
USENIX Association 	 7th USENIX Conference on File and Storage Technologies	 225

Cumulus: Filesystem Backup to the Cloud

Michael Vrable, Stefan Savage, and Geoffrey M. Voelker

Department of Computer Science and Engineering
University of California, San Diego

Abstract
In this paper we describe Cumulus, a system for effi-
ciently implementing filesystem backups over the Inter-
net. Cumulus is specifically designed under a thin cloud
assumption—that the remote datacenter storing the back-
ups does not provide any special backup services, but
only provides a least-common-denominator storage in-
terface (i.e., get and put of complete files). Cumulus
aggregates data from small files for remote storage, and
uses LFS-inspired segment cleaning to maintain storage
efficiency. Cumulus also efficiently represents incremen-
tal changes, including edits to large files. While Cumulus
can use virtually any storage service, we show that its ef-
ficiency is comparable to integrated approaches.

1 Introduction
It has become increasingly popular to talk of “cloud com-
puting” as the next infrastructure for hosting data and de-
ploying software and services. Not surprisingly, there
are a wide range of different architectures that fall un-
der the umbrella of this vague-sounding term, ranging
from highly integrated and focused (e.g., Software As
A Service offerings such as Salesforce.com) to decom-
posed and abstract (e.g., utility computing such as Ama-
zon’s EC2/S3). Towards the former end of the spectrum,
complex logic is bundled together with abstract resources
at a datacenter to provide a highly specific service—
potentially offering greater performance and efficiency
through integration, but also reducing flexibility and in-
creasing the cost to switch providers. At the other end of
the spectrum, datacenter-based infrastructure providers
offer minimal interfaces to very abstract resources (e.g.,
“store file”), making portability and provider switching
easy, but potentially incurring additional overheads from
the lack of server-side application integration.

In this paper, we explore this thin-cloud vs. thick-
cloud trade-off in the context of a very simple applica-
tion: filesystem backup. Backup is a particularly attrac-
tive application for outsourcing to the cloud because it is
relatively simple, the growth of disk capacity relative to
tape capacity has created an efficiency and cost inflection
point, and the cloud offers easy off-site storage, always
a key concern for backup. For end users there are few
backup solutions that are both trivial and reliable (espe-
cially against disasters such as fire or flood), and ubiq-

uitous broadband now provides sufficient bandwidth re-
sources to offload the application. For small to mid-sized
businesses, backup is rarely part of critical business pro-
cesses and yet is sufficiently complex to “get right” that it
can consume significant IT resources. Finally, larger en-
terprises benefit from backing up to the cloud to provide
a business continuity hedge against site disasters.

However, to price cloud-based backup services attrac-
tively requires minimizing the capital costs of data cen-
ter storage and the operational bandwidth costs of ship-
ping the data there and back. To this end, most exist-
ing cloud-based backup services (e.g., Mozy, Carbonite,
Symantec’s Protection Network) implement integrated
solutions that include backup-specific software hosted
on both the client and at the data center (usually using
servers owned by the provider). In principle, this ap-
proach allows greater storage and bandwidth efficiency
(server-side compression, cleaning, etc.) but also reduces
portability—locking customers into a particular provider.

In this paper we explore the other end of the de-
sign space—the thin cloud. We describe a cloud-based
backup system, called Cumulus, designed around a min-
imal interface (put, get, delete, list) that is triv-
ially portable to virtually any on-line storage service.
Thus, we assume that any application logic is imple-
mented solely by the client. In designing and evaluat-
ing this system we make several contributions. First, we
show through simulation that, through careful design, it
is possible to build efficient network backup on top of
a generic storage service—competitive with integrated
backup solutions, in spite of having no specific backup
support in the underlying storage service. Second, we
build a working prototype of this system using Amazon’s
Simple Storage Service (S3) and demonstrate its effec-
tiveness on real end-user traces. Finally, we describe how
such systems can be tuned for cost instead of for band-
width or storage, both using the Amazon pricing model
as well as for a range of storage to network cost ratios.

In the remainder of this paper, we first describe prior
work in backup and network-based backup, followed by
a design overview of Cumulus and an in-depth descrip-
tion of its implementation. We then provide both simula-
tion and experimental results of Cumulus performance,
overhead, and cost in trace-driven scenarios. We con-
clude with a discussion of the implications of our work

226	 7th USENIX Conference on File and Storage Technologies	 USENIX Association

and how this research agenda might be further explored.

2 Related Work
Many traditional backup tools are designed to work well
for tape backups. The dump, cpio, and tar [16] utilities
are common on Unix systems and will write a full filesys-
tem backup as a single stream of data to tape. These utili-
ties may create a full backup of a filesystem, but also sup-
port incremental backups, which only contain files which
have changed since a previous backup (either full or an-
other incremental). Incremental backups are smaller and
faster to create, but mostly useless without the backups
on which they are based.

Organizations may establish backup policies specify-
ing at what granularity backups are made, and how long
they are kept. These policies might then be implemented
in various ways. For tape backups, long-term backups
may be full backups so they stand alone; short-term daily
backups may be incrementals for space efficiency. Tools
such as AMANDA [2] build on dump or tar, automating
the process of scheduling full and incremental backups
as well as collecting backups from a network of comput-
ers to write to tape as a group. Cumulus supports flexible
policies for backup retention: an administrator does not
have to select at the start how long to keep backups, but
rather can delete any snapshot at any point.

The falling cost of disk relative to tape makes backup
to disk more attractive, especially since the random ac-
cess permitted by disks enables new backup approaches.
Many recent backup tools, including Cumulus, take ad-
vantage of this trend. Two approaches for comparing
these systems are by the storage representation on disk,
and by the interface between the client and the storage—
while the disk could be directly attached to the client, of-
ten (especially with a desire to store backups remotely)
communication will be over a network.

Rsync [22] efficiently mirrors a filesystem across a
network using a specialized network protocol to identify
and transfer only those parts of files that have changed.
Both the client and storage server must have rsync in-
stalled. Users typically want backups at multiple points
in time, so rsnapshot [19] and other wrappers around
rsync exist that will store multiple snapshots, each as a
separate directory on the backup disk. Unmodified files
are hard-linked between the different snapshots, so stor-
age is space-efficient and snapshots are easy to delete.

The rdiff-backup [7] tool is similar to rsnapshot, but
it changes the storage representation. The most re-
cent snapshot is a mirror of the files, but the rsync al-
gorithm creates compact deltas for reconstructing older
versions—these reverse incrementals are more space ef-
ficient than full copies of files as in rsnapshot.

Another modification to the storage format at the
server is to store snapshots in a content-addressable stor-

age system. Venti [17] uses hashes of block contents
to address data blocks, rather than a block number on
disk. Identical data between snapshots (or even within a
snapshot) is automatically coalesced into a single copy
on disk—giving the space benefits of incremental back-
ups automatically. Data Domain [26] offers a similar
but more recent and efficient product; in addition to per-
formance improvements, it uses content-defined chunk
boundaries so de-duplication can be performed even if
data is offset by less than the block size.

A limitation of these tools is that backup data must be
stored unencrypted at the server, so the server must be
trusted. Box Backup [21] modifies the protocol and stor-
age representation to allow the client to encrypt data be-
fore sending, while still supporting rsync-style efficient
network transfers.

Most of the previous tools use a specialized protocol to
communicate between the client and the storage server.
An alternate approach is to target a more generic inter-
face, such as a network file system or an FTP-like pro-
tocol. Amazon S3 [3] offers an HTTP-like interface to
storage. The operations supported are similar enough be-
tween these different protocols—get/put/delete on files
and list on directories—that a client can easily support
multiple protocols. Cumulus tries to be network-friendly
like rsync-based tools, while using only a generic storage
interface.

Jungle Disk [13] can perform backups to Amazon S3.
However, the design is quite different from that of Cu-
mulus. Jungle Disk is first a network filesystem with
Amazon S3 as the backing store. Jungle Disk can also
be used for backups, keeping copies of old versions of
files instead of deleting them. But since it is optimized
for random access it is less efficient than Cumulus for
pure backup—features like aggregation in Cumulus can
improve compression, but are at odds with efficient ran-
dom access.

Duplicity [8] aggregates files together before stor-
age for better compression and to reduce per-file stor-
age costs at the server. Incremental backups use space-
efficient rsync-style deltas to represent changes. How-
ever, because each incremental backup depends on the
previous, space cannot be reclaimed from old snapshots
without another full backup, with its associated large up-
load cost. Cumulus was inspired by duplicity, but avoids
this problem of long dependency chains of snapshots.

Brackup [9] has a design very similar to that of Cu-
mulus. Both systems separate file data from metadata:
each snapshot contains a separate copy of file metadata
as of that snapshot, but file data is shared where possi-
ble. The split data/metadata design allows old snapshots
to be easily deleted. Cumulus differs from Brackup pri-
marily in that it places a greater emphasis on aggregating
small files together for storage purposes, and adds a seg-

USENIX Association 	 7th USENIX Conference on File and Storage Technologies	 227

M
ul

tip
le

sn
ap

sh
ot

s

Si
m

pl
e

se
rv

er

In
cr

em
en

ta
l

fo
re

ve
r

Su
b-

fil
e

de
lta

st
or

ag
e

E
nc

ry
pt

io
n

rsync  N/A
rsnapshot  
rdiff-backup   
Box Backup    
Jungle Disk    
duplicity    
Brackup    
Cumulus     

Multiple snapshots: Can store multiple versions of files at dif-
ferent points in time; Simple server: Can back up almost any-
where; does not require special software at the server; Incre-
mental forever: Only initial backup must be a full backup;
Sub-file delta storage: Efficiently represents small differences
between files on storage; only relevant if storing multiple snap-
shots; Encryption: Data may be encrypted for privacy before
sending to storage server.

Table 1: Comparison of features among selected tools
that back up to networked storage.

ment cleaning mechanism to manage the inefficiency in-
troduced. Additionally, Cumulus tries to efficiently rep-
resent small changes to all types of large files and can
share metadata where unchanged; both changes reduce
the cost of incremental backups.

Peer-to-peer systems may be used for storing back-
ups. Pastiche [5] is one such system, and focuses on the
problem of identifying and sharing data between differ-
ent users. Pastiche uses content-based addressing for de-
duplication. But if sharing is not needed, Brackup and
Cumulus could use peer-to-peer systems as well, simply
treating it as another storage interface offering get and
put operations.

While other interfaces to storage may be available—
Antiquity [24] for example provides a log append
operation—a get/put interface likely still works best
since it is simpler and a single put is cheaper than multi-
ple appends to write the same data.

Table 1 summarizes differences between some of the
tools discussed above for backup to networked storage.
In relation to existing systems, Cumulus is most similar
to duplicity (without the need to occasionally re-upload
a new full backup), and Brackup (with an improved
scheme for incremental backups including rsync-style
deltas, and improved reclamation of storage space).

3 Design
In this section we present the design of our approach for
making backups to a thin cloud remote storage service.

3.1 Storage Server Interface
We assume only a very narrow interface between a client
generating a backup and a server responsible for storing
the backup. The interface consists of four operations:

Get: Given a pathname, retrieve the contents of a file
from the server.

Put: Store a complete file on the server with the given
pathname.

List: Get the names of files stored on the server.

Delete: Remove the given file from the server, reclaim-
ing its space.

Note that all of these operations operate on entire files;
we do not depend upon the ability to read or write arbi-
trary byte ranges within a file. Cumulus neither requires
nor uses support for reading and setting file attributes
such as permissions and timestamps. The interface is
simple enough that it can be implemented on top of any
number of protocols: FTP, SFTP, WebDAV, S3, or nearly
any network file system.

Since the only way to modify a file in this narrow in-
terface is to upload it again in full, we adopt a write-
once storage model, in which a file is never modified
after it is first stored, except to delete it to recover
space. The write-once model provides convenient fail-
ure guarantees: since files are never modified in place,
a failed backup run cannot corrupt old snapshots. At
worst, it will leave a partially-written snapshot which can
garbage-collected. Because Cumulus does not modify
files in place, we can keep snapshots at multiple points
in time simply by not deleting the files that make up old
snapshots.

3.2 Storage Segments
When storing a snapshot, Cumulus will often group data
from many smaller files together into larger units called
segments. Segments become the unit of storage on the
server, with each segment stored as a single file. Filesys-
tems typically contain many small files (both our traces
described later and others, such as [1], support this ob-
servation). Aggregation of data produces larger files for
storage at the server, which can be beneficial to:

Avoid inefficiencies associated with many small files:
Storage servers may dislike storing many small files for
various reasons—higher metadata costs, wasted space
from rounding up to block boundaries, and more seeks
when reading. This preference may be expressed in the

228	 7th USENIX Conference on File and Storage Technologies	 USENIX Association

Segment A

Segment B

Segment Store

name: file1
owner: root
data: B/0

name: file2
owner: root
data: B/1 B/2

Date: 2008-01-01 12:00:00
Root: A/0
Segments: A B

Segment C

name: file1
owner: root
data: C/1

name: file2
owner: root
data: B/1 B/2

Date: 2008-01-02 12:00:00
Root: C/0
Segments: B C

Snapshot Descriptors

Figure 1: Simplified schematic of the basic format for
storing snapshots on a storage server. Two snapshots are
shown, taken on successive days. Each snapshot contains
two files. file1 changes between the two snapshots,
but the data for file2 is shared between the snapshots.
For simplicity in this figure, segments are given letters as
names instead of the 128-bit UUIDs used in practice.

cost model of the provider. Amazon S3, for example, has
both a per-request and a per-byte cost when storing a file
that encourages using files greater than 100 KB in size.

Avoid costs in network protocols: Small files result in
relatively larger protocol overhead, and may be slower
over higher-latency connections. Pipelining (if sup-
ported) or parallel connections may help, but larger seg-
ments make these less necessary. We study one instance
of this effect in more detail in Section 5.4.5.

Take advantage of inter-file redundancy with segment
compression: Compression can be more effective when
small files are grouped together. We examine this effect
in Section 5.4.2.

Provide additional privacy when encryption is used:
Aggregation helps hide the size as well as contents of
individual files.

Finally, as discussed in Sections 3.4 and 4.3, changes
to small parts of larger files can be efficiently repre-
sented by effectively breaking those files into smaller
pieces during backup. For the reasons listed above,
re-aggregating this data becomes even more important
when sub-file incremental backups are supported.

3.3 Snapshot Format
Figure 1 illustrates the basic format for backup snap-
shots. Cumulus snapshots logically consist of two parts:
a metadata log which lists all the files backed up, and the

file data itself. Both metadata and data are broken apart
into blocks, or objects, and these objects are then packed
together into segments, compressed as a unit and option-
ally encrypted, and stored on the server. Each segment
has a unique name—we use a randomly generated 128-
bit UUID so that segment names can be assigned without
central coordination. Objects are numbered sequentially
within a segment.

Segments are internally structured as a TAR file, with
each file in the archive corresponding to an object in the
segment. Compression and encryption are provided by
filtering the raw segment data through gzip, bzip2,
gpg, or other similar external tools.

A snapshot can be decoded by traversing the tree (or,
in the case of sharing, DAG) of objects. The root object
in the tree is the start of the metadata log. The metadata
log need not be stored as a flat object; it may contain
pointers to objects containing other pieces of the meta-
data log. For example, if many files have not changed,
then a single pointer to a portion of the metadata for an
old snapshot may be written. The metadata objects even-
tually contain entries for individual files, with pointers to
the file data as the leaves of the tree.

The metadata log entry for each individual file speci-
fies properties such as modification time, ownership, and
file permissions, and can be extended to include addi-
tional information if needed. It includes a cryptographic
hash so that file integrity can be verified after a restore.
Finally, it includes a list of pointers to objects containing
the file data. Metadata is stored in a text, not binary, for-
mat to make it more transparent. Compression applied to
the segments containing the metadata, however, makes
the format space-efficient.

The one piece of data in each snapshot not stored in
a segment is a snapshot descriptor, which includes a
timestamp and a pointer to the root object.

Starting with the root object stored in the snapshot de-
scriptor and traversing all pointers found, a list of all
segments required by the snapshot can be constructed.
Since segments may be shared between multiple snap-
shots, a garbage collection process deletes unreferenced
segments when snapshots are removed. To simplify
garbage-collection, each snapshot descriptor includes
(though it is redundant) a summary of segments on which
it depends.

Pointers within the metadata log include cryptographic
hashes so that the integrity of all data can be validated
starting from the snapshot descriptor, which can be dig-
itally signed. Additionally, Cumulus writes a summary
file with checksums for all segments so that it can quickly
check snapshots for errors without a full restore.

USENIX Association 	 7th USENIX Conference on File and Storage Technologies	 229

3.4 Sub-File Incrementals
If only a small portion of a large file changes between
snapshots, only the changed portion of the file should
be stored. The design of the Cumulus format supports
this. The contents of each file is specified as a list of
objects, so new snapshots can continue to point to old
objects when data is unchanged. Additionally, pointers
to objects can include byte ranges to allow portions of
old objects to be reused even if some data has changed.
We discuss how our implementation identifies data that
is unchanged in Section 4.3.

3.5 Segment Cleaning
When old snapshots are no longer needed, space is re-
claimed by deleting the root snapshot descriptors for
those snapshots, then garbage collecting unreachable
segments. It may be, however, that some segments only
contain a small fraction of useful data—the remainder
of these segments, data from deleted snapshots, is now
wasted space. This problem is similar to the problem
of reclaiming space in the Log-Structured File System
(LFS) [18].

There are two approaches that can be taken to seg-
ment cleaning given that multiple backup snapshots are
involved. The first, in-place cleaning, is most like the
cleaning in LFS. It identifies segments with wasted space
and rewrites the segments to keep just the needed data.

This mode of operation has several disadvantages,
however. It violates the write-once storage model, in
that the data on which a snapshot depends is changed
after the snapshot is written. It requires detailed book-
keeping to determine precisely which data must be re-
tained. Finally, it requires downloading and decrypting
old segments—normal backups only require an encryp-
tion key, but cleaning needs the decryption key as well.

The alternative to in-place cleaning is to never mod-
ify segments in old snapshots. Instead, Cumulus avoids
referring to data in inefficient old segments when creat-
ing a new snapshot, and writes new copies of that data
if needed. This approach avoids the disadvantages listed
earlier, but is less space-efficient. Dead space is not re-
claimed until snapshots depending on the old segments
are deleted. Additionally, until then data is stored re-
dundantly since old and new snapshots refer to different
copies of the same data.

We analyzed both approaches to cleaning in simula-
tion. We found that the cost benefits of in-place cleaning
were not large enough to outweigh its disadvantages, and
so our Cumulus prototype does not clean in place.

The simplest policy for selecting segments to clean is
to set a minimum segment utilization threshold, α, that
triggers cleaning of a segment. We define utilization as
the fraction of bytes within the segment which are ref-

erenced by a current snapshot. For example, α = 0.8
will ensure that at least 80% of the bytes in segments
are useful. Setting α = 0 disables segment cleaning al-
together. Cleaning thresholds closer to 1 will decrease
storage overhead for a single snapshot, but this more ag-
gressive cleaning requires transferring more data.

More complex policies are possible as well, such as
a cost-benefit evaluation that favors repacking long-lived
segments. Cleaning may be informed by snapshot re-
tention policies: cleaning is more beneficial immediately
before creating a long-term snapshot, and cleaning can
also consider which other snapshots currently reference a
segment. Finally, segment cleaning may reorganize data,
such as by age, when segments are repacked.

Though not currently implemented, Cumulus could
use heuristics to group data by expected lifetime when
a backup is first written in an attempt to optimize seg-
ment data for later cleaning (as in systems such as
WOLF [23]).

3.6 Restoring from Backup
Restoring data from previous backups may take several
forms. A complete restore extracts all files as they were
on a given date. A partial restore recovers one or a small
number of files, as in recovering from an accidental dele-
tion. As an enhancement to a partial restore, all available
versions of a file or set of files can be listed.

Cumulus is primarily optimized for the first form of
restore—recovering all files, such as in the event of the
total loss of the original data. In this case, the restore pro-
cess will look up the root snapshot descriptor at the date
to restore, then download all segments referenced by that
snapshot. Since segment cleaning seeks to avoid leaving
much wasted space in the segments, the total amount of
data downloaded should be only slightly larger than the
size of the data to restore.

For partial restores, Cumulus downloads those seg-
ments that contain metadata for the snapshot to locate
the files requested, then locates each of the segments
containing file data. This approach might require fetch-
ing many segments—for example, if restoring a directory
whose files were added incrementally over many days—
but will usually be quick.

Cumulus is not optimized for tracking the history of
individual files. The only way to determine the list of
changes to a file or set of files is to download and process
the metadata logs for all snapshots. However, a client
could keep a database of this information to allow more
efficient queries.

3.7 Limitations
Cumulus is not designed to replace all existing backup
systems. As a result, there are situations in which other
systems will do a better job.

230	 7th USENIX Conference on File and Storage Technologies	 USENIX Association

The approach embodied by Cumulus is for the client
making a backup to do most of the work, and leave the
backup itself almost entirely opaque to the server. This
approach makes Cumulus portable to nearly any type of
storage server. However, a specialized backup server
could provide features such as automatically repacking
backup data when deleting old snapshots, eliminating the
overhead of client-side segment cleaning.

Cumulus, as designed, does not offer coordination be-
tween multiple backup clients, and so does not offer fea-
tures such as de-duplication between backups from dif-
ferent clients. While Cumulus could use convergent en-
cryption [6] to allow de-duplication even when data is
first encrypted at the client, several issues prevent us
from doing so. Convergent encryption would not work
well with the aggregation in Cumulus. Additionally,
server-side de-duplication is vulnerable to dictionary at-
tacks to determine what data clients are storing, and stor-
age accounting for billing purposes is more difficult.

Finally, the design of Cumulus is predicated on the
fact that backing up each file on the client to a sepa-
rate file on the server may introduce too much overhead,
and so Cumulus groups data together into segments. If
it is known that the storage server and network protocol
can efficiently deal with small files, however, then group-
ing data into segments adds unnecessary complexity and
overhead. Other disk-to-disk backup programs may be a
better match in this case.

4 Implementation
We discuss details of the implementation of the Cumu-
lus prototype in this section. Our implementation is rel-
atively compact: only slightly over 3200 lines of C++
source code (as measured by SLOCCount [25]) imple-
menting the core backup functionality, along with an-
other roughly 1000 lines of Python for tasks such as re-
stores, segment cleaning, and statistics gathering.

4.1 Local Client State
Each client stores on its local disk information about
recent backups, primarily so that it can detect which
files have changed and properly reuse data from previous
snapshots. This information could be kept on the stor-
age server. However, storing it locally reduces network
bandwidth and improves access times. We do not need
this information to recover data from a backup so its loss
is not catastrophic, but this local state does enable vari-
ous performance optimizations during backups.

The client’s local state is divided into two parts: a local
copy of the metadata log and an SQLite database [20]
containing all other needed information.

Cumulus uses the local copy of the previous metadata
log to quickly detect and skip over unchanged files based

on modification time. Cumulus also uses it to delta-
encode the metadata log for new snapshots.

An SQLite database keeps a record of recent snapshots
and all segments and objects stored in them. The table of
objects includes an index by content hash to support data
de-duplication. Enabling de-duplication leaves Cumulus
vulnerable to corruption from a hash collision [11, 12],
but, as with other systems, we judge the risk to be small.
The hash algorithm (currently SHA-1) can be upgraded
as weaknesses are found. In the event that client data
must be recovered from backup, the content indices can
be rebuilt from segment data as it is downloaded during
the restore.

Note that the Cumulus backup format does not specify
the format of this information stored locally. It is entirely
possible to create a new and very different implementa-
tion which nonetheless produces backups conforming to
the structure described in Section 3.3 and readable by our
Cumulus prototype.

4.2 Segment Cleaning
The Cumulus backup program, written in C++, does
not directly implement segment cleaning heuristics. In-
stead, a separate Cumulus utility program, implemented
in Python, controls cleaning.

When writing a snapshot, Cumulus records in the local
database a summary of all segments used by that snap-
shot and the fraction of the data in each segment that is
actually referenced. The Cumulus utility program uses
these summaries to identify segments which are poorly-
utilized and marks the selected segments as “expired” in
the local database. It also considers which snapshots re-
fer to the segments, and how long those snapshots are
likely to be kept, during cleaning. On subsequent back-
ups, the Cumulus backup program re-uploads any data
that is needed from expired segments. Since the database
contains information about the age of all data blocks,
segment data can be grouped by age when it is cleaned.

If local client state is lost, this age information will be
lost. When the local client state is rebuilt all data will
appear to have the same age, so cleaning may not be op-
timal, but can still be done.

4.3 Sub-File Incrementals
As discussed in Section 3.4, the Cumulus backup format
supports efficiently encoding differences between file
versions. Our implementation detects changes by divid-
ing files into small chunks in a content-sensitive manner
(using Rabin fingerprints) and identifying chunks that are
common, as in the Low-Bandwidth File System [15].

When a file is first backed up, Cumulus divides it into
blocks of about a megabyte in size which are stored indi-
vidually in objects. In contrast, the chunks used for sub-
file incrementals are quite a bit smaller: the target size is

USENIX Association 	 7th USENIX Conference on File and Storage Technologies	 231

4 KB (though variable, with a 2 KB minimum and 64 KB
maximum). Before storing each megabyte block, Cumu-
lus computes a set of chunk signatures: it divides the
data block into non-overlapping chunks and computes a
(20-byte SHA-1 signature, 2-byte length) tuple for each
chunk. The list of chunk signatures for each object is
stored in the local database. These signatures consume
22 bytes for every roughly 4 KB of original data, so the
signatures are about 0.5% of the size of the data to back
up.

Unlike LBFS, we do not create a global index of
chunk hashes—to limit overhead, we do not attempt to
find common data between different files. When a file
changes, we limit the search for unmodified data to the
chunks in the previous version of the file. Cumulus com-
putes chunk signatures for the new file data, and matches
with old chunks are written as a reference to the old data.
New chunks are written out to a new object. However,
Cumulus could be extended to perform global data de-
duplication while maintaining backup format compati-
bility.

4.4 Segment Filtering and Storage
The core Cumulus backup implementation is only capa-
ble of writing segments as uncompressed TAR files to
local disk. Additional functionality is implemented by
calling out to external scripts.

When performing a backup, all segment data may be
filtered through a specified command before writing it.
Specifying a program such as gzip can provide com-
pression, or gpg can provide encryption.

Similarly, network protocols are implemented by call-
ing out to external scripts. Cumulus first writes segments
to a temporary directory, then calls an upload script to
transfer them in the background while the main backup
process continues. Slow uploads will eventually throttle
the backup process so that the required temporary stor-
age space is bounded. Upload scripts may be quite sim-
ple; a script for uploading to Amazon S3 is merely 12
lines long in Python using the boto [4] library.

4.5 Snapshot Restores
The Cumulus utility tool implements complete restore
functionality. This tool can automatically decompress
and extract objects from segments, and can efficiently
extract just a subset of files from a snapshot.

To reduce disk space requirements, the restore tool
downloads segments as needed instead of all at once
at the start, and can delete downloaded segments as it
goes along. The restore tool downloads the snapshot de-
scriptor first, followed by the metadata. The backup tool
segregates data and metadata into separate segments, so
this phase does not download any file data. Then, file
contents are restored—based on the metadata, as each

segment is downloaded data from that segment is re-
stored. For partial restores, only the necessary segments
are downloaded.

Currently, in the restore tool it is possible that a seg-
ment may be downloaded multiple times if blocks for
some files are spread across many segments. However,
this situation is merely an implementation issue and can
be fixed by restoring data for these files non-sequentially
as it is downloaded.

Finally, Cumulus includes a FUSE [10] interface that
allows a collection of backup snapshots to be mounted as
a virtual filesystem on Linux, thereby providing random
access with standard filesystem tools. This interface re-
lies on the fact that file metadata is stored in sorted order
by filename, so a binary search can quickly locate any
specified file within the metadata log.

5 Evaluation
We use both trace-based simulation and a prototype im-
plementation to evaluate the use of thin cloud services
for remote backup. Our goal is to answer three high-level
sets of questions:

• What is the penalty of using a thin cloud service
with a very simple storage interface compared to a
more sophisticated service?

• What are the monetary costs for using remote
backup for two typical usage scenarios? How
should remote backup strategies adapt to minimize
monetary costs as the ratio of network and storage
prices varies?

• How does our prototype implementation compare
with other backup systems? What are the additional
benefits (e.g., compression, sub-file incrementals)
and overheads (e.g., metadata) of an implementa-
tion not captured in simulation? What is the perfor-
mance of using an online service like Amazon S3
for backup?

The following evaluation sections answer these ques-
tions, beginning with a description of the trace workloads
we use as inputs to the experiments.

5.1 Trace Workloads
We use two traces as workloads to drive our evaluations.
A fileserver trace tracks all files stored on our research
group fileserver, and models the use of a cloud service
for remote backup in an enterprise setting. A user trace
is taken from the Cumulus backups of the home directory
of one of the author’s personal computers, and models
the use of remote backup in a home setting. The traces
contain a daily record of the metadata of all files in each
setting, including a hash of the file contents. The user

232	 7th USENIX Conference on File and Storage Technologies	 USENIX Association

Fileserver User
Duration (days) 157 223
Entries 26673083 122007
Files 24344167 116426
File Sizes

Median 0.996 KB 4.4 KB
Average 153 KB 21.4 KB
Maximum 54.1 GB 169 MB
Total 3.47 TB 2.37 GB

Update Rates
New data/day 9.50 GB 10.3 MB
Changed data/day 805 MB 29.9 MB
Total data/day 10.3 GB 40.2 MB

Table 2: Key statistics of the two traces used in the eval-
uations. File counts and sizes are for the last day in the
trace. “Entries” is files plus directories, symlinks, etc.

trace further includes complete backups of all file data,
and enables evaluation of the effects of compression and
sub-file incrementals. Table 2 summarizes the key statis-
tics of each trace.

5.2 Remote Backup to a Thin Cloud
First we explore the overhead of using remote backup to
a thin cloud service that has only a simple storage inter-
face. We compare this thin service model to an “optimal”
model representing more sophisticated backup systems.

We use simulation for these experiments, and start by
describing our simulator. We then define our optimal
baseline model and evaluate the overhead of using a sim-
ple interface relative to a more sophisticated system.

5.2.1 Cumulus Simulator

The Cumulus simulator models the process of backing
up collections of files to a remote backup service. It uses
traces of daily records of file metadata to perform back-
ups by determining which files have changed, aggregat-
ing changed file data into segments for storage on a re-
mote service, and cleaning expired data as described in
Section 3. We use a simulator, rather than our prototype,
because a parameter sweep of the space of cleaning pa-
rameters on datasets as large as our traces is not feasible
in a reasonable amount of time.

The simulator tracks three overheads associated with
performing backups. It tracks storage overhead, or the
total number of bytes to store a set of snapshots com-
puted as the sum of the size of each segment needed.
Storage overhead includes both actual file data as well as
wasted space within segments. It tracks network over-
head, the total data that must be transferred over the net-
work to accomplish a backup. On graphs, we show this
overhead as a cumulative value: the total data transferred
from the beginning of the simulation until the given day.

Since remote backup services have per-file charges, the
simulator also tracks segment overhead as the number of
segments created during the process of making backups.

The simulator also models two snapshot scenarios.
In the single snapshot scenario, the simulator maintains
only one snapshot remotely and it deletes all previous
snapshots. In the multiple snapshot scenario, the sim-
ulator retains snapshots according to a pre-determined
backup schedule. In our experiments, we keep the most
recent seven daily snapshots, with additional weekly
snapshots retained going back farther in time so that a
total of 12 snapshots are kept. This schedule emulates
the backup policy an enterprise might employ.

The simulator makes some simplifying assumptions
that we explore later when evaluating our implementa-
tion. The simulator detects changes to files in the traces
using a per-file hash. Thus, the simulator cannot detect
changes to only a portion of a file, and assumes that
the entire file is changed. The simulator also does not
model compression or metadata. We account for sub-
file changes, compression, and metadata overhead when
evaluating the prototype in Section 5.4.

5.2.2 Optimal Baseline

A simple storage interface for remote backup can incur
an overhead penalty relative to more sophisticated ap-
proaches. To quantify the overhead of this approach, we
use an idealized optimal backup as a basis of comparison.

For our simulations, the optimal backup is one in
which no more data is stored or transferred over the net-
work than is needed. Since simulation is done at a file
granularity, the optimal backup will transfer the entire
contents of a file if any part changes. Optimal backup
will, however, perform data de-duplication at a file level,
storing only one copy if multiple files have the same hash
value. In the optimal backup, no space is lost to frag-
mentation when deleting old snapshots. Cumulus could
achieve this optimal performance in this simulation by
storing each file in a separate segment—that is, to never
bundle files together into larger segments. As discussed
in Section 3.2 and as our simulation results show, though,
there are good reasons to use segments with sizes larger
than the average file.

As an example of these costs and how we measure
them, Figure 2(a) shows the optimal storage and upload
overheads for daily backups of the 223 days of the user
trace. In this simulation, only a single snapshot is re-
tained each day. Storage grows slowly in proportion to
the amount of data in a snapshot, and the cumulative net-
work transfer grows linearly over time.

Figure 2(b) shows the results of two simulations of Cu-
mulus backing up the same data. The graph shows the
overheads relative to optimal backup; a backup as good
as optimal would have 0% relative overhead. These re-

USENIX Association 	 7th USENIX Conference on File and Storage Technologies	 233

 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000

 0 50 100 150 200 250

S
iz

e
(M

B
)

Days

Cumulative Transfers
Snapshot Size

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 50 100 150 200 250

O
ve

rh
ea

d
vs

. O
pt

im
al

 (%
)

Days

Storage (No Cleaning)
Storage (Cleaning)
Upload (Cleaning)

Figure 2: (a) Storage and network overhead for an optimal backup of the files from the user trace. (b) Overheads with
and without cleaning; segments are cleaned at 60% utilization. Only storage overheads are shown for the no-cleaning
case since there is no network transfer overhead without cleaning.

sults clearly demonstrate the need for cleaning when us-
ing a simple storage interface for backup. When seg-
ments are not cleaned (only deleting segments that by
chance happen to be entirely no longer needed), wasted
storage space grows quickly with time—by the end of
the simulation at day 223, the size of a snapshot is nearly
double the required size. In contrast, when segments
are marked for cleaning at the 60% utilization thresh-
old, storage overhead quickly stabilizes below 10%. The
overhead in extra network transfers is similarly modest.

5.2.3 Cleaning Policies

Cleaning is clearly necessary for efficient backup, but it
is also parameterized by two metrics: the size of the seg-
ments used for aggregation, transfer, and storage (Sec-
tion 3.2), and the threshold at which segments will be
cleaned (Section 3.5). In our next set of experiments,
we explore the parameter space to quantify the impact of
these two metrics on backup performance.

Figures 3 and 4 show the simulated overheads of
backup with Cumulus using the fileserver and user
traces, respectively. The figures show both relative over-
heads to optimal backup (left y-axis) as well as the abso-
lute overheads (right y-axis). We use the backup policy
of multiple daily and weekly snapshots as described in
Section 5.2.1. The figures show cleaning overhead for a
range of cleaning thresholds and segment sizes. Each fig-
ure has three graphs corresponding to the three overheads
of remote backup to an online service. Average daily
storage shows the average storage requirements per day
over the duration of the simulation; this value is the total
storage needed for tracking multiple backup snapshots,
not just the size of a single snapshot. Similarly, average
daily upload is the average of the data transferred each
day of the simulation, excluding the first; we exclude the
first day since any backup approach must transfer the en-
tire initial filesystem. Finally, average segments per day
tracks the number of new segments uploaded each day to
account for per-file upload and storage costs.

Storage and upload overheads improve with decreas-
ing segment size, but at small segment sizes (< 1 MB)
backups require very large numbers of segments and
limit the benefits of aggregating file data (Section 3.2).
As expected, increasing the cleaning threshold increases
the network upload overhead. Storage overhead with
multiple snapshots, however, has an optimum cleaning
threshold value. Increasing the threshold initially de-
creases storage overhead, but high thresholds increase it
again; we explore this behavior further below.

Both the fileserver and user workloads exhibit simi-
lar sensitivities to cleaning thresholds and segment sizes.
The user workload has higher overheads relative to op-
timal due to smaller average files and more churn in the
file data, but overall the overhead penalties remain low.

Figures 3(a) and 4(a) show that there is a cleaning
threshold that minimizes storage overheads. Increasing
the cleaning threshold intuitively reduces storage over-
head relative to optimal since the more aggressive clean-
ing at higher thresholds will delete wasted space in seg-
ments and thereby reduce storage requirements.

Figure 5 explains why storage overhead increases
again at higher cleaning thresholds. It shows three
curves, the 16 MB segment size curve from Figure 3(a)
and two curves that decompose the storage overhead into
individual components (Section 3.5). One is overhead
due to duplicate copies of data stored over time in the
cleaning process; cleaning at lower thresholds reduces
this component. The other is due to wasted space in seg-
ments which have not been cleaned; cleaning at higher
thresholds reduces this component. A cleaning threshold
near the middle, however, minimizes the sum of both of
these overheads.

5.3 Paying for Remote Backup
The evaluation in the previous section measured the over-
head of Cumulus in terms of storage, network, and seg-
ment resource usage. Remote backup as a service, how-
ever, comes at a price. In this section, we calculate

234	 7th USENIX Conference on File and Storage Technologies	 USENIX Association

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

 3.77

 3.78

 3.79

 3.8

 3.81

 3.82

 3.83

 3.84
O

ve
rh

ea
d

vs
. O

pt
im

al
 (%

)

R
aw

 S
iz

e
(T

B
)

Cleaning Threshold

64 MB Segments
16 MB Segments

4 MB Segments
1 MB Segments

(a) Average daily storage

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

 9.9

 10

 10.1

 10.2

 10.3

 10.4

 10.5

 10.6

O
ve

rh
ea

d
vs

. O
pt

im
al

 (%
)

R
aw

 S
iz

e
(G

B
/d

ay
)

Cleaning Threshold

64 MB Segments
16 MB Segments

4 MB Segments
1 MB Segments

(b) Average daily upload

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60 70

N
ew

 S
eg

m
en

ts
 D

ai
ly

Target Segment Size (MB)

(c) Average segments per day

Figure 3: Overheads for backups in the fileserver trace.

 0

 5

 10

 15

 20

 25

 0 0.2 0.4 0.6 0.8 1
 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

O
ve

rh
ea

d
vs

. O
pt

im
al

 (%
)

R
aw

 S
iz

e
(G

B
)

Cleaning Threshold

16 MB Segments
4 MB Segments
1 MB Segments

512 KB Segments
128 KB Segments

(a) Average daily storage

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 0.2 0.4 0.6 0.8 1
 38

 40

 42

 44

 46

 48

 50

 52
O

ve
rh

ea
d

vs
. O

pt
im

al
 (%

)

R
aw

 S
iz

e
(M

B
/d

ay
)

Cleaning Threshold

16 MB Segments
4 MB Segments
1 MB Segments

512 KB Segments
128 KB Segments

(b) Average daily upload

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 2 4 6 8 10 12 14 16

N
ew

 S
eg

m
en

ts
 D

ai
ly

Target Segment Size (MB)

(c) Average segments per day

Figure 4: Overheads for backups in the user trace.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 0 0.2 0.4 0.6 0.8 1

O
ve

rh
ea

d
vs

. O
pt

im
al

 (%
)

Cleaning Threshold

Total Overhead
Duplicate Data Overhead
Wasted Segment Space

Figure 5: Detailed breakdown of storage overhead when
using a 16 MB segment size for the fileserver workload.

monetary costs for our two workload models, evaluate
cleaning threshold and segment size in terms of costs in-
stead of resource usage, and explore how cleaning should
adapt to minimize costs as the ratio of network and stor-
age prices varies. While similar, there are differences be-
tween this problem and the typical evaluation of cleaning
policies for a typical log-structured file system: instead
of a fixed disk size and a goal to minimize I/O, we have
no fixed limits but want to minimize monetary cost.

We use the prices for Amazon S3 as an initial point in
the pricing space. As of January 2009, these prices are
(in US dollars):

Fileserver Amount Cost
Initial upload 3563 GB $356.30
Upload 303 GB/month $30.30/month
Storage 3858 GB $578.70/month

User Amount Cost
Initial upload 1.82 GB $0.27
Upload 1.11 GB/month $0.11/month
Storage 2.68 GB $0.40/month

Table 3: Costs for backups in US dollars, if performed
optimally, for the fileserver and user traces using current
prices for Amazon S3.

Storage: $0.15 per GB · month
Upload: $0.10 per GB

Segment: $0.01 per 1000 files uploaded
With this pricing model, the segment cost for upload-

ing an empty file is equivalent to the upload cost for up-
loading approximately 100 KB of data, i.e., when up-
loading 100 KB files, half of the cost is for the band-
width and half for the upload request itself. As the file
size increases, the per-request component becomes an in-
creasingly smaller part of the total cost.

Neglecting for the moment the segment upload costs,
Table 3 shows the monthly storage and upload costs for
each of the two traces. Storage costs dominate ongo-
ing costs. They account for about 95% and 78% of the

USENIX Association 	 7th USENIX Conference on File and Storage Technologies	 235

 0

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

 610

 612

 614

 616

 618

 620

C
os

t I
nc

re
as

e
vs

. O
pt

im
al

 (%
)

C
os

t (
$)

Cleaning Threshold

64 MB Segments
16 MB Segments
4 MB Segments
1 MB Segments

Figure 6: Costs in US dollars for backups in the fileserver
assuming Amazon S3 prices. Costs for the user trace
differ in absolute values but are qualitatively similar.

monthly costs for the fileserver and user traces, respec-
tively. Thus, changes to the storage efficiency will have
a more substantial effect on total cost than changes in
bandwidth efficiency. We also note that the absolute
costs for the home backup scenario are very low, indi-
cating that Amazon’s pricing model is potentially quite
reasonable for consumers: even for home users with an
order of magnitude more data to backup than our user
workload, yearly ongoing costs are roughly US$50.

Whereas Figure 3 explored the parameter space of
cleaning thresholds and segment sizes in terms of re-
source overhead, Figure 6 shows results in terms of over-
all cost for backing up the fileserver trace. These re-
sults show that using a simple storage interface for re-
mote backup also incurs very low additional monetary
cost than optimal backup, from 0.5–2% for the fileserver
trace depending on the parameters, and as low as about
5% in the user trace.

When evaluated in terms of monetary costs, though,
the choices of cleaning parameters change compared to
the parameters in terms of resource usage. The cleaning
threshold providing the minimum cost is smaller and less
aggressive (threshold = 0.4) than in terms of resource
usage (threshold = 0.6). However, since overhead is not
overly sensitive to the cleaning threshold, Cumulus still
provides good performance even if the cleaning thresh-
old is not tuned optimally. Furthermore, in contrast to
resource usage, decreasing segment size does not always
decrease overall cost. At some point—in this case be-
tween 1–4 MB—decreasing segment size increases over-
all cost due to the per-file pricing. We do not evalu-
ate segment sizes less than 1 MB for the fileserver trace
since, by 1 MB, smaller segments are already a loss. The
results for the user workload, although not shown, are
qualitatively similar, with a segment size of 0.5 MB to
1 MB best.

The pricing model of Amazon S3 is only one point
in the pricing space. As a final cost experiment, we ex-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10E
st

im
at

ed
 O

pt
im

al
 C

le
an

in
g

Th
re

sh
ol

d

Storage / Network Cost Ratio

Fileserver
User

Figure 7: How the optimal threshold for cleaning
changes as the relative cost of storage vs. network varies.

plore how cleaning should adapt to changes in the rel-
ative price of storage versus network. Figure 7 shows
the optimal cleaning threshold for the fileserver and user
workloads as a function of the ratio of storage to net-
work cost. The storage to network ratio measures the
relative cost of storing a gigabyte of data for a month
and uploading a gigabyte of data. Amazon S3 has a ra-
tio of 1.5. In general, as the cost of storage increases,
it becomes advantageous to clean more aggressively (the
optimal cleaning threshold increases). The ideal thresh-
old stabilizes around 0.5–0.6 when storage is at least ten
times more expensive than network upload, since clean-
ing too aggressively will tend to increase storage costs.

5.4 Prototype Evaluation
In our final set of experiments, we compare the overhead
of the Cumulus prototype implementation with other
backup systems. We also evaluate the sensitivity of com-
pression on segment size, the overhead of metadata in
the implementation, the performance of sub-file incre-
mentals and restores, and the time it takes to upload data
to a remote service like Amazon S3.

5.4.1 System Comparisons

First, we provide some results from running our Cumulus
prototype and compare with two existing backup tools
that also target Amazon S3: Jungle Disk and Brackup.
We use the complete file contents included in the user
trace to accurately measure the behavior of our full Cu-
mulus prototype and other real backup systems. For each
day in the first three months of the user trace, we extract
a full snapshot of all files, then back up these files with
each of the backup tools. We compute the average cost,
per month, broken down into storage, upload bandwidth,
and operation count (files created or modified).

We configured Cumulus to clean segments with less
then 60% utilization on a weekly basis. We eval-
uate Brackup with two different settings. The first
uses the merge_files_under=1kB option to only
aggregate files if those files are under 1 KB in size

236	 7th USENIX Conference on File and Storage Technologies	 USENIX Association

System Storage Upload Operations
Jungle Disk ≈ 2 GB 1.26 GB 30000

$0.30 $0.126 $0.30
Brackup 1.340 GB 0.760 GB 9027
(default) $0.201 $0.076 $0.090
Brackup 1.353 GB 0.713 GB 1403
(aggregated) $0.203 $0.071 $0.014
Cumulus 1.264 GB 0.465 GB 419

$0.190 $0.047 $0.004

Table 4: Cost comparison for backups based on replaying
actual file changes in the user trace over a three month
period. Costs for Cumulus are lower than those shown in
Table 3 since that evaluation ignored the possible bene-
fits of compression and sub-file incrementals, which are
captured here. Values are listed on a per-month basis.

(this setting is recommended). Since this setting still
results in many small files (many of the small files
are still larger than 1 KB), a “high aggregation” run
sets merge_files_under=16kB to capture most of
the small files and further reduce the operation count.
Brackup includes the digest database in the files backed
up, which serves a role similar to the database Cumulus
stores locally. For fairness in the comparison, we sub-
tract the size of the digest database from the sizes re-
ported for Brackup.

Both Brackup and Cumulus use gpg to encrypt data
in the test; gpg compresses the data with gzip prior to
encryption. Encryption is enabled in Jungle Disk, but no
compression is available.

In principle, we would expect backups with Jungle
Disk to be near optimal in terms of storage and upload
since no space is wasted due to aggregation. But, as a
tradeoff, Jungle Disk will have a much higher operation
count. In practice, Jungle Disk will also suffer from a
lack of de-duplication, sub-file incrementals, and com-
pression.

Table 4 compares the estimated backup costs for Cu-
mulus with Jungle Disk and Brackup. Several key points
stand out in the comparison:

• Storage and upload requirements for Jungle Disk
are larger, owing primarily to the lack of compres-
sion.

• Except in the high aggregation case, both Brackup
and Jungle Disk incur a large cost due to the many
small files stored to S3. The per-file cost for uploads
is larger than the per-byte cost, and for Jungle Disk
significantly so.

• Brackup stores a complete copy of all file metadata
with each snapshot, which in total accounts for 150–

200 MB/month of the upload cost. The cost in Cu-
mulus is lower since Cumulus can re-use metadata.

Comparing storage requirements of Cumulus with the
average size of a full backup with the venerable tar
utility, both are within 1%: storage overhead in Cumu-
lus is roughly balanced out by gains achieved from de-
duplication. Using duplicity as a proxy for near-optimal
incremental backups, in a test with two months from the
user trace Cumulus uploads only about 8% more data
than is needed. Without sub-file incrementals in Cumu-
lus, the figure is closer to 33%.

The Cumulus prototype thus shows that a service with
a simple storage interface can achieve low overhead, and
that Cumulus can achieve a lower total cost than other
existing backup tools targeting S3.

While perhaps none of the systems are yet optimized
for speed, initial full backups in Brackup and Jungle Disk
were both notably slow. In the tests, the initial Jungle
Disk backup took over six hours, Brackup (to local disk,
not S3) took slightly over two hours, and Cumulus (to
S3) approximately 15 minutes. For comparison, simply
archiving all files with tar to local disk took approxi-
mately 10 minutes.

For incremental backups, elapsed times for the tools
were much more comparable. Jungle Disk averaged 248
seconds per run archiving to S3. Brackup averaged 115
seconds per run and Cumulus 167 seconds, but in these
tests each were storing snapshots to local disk rather than
to Amazon S3.

5.4.2 Segment Compression

Next we isolate the effectiveness of compression at re-
ducing the size of the data to back up, particularly as a
function of segment size and related settings. We used
as a sample the full data contained in the first day of the
user trace: the uncompressed size is 1916 MB, the com-
pressed tar size is 1152 MB (factor of 1.66), and files
individually compressed total 1219 MB (1.57×), 5.8%
larger than whole-snapshot compression.

When aggregating data together into segments, we
found that larger input segment sizes yielded better com-
pression, up to about 300 KB when using gzip and 1–
2 MB for bzip2 where compression ratios leveled off.

5.4.3 Metadata

The Cumulus prototype stores metadata for each file in a
backup snapshot in a text format, but after compression
the format is still quite efficient. In the full tests on the
user trace, the metadata for a full backup takes roughly
46 bytes per item backed up. Since most items include a
20-byte hash value which is unlikely to be compressible,
the non-checksum components of the metadata average
under 30 bytes per file.

USENIX Association 	 7th USENIX Conference on File and Storage Technologies	 237

File A File B
File size 4.860 MB 5.890 MB
Compressed size 1.547 MB 2.396 MB
Cumulus size 5.190 MB 3.081 MB
Size overhead 235% 29%
rdiff delta 1.421 MB 122 KB
Cumulus delta 1.527 MB 181 KB
Delta overhead 7% 48%

Table 5: Comparison of Cumulus sub-file incrementals
with an idealized system based on rdiff, evaluated on two
sample files from the user trace.

Metadata logs can be stored incrementally: new snap-
shots can reference the portions of old metadata logs that
are not modified. In the full user trace replay, a full
metadata log was written to a snapshot weekly. On days
where only differences were written out, though, the av-
erage metadata log delta was under 2% of the size of a
full metadata log. Overall, across all the snapshots taken,
the data written out for file metadata was approximately
5% of the total size of the file data itself.

5.4.4 Sub-File Incrementals

To evaluate the support for sub-file incrementals in Cu-
mulus, we make use of files extracted from the user trace
that are frequently modified in place. We extract files
from a 30-day period at the start of the trace. File A is
a frequently-updated Bayesian spam filtering database,
about 90% of which changes daily. File B records the
state for a file-synchronization tool (unison), of which an
average of 5% changes each day—however, unchanged
content may still shift to different byte offsets within the
file. While these samples do not capture all behavior,
they do represent two distinct and notable classes of sub-
file updates.

To provide a point of comparison, we use rdiff [14]
to generate an rsync-style delta between consecutive file
versions. Table 5 summarizes the results.

The size overhead measures the storage cost of sub-
file incrementals in Cumulus. To reconstruct the latest
version of a file, Cumulus might need to read data from
many past versions, though cleaning will try to keep this
bounded. This overhead compares the average size of
a daily snapshot (“Cumulus size”) against the average
compressed size of the file backed up. As file churn in-
creases overhead tends to increase.

The delta overhead compares the data that must be up-
loaded daily by Cumulus (“Cumulus delta”) against the
average size of patches generated by rdiff (“rdiff delta”).
When only a small portion of the file changes each day
(File B), rdiff is more efficient than Cumulus in repre-
senting the changes. However, sub-file incrementals are
still a large win for Cumulus, as the size of the incre-

mentals is still much smaller than a full copy of the file.
When large parts of the file change daily (File A), the
efficiency of Cumulus approaches that of rdiff.

5.4.5 Upload Time

As a final experiment, we consider the time to upload
to a remote storage service. Our Cumulus prototype is
capable of uploading snapshot data directly to Amazon
S3. To simplify matters, we evaluate upload time in iso-
lation, rather than as part of a full backup, to provide a
more controlled environment. Cumulus uses the boto [4]
Python library to interface with S3.

As our measurements are from one experiment from a
single computer (on a university campus network), they
should not be taken as a good measure of the overall per-
formance of S3. For large files—a megabyte or larger—
uploads proceed at a maximum rate of about 800 KB/s.
According to our results there is an overhead equivalent
to a latency of roughly 100 ms per upload, and for small
files this dominates the actual time for data transfer. It
is thus advantageous to upload data in larger segments,
as Cumulus does. More recent tests indicate that speeds
may have improved.

The S3 protocol, based on HTTP, does not support
pipelining multiple upload requests. Multiple uploads
in parallel could reduce overhead somewhat. Still, it re-
mains beneficial to perform uploads in larger units.

For perspective, assuming the maximum transfer rates
above, ongoing backups for the fileserver and user work-
loads will take on average 3.75 hours and under a minute,
respectively. Overheads from cleaning will increase
these times, but since network overheads from cleaning
are generally small, these upload times will not change
by much. For these two workloads, backup times are
very reasonable for daily snapshots.

5.4.6 Restore Time

To completely restore all data from one of the user snap-
shots takes approximately 11 minutes, comparable to but
slighly faster than the time required for an initial full
backup.

When restoring individual files from the user
dataset, almost all time is spent extracting and parsing
metadata—there is a fixed cost of approximately 24 sec-
onds to parse the metadata to locate requested files. Ex-
tracting requested files is relatively quick, under a second
for small files.

Both restore tests were done from local disk; restoring
from S3 will be slower by the time needed to download
the data.

6 Conclusions
It is fairly clear that the market for Internet-hosted
backup service is growing. However, it remains unclear

238	 7th USENIX Conference on File and Storage Technologies	 USENIX Association

what form of this service will dominate. On one hand,
it is in the natural interest of service providers to pack-
age backup as an integrated service since that will both
create a “stickier” relationship with the customer and al-
low higher fees to be charged as a result. On the other
hand, given our results, the customer’s interest may be
maximized via an open market for commodity storage
services (such as S3), increasing competition due to the
low barrier to switching providers, and thus driving down
prices. Indeed, even today integrated backup providers
charge between $5 and $10 per month per user while the
S3 charges for backing up our test user using the Cu-
mulus system was only $0.24 per month. (For example,
Symantec’s Protection Network charges $9.99 per month
for 10GB of storage and EMC’s MozyPro service costs
$3.95 + $0.50/GB per month per desktop.)

Moreover, a thin-cloud approach to backup allows one
to easily hedge against provider failures by backing up
to multiple providers. This strategy may be particu-
larly critical for guarding against business risk—a lesson
that has been learned the hard way by customers whose
hosting companies have gone out of business. Provid-
ing the same hedge using the integrated approach would
require running multiple backup systems in parallel on
each desktop or server, incurring redundant overheads
(e.g., scanning, compression, etc.) that will only increase
as disk capacities grow.

Finally, while this paper has focused on an admit-
tedly simple application, we believe it identifies a key
research agenda influencing the future of “cloud com-
puting”: can one build a competitive product economy
around a cloud of abstract commodity resources, or do
underlying technical reasons ultimately favor an inte-
grated service-oriented infrastructure?

7 Acknowledgments
The authors would like to thank Chris X. Edwards and
Brian Kantor for assistance in collecting fileserver traces
and other computing support. We would also like to
thank our shepherd Niraj Tolia and the anonymous re-
viewers for their time and insightful comments regard-
ing Cumulus and this paper. This work was supported
in part by the National Science Foundation grant CNS-
0433668 and the UCSD Center for Networked Systems.
Vrable was further supported in part by a National Sci-
ence Foundation Graduate Research Fellowship.

References
[1] AGRAWAL, N., BOLOSKY, W. J., DOUCEUR, J. R., AND

LORCH, J. R. A five-year study of file-system metadata. ACM
Trans. Storage 3, 3 (2007), 9.

[2] The Advanced Maryland Automatic Network Disk Archiver.
http://www.amanda.org/.

[3] AMAZON WEB SERVICES. Amazon Simple Storage Service.
http://aws.amazon.com/s3/.

[4] boto: Python interface to Amazon Web Services. http://
code.google.com/p/boto/.

[5] COX, L. P., MURRAY, C. D., AND NOBLE, B. D. Pastiche:
Making backup cheap and easy. In Proceedings of the 5th Sympo-
sium on Operating Systems Design and Implementation (OSDI)
(2002), USENIX, pp. 285–298.

[6] DOUCEUR, J. R., ADYA, A., BOLOSKY, W. J., SIMON, D.,
AND THEIMER, M. Reclaiming space from duplicate files in
a serverless distributed file system. Technical Report MSR-TR-
2002-30.

[7] ESCOTO, B. rdiff-backup. http://www.nongnu.org/
rdiff-backup/.

[8] ESCOTO, B., AND LOAFMAN, K. Duplicity. http://
duplicity.nongnu.org/.

[9] FITZPATRICK, B. Brackup. http://code.google.com/
p/brackup/, http://brad.livejournal.com/tag/
brackup.

[10] FUSE: Filesystem in userspace. http://fuse.
sourceforge.net/.

[11] HENSON, V. An analysis of compare-by-hash. Proceedings of
HotOS IX: The 9th Workshop on Hot Topics in Operating Systems
(2003).

[12] HENSON, V. The code monkey’s guide to cryptographic hashes
for content-based addressing, Nov. 2007. http://www.
linuxworld.com/news/2007/111207-hash.html.

[13] Jungle disk. http://www.jungledisk.com/.

[14] librsync. http://librsync.sourcefrog.net/.

[15] MUTHITACHAROEN, A., CHEN, B., AND MAZIÈRES, D. A
low-bandwidth network file system. In Proceedings of the
18th ACM Symposium on Operating Systems Principles (SOSP)
(2001), ACM, pp. 174–187.

[16] PRESTON, W. C. Backup & Recovery. O’Reilly, 2006.

[17] QUINLAN, S., AND DORWARD, S. Venti: a new approach to
archival storage. In Proceedings of the 1st USENIX Conference
on File and Storage Technologies (FAST) (2002), USENIX Asso-
ciation.

[18] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design and
implementation of a log-structured file system. ACM Trans. Com-
put. Syst. 10, 1 (1992), 26–52.

[19] rsnapshot. http://www.rsnapshot.org/.

[20] Sqlite. http://www.sqlite.org/.

[21] SUMMERS, B., AND WILSON, C. Box backup. http://www.
boxbackup.org/.

[22] TRIDGELL, A. Efficient Algorithms for Sorting and Synchroniza-
tion. PhD thesis, Australian National University, Feb. 1999.

[23] WANG, J., AND HU, Y. WOLF–A novel reordering write buffer
to boost the performance of log-structured file systems. In Pro-
ceedings of the 1st USENIX Conference on File and Storage Tech-
nologies (FAST) (2002), USENIX Association.

[24] WEATHERSPOON, H., EATON, P., CHUN, B.-G., AND KUBI-
ATOWICZ, J. Antiquity: Exploiting a secure log for wide-area
distributed storage. In EuroSys ’07: Proceedings of the 2nd
ACM SIGOPS/EuroSys European Conference on Computer Sys-
tems 2007 (New York, NY, USA, 2007), ACM, pp. 371–384.

[25] WHEELER, D. A. SLOCCount. http://www.dwheeler.
com/sloccount/.

[26] ZHU, B., LI, K., AND PATTERSON, H. Avoiding the disk bottle-
neck in the data domain deduplication file system. In Proceedings
of the 6th USENIX Conference on File and Storage Technologies
(FAST) (2008), USENIX Association, pp. 269–282.

