance during reconstruction by outsourcing I/O work-
loads away from the degraded RAID set. Importantly,

USENIX Association 	 FAST ’09: 7th USENIX Conference on File and Storage Technologies	 251

WorkOut is orthogonal to and can further improve the
above techniques.

Data migration. Our study is related in spirit to write
off-loading [27, 28] and data migration [2, 19, 21, 24, 46]
techniques, but with distinctively different characteris-
tics. Write off-loading [27] redirects writes from one
volume to another, to prolong the idle period for one vol-
ume allowing the system to spin down disks for saving
energy. Similar in spirit, Everest [28] off-loads writes
from overloaded volumes to lightly loaded ones to im-
prove performance during peaks.

Data migration [24] moves data from one storage de-
vice to another, e.g., for the purpose of load balancing
(or load concentration), failure recovery, or system ex-
pansion. Data migration has been used in the context
of improving energy efficiency PARAID [46], improving
performance by data reallocation (e.g., in the products of
EMC’s Symmetrix family [2]), for read request offload-
ing in Cuckoo [21] and for user-centric data migration in
networked storage systems [19].

In contrast to write off-loading and data migration,
WorkOut improves reconstruction performance by, tem-
porarily redirecting writes and popular reads during re-
construction and reclaiming the redirected write data
back to the newly recovery RAID set after the recon-
struction process completes.

7 Future Work
WorkOut is an ongoing research project and we are cur-
rently exploring several directions for future work.

Extendibility. In addition to RAID reconstruction
and re-synchronization, other background support RAID
tasks, such as disk scrubbing and block-level backup
and snapshot, could benefit from WorkOut. We plan to
conduct detailed experiments to measure the impact of
WorkOut on these tasks.

Flexibility. In the current implementation, we config-
ure a reserved space instead of the free space on a live
RAID set as the surrogate set, which can be impractical
and inflexible. Utilizing the free space on a live RAID set
at the file system level is complicated as the file system
must be engaged to discover, assign, protect and manage
the free space [37]. To make WorkOut more transpar-
ent to the file system, and more effectively utilize the
free space on a live surrogate RAID set, it would be de-
sirable for WorkOut to obtain the liveness information at
the block level. We will explore the live block techniques
and apply them in WorkOut to improve its performance.

8 Conclusion
In this paper, for significantly boosting RAID reconstruc-
tion performance, we propose WorkOut (I/O Workload
Outsourcing) that outsources a significant amount of user
I/O requests away from the degraded RAID set to a sur-

rogate RAID set during reconstruction. We present a
lightweight prototype of WorkOut implemented in the
Linux software RAID. In a detailed experimental eval-
uation, we demonstrate that, compared with the existing
reconstruction algorithms PR and PRO, WorkOut signif-
icantly speeds up the reconstruction time and average
user response time simultaneously. Moreover, we pro-
vide insights and guidance for storage system designers
and administrators by exploiting three WorkOut design
options based on their device overhead, performance,
reliability, maintainability and trade-offs. Importantly,
we demonstrate how WorkOut can be easily deployed to
improve the performance of other background support
RAID tasks such as re-synchronization.

Acknowledgments
We thank our shepherd Bianca Schroeder and the anony-
mous reviewers for their helpful comments. We also
thank Lingfang Zeng, Jianxi Chen and Zhikun Wang for
their feedback. This work is supported by the National
Basic Research 973 Program of China under Grant No.
2004CB318201, the US NSF under Grant No. CCF-
0621526, the China NSFC under Grant No. 60703046
and No. 60873028, the Program for New Century Excel-
lent Talents in University No. NCET-04-0693 and No.
NCET-06-0650, the Program for Changjiang Scholars
and Innovative Research Team in University No. IRT-
0725, the Programme of Introducing Talents of Disci-
pline to Universities (111 Project) No. B07038, SRFDP
of Education of China No. 20070487083, and HUST-
SRF No.2007Q021B. The work of Lei Tian was done
while he was working at the CSE Dept. of UNL.

References
[1] M. Arlitt and C. Williamson. Web Server Workload Character-

ization: The Search for Invariants. In SIGMETRICS’96, May.
1996.

[2] R. Arnan, E. Bachmat, T. K. Lam, and R. Michel. Dynamic Data
Reallocation in Disk Arrays. ACM Transactions on Storage, 3(1),
2007.

[3] E. Bachmat and J. Schindler. Analysis of Methods for Scheduling
Low Priority Disk Drive Tasks. In SIGMETRICS’02, Jun. 2002.

[4] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and
J. Schindler. An Analysis of Latent Sector Errors in Disk Drives.
In SIGMETRICS’07, Jun. 2007.

[5] L. Cherkasova and G. Ciardo. Characterizing Temporal Locality
and its Impact on Web Server Performance. Technical Report
HPL-2000-82, Hewlett Packard Laboratories, Jul. 2000.

[6] L. Cherkasova and M. Gupta. Analysis of Enterprise Media
Server Workloads: Access Patterns, Locality, Content Evolution,
and Rates of Change. IEEE/ACM Transactions on Networking,
12(5):781–794, Oct. 2004.

[7] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Journal-guided Resynchronization for Software RAID. In
FAST’05, Dec. 2005.

[8] EMC storage products. http://www.emc.com/
products/category/storage.htm.

252	 FAST ’09: 7th USENIX Conference on File and Storage Technologies	 USENIX Association

[9] G. Gibson. Reflections on Failure in Post-Terascale Parallel Com-
puting. Keynote. In ICPP’07, Sep. 2007.

[10] J. Gray. Rules of Thumb in Data Engineering. Keynote Address.
In ICDE’00, Feb. 2000.

[11] J. L. Hennessy and D. A. Patterson. Computer Architecture: A
Quantitative Approach. Fourth edition, 2006.

[12] M. Holland. On-Line Data Reconstruction in Redundant Disk
Arrays. PhD thesis, Carnegie Mellon University, Apr. 1994.

[13] M. Holland and G. Gibson. Parity Declustering for Continuous
Operation in Redundant Disk Arrays. In ASPLOS’92, Oct. 1992.

[14] R. Hou, J. Menon, and Y. Patt. Balancing I/O Response Time and
Disk Rebuild Time in a RAID5 Disk Array. In HICSS’93, 1993.

[15] HP Disk Storage Systems. http://h18006.www1.hp.
com/storage/disk_storage/index.html.

[16] IBM Disk Storage Systems. http://www-03.ibm.com/
systems/storage/disk/.

[17] Iometer. http://sourceforge.net/projects/
iometer.

[18] W. Jiang, C. Hu, Y. Zhou, and A. Kanevsky. Are Disks the Dom-
inant Contributor for Storage Failures? A Comprehensive Study
of Storage Subsystem Failure Characteristics. In FAST’08, Feb.
2008.

[19] S. Kang and A. L. N. Reddy. User-Centric Data Migration in
Networked Storage Systems. In IPDPS’08, Apr. 2008.

[20] H. H. Kari, H. K. Saikkonen, N. Park, and F. Lombardi. Analysis
of repair algorithms for mirrored-disk systems. IEEE Transac-
tions on Reliability, 46(2):193–200, 1997.

[21] A. J. Klosterman and G. Ganger. Cukoo: Layered clustering for
NFS. Technical Report CMU-CS-02-183, Carnegie Mellon Uni-
versity, Oct. 2002.

[22] J. Y.B. Lee and J. C.S. Lui. Automatic Recovery from Disk Fail-
ure in Continuous-Media Servers. IEEE Transactions on Parallel
and Distributed Systems, 13(5):499–515, May. 2002.

[23] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou. C-Miner: Mining
Block Correlations in Storage Systems. In FAST’04, Mar. 2004.

[24] C. Lu, G. A. Alvarez, and J. Wilkes. Aqueduct: Online Data
Migration with Performance Guarantees. In FAST’02, Jan. 2002.

[25] C. R. Lumb, J. Schindler, G. R. Ganger, D. F. Nagle, and
E. Riedel. Towards Higher Disk Head Utilization: Extracting
Free Bandwidth From Busy Disk Drives. In OSDI’00, Oct. 2000.

[26] M. P. Mesnier, M. Wachs, R. R. Sambasivan, J. Lopez, J. Hen-
dricks, G. R. Ganger, and D. O’Hallaron. //TRACE: Parallel
Trace Replay with Approximate Causal Events. In FAST’07, Feb.
2007.

[27] D. Narayanan, A. Donnelly, and A. Rowstron. Write Off-
Loading: Practical Power Management for Enterprise Storage.
In FAST’08, Feb. 2008.

[28] D. Narayanan, A. Donnelly, E. Thereska, S. Elnikety, and
A. Rowstron. Everest: Scaling Down Peak Loads Through I/O
Off-loading. In OSDI’08, Dec. 2008.

[29] OLTP Application I/O and Search Engine I/O. UMass Trace
Repository. http://traces.cs.umass.edu/index.
php/Storage/Storage.

[30] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for Redun-
dant Arrays of Inexpensive Disks (RAID). In SIGMOD’88, Jun.
1988.

[31] J. Piernas, T. Cortes, and J. M. Garcı́a. Tpcc-uva: A free, open-
source implementation of the tpc-c benchmark. http://www.
infor.uva.es/˜diego/tpcc-uva.html. 2005.

[32] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure Trends in a
Large Disk Drive Population. In FAST’07, Feb. 2007.

[33] M. Rosenblum and J. K. Ousterhout. The Design and Implemen-
tation of a Log-Structured File System. In SOSP’92, Feb. 1992.

[34] B. Schroeder and G. Gibson. Disk Failures in the Real World:
What Does an MTTF of 1,000,000 Hours Mean to You? In
FAST’07, Feb. 2007.

[35] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open Versus
Closed: A Cautionary Tale. In NSDI’06, May. 2006.

[36] T. J. E. Schwarz, Q. Xin, E. L. Miller, D. D. E. Long,
A. Hospodor, and S. Ng. Disk Scrubbing in Large Archival Stor-
age Systems. In MASCOTS’04, Oct. 2004.

[37] M. Sivathanu, L. N. Bairavasundaram, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Life or Death at Block-Level. In
OSDI’04, Dec. 2004.

[38] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E. Denehy, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Improving Storage
System Availability with D-GRAID. In FAST’04, Mar. 2004.

[39] Storage Performance Council. http://www.
storageperformance.org/home.

[40] E. Thereska, J. Schindler, J. Bucy, B. Salmon, C. R. Lumb, and
G. R. Ganger. A framework for building unobtrusive disk main-
tenance applications. In FAST’04, Apr. 2004.

[41] L. Tian, D. Feng, H. Jiang, K. Zhou, L. Zeng, J. Chen, Z. Wang,
and Z. Song. PRO: A Popularity-based Multi-threaded Recon-
struction Optimization for RAID-Structured Storage Systems. In
FAST’07, Feb. 2007.

[42] L. Tian, H. Jiang, D. Feng, Q. Xin, and X. Shu. Implementa-
tion and Evaluation of a Popularity-Based Reconstruction Op-
timization Algorithm in Availability-Oriented Disk Arrays. In
MSST’07, Sep. 2007.

[43] TPC-C specification. http://www.tpc.org/tpcc/.

[44] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R. Ganger.
Argon: performance insulation for shared storage servers. In
FAST’07, Feb. 2007.

[45] M. Wang. Performance Modeling of Storage Devices using Ma-
chine Learning. PhD thesis, Carnegie Mellon University, Jan.
2006.

[46] C. Weddle, M. Oldham, J. Qian, A. A. Wang, P. Reiher, and
G. Kuenning. PARAID: The Gear-Shifting Power-Aware RAID.
In FAST’07, Feb. 2007.

[47] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller,
J. Small, J. Zelenka, and B. Zhou. Scalable Performance of the
Panasas Parallel File System. In FAST’08, Feb. 2008.

[48] T. Xie and H. Wang. MICRO: A Multilevel Caching-Based Re-
construction Optimization for Mobile Storage Systems. IEEE
Transactions on Computers, 57(10):1386–1398, 2008.

[49] Q. Xin, E. L. Miller, and T. J. E. Schwarz. Evaluation of Dis-
tributed Recovery in Large-Scale Storage Systems. In HPDC’04,
Jun. 2004.

[50] Q. Xin, E. L. Miller, T. J. E. Schwarz, D. D. E. Long, S. A. Brandt,
and W. Litwin. Reliability Mechanisms for Very Large Storage
Systems. In MSST’03, Apr. 2003.

