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Abstract

Micro-recovery, or failure recovery at a fine granu-
larity, is a promising approach to improve the re-
covery time of software for modern storage systems.
Instead of stalling the whole system during failure
recovery, micro-recovery can facilitate recovery by a
single thread while the system continues to run. A
key challenge in performing micro-recovery is to be
able to perform efficient and effective state restora-
tion while accounting for dynamic dependencies be-
tween multiple threads in a highly concurrent en-
vironment. We present Log(Lock), a practical and
flexible architecture for performing state restoration
without re-architecting legacy code. We formally
model thread dependencies based on accesses to both
shared state and resources. The Log(Lock) execu-
tion model tracks dependencies at runtime and cap-
tures the failure context through the restoration level.
We develop restoration protocols based on recov-
ery points and restoration levels that identify when
micro-recovery is possible and the recovery actions
that need to be performed for a given failure con-
text. We have implemented Log(Lock) in a real en-
terprise storage controller. Our experimental eval-
uation shows that Log(Lock)-enabled micro-recovery
is efficient. It imposes < 10% overhead on normal
performance and <35% overhead during actual re-
covery. However, the 35% performance overhead ob-
served during recovery lasts only six seconds and re-
places the four seconds of downtime that would result
from a system restart.

1 Introduction

Enterprise storage systems serve as repositories for
huge volumes of critical data and information. Un-
availability of these systems results in losses amount-
ing to millions of dollars per hour [1], bringing orga-
nizations to a grinding halt.

Most existing work in the domain of storage sys-
tem availability addresses failures of the storage me-
dia (such as disks) and recoverability from these fail-
ures [2, 3, 4]. However, failures at the firmware
layer that result in service loss remain largely un-
addressed. At the same time, the software at

the firmware layer of a storage system has evolved
tremendously in terms of functionality. Modern
storage controllers are highly concurrent embedded
systems with millions of lines of code [5, 6]. As a
result of this complexity, recovering from controller
failures is both difficult and expensive.

While system availability requirements are con-
stantly being driven higher, failure recovery time is
increasing due to increasing system size, higher per-
formance expectations, virtualization and consolida-
tion. Since software failure recovery is often per-
formed through system-wide recovery, the recovery
process itself does not scale with system size [6, 7, 8].

How can failure recovery be made scalable? Par-
titioning the system into smaller components with
independent failure modes can reduce recovery time.
However, it also increases management costs and
decreases flexibility, while still being susceptible to
sympathetic failures. On the other hand, refac-
toring the software into smaller independent com-
ponents in order to use techniques such as micro-
reboots [8] or software rejuvenation [9] requires siz-
able investments in terms of development and test-
ing costs, unacceptable in the case of legacy sys-
tems. An alternative approach is to be able to
perform fine-granularity recovery or micro-recovery,
without re-architecting the system. Under this ap-
proach, failure recovery is targeted at a small subset
of tasks/threads that need to undergo recovery while
the rest of the system continues uninterrupted.

Enabling fine grained recovery can be challenging,
especially in legacy systems, and the following issues
must be addressed:

• Evaluating recovery success: What are the
failures that can effectively and efficiently be re-
covered from, using micro-recovery?

• Determining recovery actions: What are
the recovery strategies and recovery actions that
must be performed in order to restore the system
from an error state to an error-free state?

• Identifying dependencies: Given the large
number of dynamic dependencies possible in a
highly concurrent system, what is the scope of
fine-granularity recovery?



284	 FAST ’09: 7th USENIX Conference on File and Storage Technologies	 USENIX Association

• Enhancing recovery success and effi-

ciency: How can we enhance the system to fa-
cilitate better recovery success and efficiency?

We address the first three questions, focusing on
the challenges of tracking and restoring system state
during micro-recovery, evaluating the possibility of
recovery success and determining recovery actions.

We make two unique contributions in terms of
effective state restoration during micro-recovery.
First, by analyzing the system state space, we iden-
tify the set of events and system states that af-
fect state restoration from the perspective of micro-
recovery. We introduce the concepts of Restoration
levels and Recovery points to capture failure and re-
covery context and describe how to flexibly evalu-
ate the possibility of recovery success. Based on the
restoration levels and recovery points, we introduce
Resource Recovery Protocol (RRP) and State Re-
covery Protocol (SRP), which provide rules to guide
state restoration.

Our second contribution is Log(Lock), a practi-
cal and lightweight architecture to track dependen-
cies and perform state restoration in complex, legacy
software systems. Log(Lock) passively logs system
state changes to help identify dependencies between
multiple threads in a concurrent environment. Uti-
lizing this record of state changes and resource own-
ership, Log(Lock) provides the developer with the
failure context necessary to perform micro-recovery.
Recovery points and their associated recovery han-
dlers are specified by the developer. Log(Lock) is
responsible for tracking dependencies and comput-
ing restoration levels at runtime.

We have implemented and evaluated Log(Lock)
in a real enterprise storage controller. Our exper-
imental evaluation shows that Log(Lock)-enabled
micro-recovery is both efficient (<10% impact on
performance) and effective (reduces a four second
downtime to only a 35% performance impact last-
ing six seconds). In summary, micro-recovery with
Log(Lock) presents a promising approach to improv-
ing storage software robustness and overall storage
system availability.

2 Log(Lock): Design Overview

This section gives an overview of the Log(Lock) sys-
tem design. We first describe the problem state-
ment that motivates the Log(Lock) design. Using
examples, we highlight the unique characteristics of
micro-recovery in the context of highly concurrent
storage controller software. Then we outline the
technical challenges for systematic state restoration
during micro-recovery. Finally, we briefly describe
the system architecture of Log(Lock).

2.1 Motivation

In this section, we motivate the need for a flexible
and lightweight state restoration architecture using
a highly concurrent storage controller. The stor-
age controller refers to the firmware that controls
the cache and provides advanced functionality such
as RAID, I/O routing, synchronization with remote
instances and virtualization. In modern enterprise-
class storage systems, the storage controller has
evolved to become extremely complex with millions
of lines of code that is often difficult to test. The
controller code typically executes over an N-way
processing complex using a large number of short
concurrent threads (∼20 million/minute). While
the software is designed to extract maximum con-
currency and satisfy stringent performance require-
ments, unlike database transactions it does not ad-
here to ACID (atomicity, consistency, isolation and
durability) properties. This software is representa-
tive of a class expected to sustain high throughput
and low response times continuously.

With this architecture, when one thread encoun-
ters an exception that causes the system to fail, the
common way to return the system to an acceptable,
functional state is by restarting and reinitializing the
entire system. While the system reinitializes and
waits for the operations to be redriven by a host,
access to the system is lost contributing to down-
time. As the system scales to larger number of cores
and as the size of the in-memory structures increase,
such system-wide recovery will no longer scale [6, 8].

Many software systems, especially legacy systems,
do not satisfy the conditions outlined as essential
for micro-rebootable software [8]. For instance, even
though the storage software may be reasonably mod-
ular, component boundaries, if they exist, are loosely
defined and components are stateful. Under these
circumstances, the scope of a recovery action is not
limited to a single component.

The goal of micro-recovery is to perform recovery
at a fine granularity such as at the thread-level, while
determining the scope of recovery actions dynami-
cally, based on dependencies identified at runtime.
The key challenges in performing micro-recovery are
identifying dependencies based on failure and recov-
ery context, determining recovery actions and restor-
ing the system to a consistent state after a failure.

2.2 Examples

We present three real examples from a storage con-
troller software. We demonstrate how the semantics
and success of fine-grained recovery are determined
by failure context and the interactions of threads.

Figure 1 shows two code snippets: R1 increments
the number of active users before performing work



USENIX Association 	 FAST ’09: 7th USENIX Conference on File and Storage Technologies	 285


















 




Figure 1: Lost Update Conflict
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Figure 2: Resource Ownership Conflict

and in R2, a background job is triggered when there
are no active users in the system. When a panic
(user defined or system failure/exception) occurs
during the execution of region R1, then assume that
the micro-recovery strategy is to reattempt execu-
tion of region R1. The recovery action must ensure
clean relinquishing of resources such as the lock nu-
mActiveUsersLock. It is also important to ensure
that the system state is consistent since corruption of
the counter can either cause the background jobs to
never be triggered or to be triggered in the presence
of active users. In Example-1, while it is permissible
for other threads to read the value of the numAc-
tiveUsers count at anytime provided the numAc-
tiveUsersLock has been released, the system must
ensure that if and only if a thread fails after perform-
ing an increment operation on the count, a decre-
ment operation is performed during recovery. On
the other hand, if the failure was caused during the
execution of region R2, an idempotent background
task that is not critical, the recovery strategy may
be to just abort the current execution of the back-
ground task. However, recovery must ensure that
the lock numActiveUsersLock has been released.

Figure 2 shows the processing of a write com-
mand. In the event of encountering a failure, state
restoration must ensure that temporary resources
obtained from a shared pool are freed correctly in
order to avoid resource leaks or starvation. It may
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 


Figure 3: Dirty Read Conflict

also require that certain cache tracks are checked
for consistency, depending upon the point of failure.
However, for a resource such as a buffer or empty
cache track obtained from a shared pool, restoring
the previous contents is not necessary.

Figure 3 shows a thread that updates a global
variable indicating the metadata location, such as
for checkpoint activity. In the event of a failure
caused due to a failed location, the thread may have
the opportunity to modify the location without no-
tifying other threads or causing inconsistency, pro-
vided no other thread has already consumed the
value. However if that is the case, the system may
have to resort to recovery at a higher level.

These examples highlight the fact that consis-
tency requirements for state restoration vary with
failure context. For example, in the case of a counter
generating unique numbers, the only requirement
may be that modifications are monotonous. For a
shared resource, the state remains consistent as long
as there are no resource leaks that could eventually
lead to starvation and system unavailability. Unlike
a transactional system, where similar problems are
addressed, the semantics of the state and failure may
render certain types of conflicts irrelevant from the
perspective of system recovery. This emphasizes the
need for a flexible state restoration architecture that
is also lightweight and efficient, thereby allowing the
system to sustain high performance.

2.3 Failure Model

Our work is targeted at transient failures in the
system, especially failures where the developer now
uses system restart as a method to take the system
from an unknown or faulty state to a known state.
A number of such failure scenarios occur in stor-
age controller software and may apply equally well
to other software systems. We present some exam-
ples from our analysis of storage controller failures.
Bad input from administrator or user, insufficient
error handling, deadlocks, a faulty communication
channel, unhandled race conditions, boundary con-
ditions, and timeouts are some examples of such fail-
ures seen in storage controllers. The system restart
mechanism is used often because the system has in-
sufficient information, for example, when reacting
to an asynchronous event or when dealing with an
unknown state or receiving an unexpected stimulus.
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For example, consider a failure scenario where a
write operation to disk fails because a driver from a
third party vendor returns an unidentified error code
due to a bug in its code. In this case, since writes are
buffered in a fast write cache and the actual write to
disk is performed asynchronously, dropping the re-
quest is not an option. Another example is a config-
uration issue that appeared early in the installation
process that may have been fixed by trying various
combinations of actions that were not correctly un-
done. As a result the system finds itself in an un-
known state that manifests as a failure after some
period of normal operation. Such errors are diffi-
cult to trace, and although transient may continue
to appear every so often.

Some transient failures can be fixed through ap-
propriate recovery actions that may range from
dropping the current request to retrying the oper-
ation or performing a set of actions that take the
system to a known consistent state. Some other ex-
amples of such transient faults that occur in stor-
age controller code are: (1) An unsolicited response
from an adapter - An adapter (a hardware compo-
nent not controlled by our microcode) sends a re-
sponse to a message which we did not send - or do
not remember sending; (2) Incorrect Linear Redun-
dancy Code (LRC): A control block has the wrong
LRC check bytes, for instance, due to an undetected
memory error; (3) Queue full condition: An adapter
refuses to accept more work due to a queue full con-
dition. In addition, there are other error scenarios
such as violation of service level agreements. The
‘time-out’ conditions are also common in large scale
embedded storage systems. While the legacy sys-
tem grows along multiple dimensions, the growth is
not proportional along all dimensions. As a result
hard-coded constant timeout values distributed in
the code base often create unexpected artificial vio-
lations. For a more detailed classification of software
failures, please refer to [6].

2.4 Technical Challenges

With software recovery, state restoration actions de-
pend on the actions of the failed thread and its in-
teractions with state and shared resources.

Threads in the system interact in two fundamen-
tal ways: (1) reading/writing shared data and (2) ac-
quiring/releasing resources from/to a common pool.
Threads also interact with the outside world through
actions such as positioning a disk head or sending a
response to an I/O. Often these actions cannot be
rolled back and are referred to as outside world pro-
cesses (OWP) [10]. In such a system, state restora-
tion and micro-recovery must consider the sequence
and interleaving of the actions of concurrent threads
that gives rise to the following conflicts:

• Dirty Reads (Write-Read Conflict): Data
written by the failed thread has already been
consumed by another thread.

• Lost Updates (Write-Write Conflict):
Rolling back the failed thread may cause the up-
dates of other threads to be overwritten or lost.

• Unrepeatable Reads (Read-Write Con-
flict): The value of the shared state variable
required by the failed thread has already been
overwritten.

• Resource Ownership : The failed thread may
continue to be in the possession of resources from
a shared pool or may be holding a lock resulting
in resource leaks or starvation issues.

The above taxonomy is derived from that used to
describe concurrency control concepts in transaction
processing systems [11]. For a given failure, the set
of recovery actions that need to be performed to re-
turn the system to a consistent state may vary de-
pending upon the failure and the occurrence of one
or more of the above conflicts. Note that for appli-
cation state, the intention is not to deterministically
replay the events before the failure, or recover the
application state to exactly as it was at the instant
of failure. Rather, the goal is to restore the system
to an error-free state. In fact, the recovery strat-
egy may itself explicitly rely on non-determinism
to remove transient failures. For example, Rx [12]
demonstrates an interesting approach to recovery by
retrying operations in a modified environment using
checkpointed system states for rollbacks.

Checkpointing for fault-tolerance is a well known
technique [10, 12, 13, 14] that has also been ap-
plied to deterministic replay for software debug-
ging [15, 16, 17]. However, checkpointing tech-
niques are mostly targeted at long-running applica-
tions [10] such as scientific workloads [13], or ap-
plications where the system can tolerate the over-
head imposed by checkpointing [12, 14]. A number
of unique challenges in the case of storage controller
software make checkpointing infeasible: Unlike long-
running applications, storage controllers have a high
rate of short (< 500µsecs) concurrent threads and
are designed to support extremely high throughput
and low response times. Given the highly concur-
rent nature of controllers, both quiescing the system
in order to take the checkpoint, as well as logging
the tasks in order to re-execute work beyond the
checkpoint is expensive in terms of time and space -
especially since system state includes large amounts
of metadata and cached data. Next, communication
with OWPs such as hosts and media cannot be rolled
back and hence invalidates checkpoints. Finally, due
to the complexity of the code, not all failures will be
amenable to micro-recovery, making checkpointing
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Figure 4: Log(Lock) Architecture Overview

too heavy weight.
State restoration and conflict serialization is also

of interest to transactional systems [18]. Transac-
tional databases use schemes like strict 2-phase lock-
ing (2PL) to guarantee conflict serializability [19].
However, such techniques can increase the length of
critical sections (i.e. durations of locks) and are in-
efficient for the highly-concurrent storage controller
environment. Moreover, we show in Section 2.2 that,
recovery actions are determined based on both the
context and semantics of failure and a “one size fits
all” serializability, while simplifying recovery proce-
dures, can constrain the recovery process.

2.5 System Architecture

The Log(Lock) architecture provides support for
state restoration during micro-recovery. To achieve
this goal, Log(Lock) tracks resources and state de-
pendencies relevant to a thread that has incorpo-
rated recovery handlers for micro-recovery.

Figure 4 presents an overview of our system ar-
chitecture and describes the roles played by the
Log(Lock) execution model and restoration proto-
cols. The figure shows a system with concurrently
executing threads where the thread depicted by a
solid line incorporates micro-recovery mechanisms.
In order to facilitate micro-recovery, the thread sets
recovery points during execution, where each recov-
ery point is associated with a recovery criterion. The
recovery criterion specifies the conditions that must
be satisfied by the failure context in order to use the
recovery point as a starting point for recovery. Us-
ing the Log(Lock) architecture, the thread (depicted
by a solid line) enabled with micro-recovery mecha-
nisms indicates state and resources that are relevant
to recovery. Log(Lock) then begins logging all rele-
vant changes and dependencies, based on the actions
of both this thread and other concurrent threads (de-
picted by dotted lines).

In the event of a failure, control transfers to a
developer specified recovery handler. The handler

performs state restoration actions by utilizing the
resource tracking and state dependency information
provided by the Log(Lock) execution model, in con-
sultation with the restoration protocols. It also de-
cides on an appropriate recovery strategy such as
rollback, error compensation or system-level recov-
ery. The implementation of the Log(Lock) depen-
dency tracking component must ensure efficiency
during normal operation while the recovery proto-
cols ensure consistency of state restoration during
failure recovery. Below, we summarize the four pri-
mary design objectives of Log(Lock):

• Incremental: Allow micro-recovery to be ap-
plied incrementally to handle failures depending
upon effectiveness of a fine-grained approach.

• Lightweight and Non-intrusive: Minimize
impact on system performance and modifications
to legacy software functional architecture.

• Dynamic: Handle dynamic dependencies.

• Flexible: Allow application developers the flex-
ibility to treat different failures differently with-
out enforcing a “one size fits all” consistency re-
quirement, allowing a larger number of failures
to be handled correctly at a fine-granularity.

In the next two sections, we first describe the con-
cepts of ‘restoration levels’ and ‘recovery points’ and
present the restoration protocols. Then, we present
the Log(Lock) execution model and illustrate appli-
cation of the protocols through example scenarios.

3 State Space Exploration

In this section, we model failure scenarios and recov-
ery contexts using a state space analysis approach.
Our approach is based on the intuition that in a con-
current system, global state and shared resources are
often protected by locks or similar primitives.

This section is divided into two parts. In the
first part, we model system events, state transitions
and interleaving of concurrent threads and demon-
strate the discrete state space and recovery scenar-
ios. We introduce the concepts of Restoration Level
and Recovery Criterion, that help match a failure
context to a recovery strategy. In the second part,
we systematically identify the set of recovery strate-
gies that can be applied to each failure scenario and
present two protocols for state restoration. The Re-
source Recovery Protocol (RRP) defines the
steps to handle resource ownership conditions and
the State Recovery Protocol (SRP) sets forth
the rules to perform state restoration.

3.1 Modeling Thread Dependencies

Let T = {Ti|1 ≤ i ≤ n} define a system with n con-
current threads. Let Xi(t) denote the sequence of
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Table 1: Valid States for Thread Ti

Notation Description

TiS Ti initial state
TiR Ti holds a read lock
TiW Ti holds an exclusive write lock
TiU Ti has released the lock
TiF Ti is in failed state
TiA Ti acquired a resource
TiRe Ti released a resource
TiE Ti performed an externally visible action

states of thread Ti up to time t. The schedule S(t)
at time t is the interleaving of the sequence of actions
in Xi(t) for each thread Ti. Let v denote a globally
shared structure protected by a lock. Table 1 shows
the list of valid states for a thread.

The system implements micro-recovery at a
thread granularity. Any failure that cannot be han-
dled by micro-recovery is resolved using a system-
level recovery mechanism (e.g. software reboots).

The state space for system execution consists of
all legitimate schedules S(t). System states that rep-
resent the failed state of one of the executing threads
are relevant from the perspective of micro-recovery.
To simplify the subsequent discussion, we apply the
following rules to reduce the state space:

• We consider the interactions between only two
threads T1 and T2.

• We only consider system states where the last
state of thread T1 is T1F .

• Only T1 encounters a failure. Failures of thread
T2 are symmetric and can be treated similarly.

• Read or write actions performed by T2 before any
such actions by T1 are ignored.

• We assume that the system can recover from only
a single failure. Failure during recovery results in
system-level failure recovery.

• The externally visible action is equivalent to a
‘commit action’ that cannot be rolled back.

Occurrences of the following patterns in the
schedule S(t) are of interest and relevant to the se-
lection of a recovery strategy by thread T1. Let →
denote the “happened before” relation [20].

• Dirty Read (DR): T1W→T2R→T1F .

• Lost Update (LU): T1W→T2W→T1F .

• Unrepeatable Read (UR): T1R→T2W→T1F .

• Residual Resources (RR):
(T1R→T1F )∧(T1U�T1F) or (T1W→T1F )∧(T1U�T1F)
or (T1A→T1F )∧(T1Re�T1F).

• Committed Dependency (CD):
T1W→T2R→T2E→T1F or T1W→T2W→T2E→T1F

or T1R→T2W→T2E→T1F .

To determine the right strategy for recovery, it is
important to determine which of the above conflicts
have occurred and are relevant to recovery.

Restoration Level: The restoration level Ri(t)
of a thread Ti at instant t, is a 5-tuple
�DR,LU, UR, RR, CD� indicating the occurrence of
dirty reads, lost updates, unrepeatable reads, resid-
ual resources and committed dependencies in S(t).

Recovery Point: A recovery point pi in thread Ti

represents an execution point to which control is
transferred at the end of a recovery procedure. A
default recovery point defined for all threads is the
initial system state.

Recovery Criterion: Each recovery point pi is as-
sociated with a recovery criterion Ci which is a 4-
tuple �DR, LU, UR, RR� that represents the set of
criteria for dirty reads, lost updates, unrepeatable
reads and residual resources, that the system state
should satisfy before recovery can be attempted us-
ing pi. For the default recovery point, all elements
of the recovery criterion are defined as “don’t care”.

CD does not figure in the recovery criterion since
this information is used only to choose between al-
ternate recovery strategies in the recovery handler.
We discuss the use of CD conditions during recov-
ery in the state recovery protocol in Section 3.2. In
our current design, recovery points and their associ-
ated recovery handlers are identified by developers
and are associated to an execution context. When
a thread leaves a context, the associated recovery
points go out of scope. Within a single execution
context, multiple recovery points may be defined,
any of which could potentially be used during re-
covery. Then the appropriate recovery point for the
current failure scenario is chosen by the logic in the
recovery handler. In the developer-specified recovery
handler, the feasibility and correctness of restoring
the failed system state using a recovery point, is de-
termined using the resource and state recovery pro-
tocols described next. Once the valid recovery points
have been identified from the available choices, the
selection of an appropriate recovery point and re-
covery strategy may be a decision depending upon
factors such as the amount of resources available for
recovery and the time required to complete recovery.

3.2 Restoration Protocols

We consider the following possible recovery strate-
gies: (1) Rollback; (2) Roll-forward style recovery or
error compensation; (3) System-level recovery [21].
Of these the rollback and error compensation strate-
gies may be applied to the failed thread only (single-
thread recovery) or to multiple threads including the
failed thread (multi-thread recovery). The following
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protocols are based on the assumption that commit-
ted dependencies cannot be rolled-back.

Resource Recovery Protocol (RRP): System
state can be restored to recovery point pi only if
Ri(t) meets Ci on the RR criterion. Otherwise,
the thread must first attempt to release or acquire
resources to meet the criterion.

The state recovery protocol (SRP) specifies the
recovery strategies applicable for different failure
and recovery contexts. The rationale behind the
SRP rules is that an occurrence of DR, LU or UR
events imply that an interaction with other concur-
rent threads in the system have occurred. When the
restoration level does not meet the recovery criterion
and interactions with other threads have occurred,
then single thread recovery is no longer sufficient.
Next, the success of multi-thread recovery depends
on the occurrence of an externally visible action and
whether the dependency has already been commit-
ted. Concretely, the rules of state recovery are:

State Recovery Protocol (SRP): 1. To per-
form single-thread recovery and restore state to re-
covery point pi, Ri(t) should meet Ci on every ele-
ment of Ci.
2. If Ri(t) does not meet Ci on DR, LU, UR condi-
tions and CD occurs in S(t), then only error compen-
sation or system-level recovery can be attempted.
3. If Ri(t) does not meet Ci on DR, LU, UR condi-
tions and CD has not been observed in S(t), then
only multi-thread rollback, error compensation or
system-level recovery is possible.

4 Log(Lock) Execution Model

In this section, we present a concrete execution
model of Log(Lock), that utilizes the state space
analysis presented in the previous section. We show
how to decide recovery strategies and how restora-
tion levels can be tracked practically. Although the
discussion in this paper focuses on a thread-level re-
covery granularity, the Log(Lock) architecture can
easily be extended to a more coarse granularity of
micro-recovery such as at a task or component level.

In a complex legacy system such as a storage
controller, not all failures can be handled efficiently
through fine-grained recovery - either because the
failure and recovery code may be too complex, or
system-level recovery may be a more effective recov-
ery technique, or simply because there may be in-
sufficient development and testing resources. There-
fore, our approach first involves identifying candi-
dates for fine-grained recovery based on the analysis
of failure logs and the software itself. The execut-
ing instance of each candidate is known as a recov-
erable thread. Recall that, for each recoverable

thread multiple recovery points and associated re-
covery criterion may be defined. In the event of a
failure, control is transferred to the recovery handler
(Section 2.5).

4.1 Tracking State Changes

Log(Lock) is based on the intuition that all shared
state and resources are protected by locks or similar
synchronization primitives. Tracking lock/unlock
calls can therefore guide the understanding of system
state changes and provide the information required
to identify the restoration level at the instant of fail-
ure. At the same time, by tracking these calls on
resources and applying the resource recovery proto-
col, we can prevent deadlocks or resource starvation
issues. In order to compute restoration levels and
perform system state restoration, Log(Lock) main-
tains the following:

Undo Logs: Undo logs are local logs maintained by
each recoverable thread for the following purposes:
(1) Track the sequence of state changes within a sin-
gle thread; (2) Track the creation of recovery points
and (3)Track resource ownership. In general, the
Undo logs can be used to encode any information re-
quired by a thread’s recovery handler. In our current
implementation, Undo-logging activities and main-
tenance of the Undo logs are left to the developer.

Change Track Logs: In order to track conflicts
between concurrent threads, Log(Lock) maintains
Change Track Logs for each lock. The Change Track
Log is used to: (1) Track concurrent changes to
shared structures and (2) Track commit actions.

Both the Undo Log and Change Track Logs are
maintained only in main memory and are verified for
integrity using checksums. In our implementation,
the change track log is implemented as a hashtable
indexed using the pointer to the lock as key. Unlike
database logs or checkpoints for state restoration,
these logs do not need to be flushed to stable storage.
If a failure crashes the system causing it to lose or
corrupt the logs, then we must perform a system-
level restart to restore the system to a consistent,
functional state and no longer require the software’s
state restoration logs from before the failure.

Log(Lock) provides four basic primitives to a re-
coverable thread:

• startTracking(lock): Start tracking changes to
the structure protected by lock.

• stopTracking(lock): Stop tracking changes to the
structure protected by lock.

• getRestorationLevel(lock): Compute the restora-
tion level for the structure protected by lock.

• getResourceOwnership(lock): Get ownership in-
formation (including lock ownership) for the
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Figure 5: State Restoration Using Log(Lock)

structure protected by lock.

All the above primitives are explicitly inserted
into the code by the developer. The startTrack-
ing call is used to trigger change tracking for shared
state and resources protected by the lock param-
eter. These accesses are identified by trapping
lock/unlock calls. When the recoverable thread de-
termines that the logs for a particular structure are
no longer required, it explicitly issues a stopTrack-
ing call. In the event of a failure, the system trans-
fers control to the designated recovery handler. The
recovery handler can utilize the getRestorationLevel
and getResourceOwnership primitives to determine
the current restoration level and resource ownership
and then invoke recovery procedures appropriately.
The restoration level is determined by examining the
undo and change track logs.

4.2 Recovery Using Restoration Protocols

The goal of our state restoration approach is to re-
turn the system to a correct, functional and known
state by performing localized recovery and state
restoration actions. The recovery actions are tar-
geted at only a small subset of the threads in the sys-
tem and a small region of the total system state that
has been identified as affected by failure-recovery.
Figure 5 shows pseudo code for state restoration us-
ing the restoration protocols and the Log(Lock) ar-
chitecture for the scenario shown in Figure 1. As-
sume that, the recovery criterion associated with
recovery point R1 specifies that resources (numAc-
tiveUsersLock) acquired after the recovery point
should be released and does not care about occur-
rences of DR, LU or UR events. As shown in the Fig-
ure 5, the getResourceOwnership primitive is used to

determine ownership of the numActiveUsersLock re-
source. Then, if the restoration level indicates that
a DR or LU event has occurred, that would imply
that the thread has successfully completed incre-
menting numActiveUsers in the first place. Then
in order to rollback the failed thread execution cor-
rectly to recovery point R1 without losing the work
done by other threads, a matching decrement oper-
ation would need to be performed. If however the
change track logs indicate that no other thread has
consumed data written by the failed thread, it could
imply that the failed thread either did not complete
its increment operation or was the last thread to up-
date the value of numActiveUsers. In that case, the
recoverable thread could use its undo log to undo
its changes, if any. The developer of this recov-
ery handler is expected to have used the Undo log
interfaces to store the old value prior to modifica-
tion. Once state restoration is complete, execution
is transferred to recovery point R1.

Similarly, in the case of the example in Figure 2,
assume that the recovery criterion only specifies the
constraint on releasing the temporary resource ac-
quired after the recovery point. Therefore, the ge-
tResourceOwnership primitive is used to obtain the
current ownership status of the temporary resource.
If the resource is held by the thread, in order to
rollback to recovery point R3, the resource must be
cleanly relinquished. The pseudo code for this exam-
ple and the next is not shown due to lack of space.

In the case of the failure scenario shown in Fig-
ure 3, the recovery criterion for recovery point R4
would be that no resources acquired after the re-
covery point (such as lock MetadataLocationLock)
should be held by the thread and that no DR or LU
events should have occurred. If the restoration level
indicates that no other thread has already consumed
this value (i.e., no DR or LU events have occurred),
then the changes of the failed thread can be undone
safely by replacing with the values in the Undo log.
However, if the value is likely to have been consumed
by another thread (i.e. DR or LU occurred), then
the restoration level does not meet the recovery cri-
terion for R4. So, in accordance with SRP, the error
cannot be handled using single-thread recovery. De-
pending upon the support for multi-thread recovery
(provided the CD event has not occurred) recovery
may require rollbacks of multiple threads. If how-
ever, CD has occurred, then system-level recovery
or error-compensation is performed.

4.3 Implementation Details

Undo logs go out of scope i.e., can be purged when
a recoverable thread completes execution. Similarly,
change track logs for a lock are purged when the
recoverable thread issues a stopTracking call. How-
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ever, unlike undo logs, change track logs cannot be
purged immediately since these centralized logs may
be shared by multiple recoverable threads. In that
case, the log entries corresponding to the purging
thread are only marked for purging and are actually
purged when the last recoverable thread using the
log issues a stopTracking call on that lock.

Multi-thread recovery i.e., applying state restora-
tion and recovery to more than one thread, can
typically handle more failure scenarios compared to
single-thread recovery. However, multi-thread re-
covery is complex to implement. Moreover, multi-
thread recovery may result in a domino effect [22]
(also referred to as cascading aborts) potentially re-
sulting in unavailability of resources and unbounded
recovery time[6]. A simpler and more effective tech-
nique would be to limit recovery to a single thread
and ensure recovery success through other mech-
anisms such as dependency tracking and schedul-
ing. Recovery conscious scheduling [6] describes an
approach where dependencies between concurrent
threads are identified and dependent threads seri-
alized. This approach can help limit the number of
concurrent dependent threads and increase single-
thread recovery success.

5 Experiments

We have implemented the Log(Lock) architecture
for system state restoration and micro-recovery on
an industry standard, high-performance storage con-
troller and applied Log(Lock) to a variety of state
and resource locks. In this section, we present
our evaluation of Log(Lock) with respect to perfor-
mance, failure recovery and scalability. We next de-
scribe our experimental setup, evaluation metrics,
experimentation methodology and results.

We identified state and resource instances that
are changed or accessed rapidly through the obser-
vation periods, based on instrumenting the system
(Table 2). We also identified representative fail-
ure scenarios by analyzing bug reports, failure logs
and code. Using these scenarios as candidates for
micro-recovery and state restoration, we evaluate
Log(Lock) efficiency and effectiveness. In summary,
our results show that:

• The Log(Lock) architecture imposes negligible
overhead and sustains high performance (< 10%
impact) under a variety of workloads, even while
tracking rapidly changing state (nearly 15K
times/second) for significant durations.

• We observe an extremely high rate of recovery
success (>99%), i.e., percentage of time restora-
tion levels meet recovery criterion. This high rate
of recovery success makes it evident that micro-
recovery with Log(Lock) can be a promising ap-

proach to system recovery from transient failures.

• The Log(Lock) approach exhibits significant im-
provement in availability, replacing a four sec-
ond downtime without micro-recovery with only
a 35% performance impact lasting six seconds
with Log(Lock).

5.1 Experimental Setup

We implemented the Log(Lock)-based state restora-
tion architecture in an enterprise-class high perfor-
mance, highly concurrent embedded storage con-
troller. The system consists of a 4-way processor
complex (4 3.00 GHz Xeon 5160 processors with
12 GB memory running IBM MCP Linux) running
the controller software over a simulated backend.
The controller implements persistent memory (non-
volatile storage) for write caching. Simulating the
backend allows flexibility in terms of experimenting
with different configurations such as read/write la-
tencies and error injection. The back end configura-
tion varied between 50-250 disks of 100GB each with
the maximum read and write latencies of the disk set
to 20 ms. The memory footprint of our implemen-
tation of the Log(Lock) architecture was less than
48KB. The host functionality was performed from a
different system (2 1.133 GHz Pentium III processor
with 1 GB memory, RHLinux 9) connected to the
storage complex through a high-bandwidth (2 GB)
fiber channel interconnect.

Our workload was generated using a randomized
synthetic workload generator which took the follow-
ing inputs: read/write ratio, block size and queue
depth (i.e. maximum number of outstanding re-
quests from the host). The experiments presented
in this paper utilized three distinct read/write ra-
tios: 100% writes, 50%-50% mix of reads and writes
and 100% reads. Block size was set to 4 KB and
queue depth varied between 16 and 256.

5.2 Metrics

Our experiments evaluate efficiency and effectiveness
of the Log(Lock) architecture. Efficiency and effec-
tiveness depend on the following parameters: (1)
rate of access to shared state or resources and (2)
duration of a recoverable thread. Increasing each
of these parameters results in an increase in the log
size, logging overhead and the probability of con-
flicts.
Efficiency refers to the impact of Log(Lock) on

system performance. To measure performance, we
utilize two metrics: throughput (IOs per second or
IOps) and latency (seconds/IO).
Effectiveness refers to the ability of the state

restoration architecture to reduce the recovery time
and positively impact the availability of the system.
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Concretely, it refers to the probability of recovery
success with the Log(Lock) architecture and the im-
pact on system recovery time.

Effectiveness is measured using the following met-
rics: (1) recovery success, i.e. the percentage of time
the restoration level meets the recovery criterion for
single thread recovery, and (2) recovery time, i.e. the
time required to restore the system to a consistent
state after encountering a failure. Note that in the
experiments reported in this paper we focus on single
thread recovery while evaluating recovery success.
While our Log(Lock) approach can also be applied
to multi-thread recovery, as described in Section 4.3,
multi-thread recovery can be costly in terms of cod-
ing effort, resource consumption and recovery time.
Instead, we assume that a technique such as recov-
ery conscious scheduling [6] can help reduce the need
for multi-thread recovery and improve the success of
single thread recovery.

5.3 Methodology

In order to evaluate Log(Lock), we first identify state
and resource instances in the software for tracking.
We instrumented the system to identify top locks in
terms of access and contention. Table 2 shows the
top five locks in terms of number of accesses and con-
tention. The table shows the semantics of the lock
(i.e. the state or resource protected), the number
of CPU cycles lost to contention, number of occur-
rences of contention (> 2000 CPU cycles), number
of accesses to the lock and the average number of
lock acquisitions per IO. Frequently acquired locks
are indicative of state that is accessed or modified of-
ten. For example, Table 2 shows that the fiber chan-
nel lock accessed nearly 10 times per IO is a good
candidate for evaluating the efficiency of Log(Lock).
Contention, while indicative of longer durations of
holding locks, also shows a higher probability of ac-
cesses by concurrent threads. As Table 2 shows, the
percentage of accesses resulting in lock contention is
low as a result of the highly concurrent design of the
controller. Thus, for short durations of tracking we
expect high recovery success.

To evaluate effectiveness, we first measure the
recovery success for the candidates identified from
Table 2. We measure recovery success across locks
with different rates of access and varying duration of
tracking. To evaluate the impact on recovery time,
we identify candidates for state restoration based on
analysis of the software, failure logs and defects.

We present evaluation of the efficiency of our
Log(Lock) architecture as compared to the original
system, henceforth referred to as baseline. The base-
line implementation does not perform state restora-
tion or fine-grained recovery. Instead, it uses a
highly efficient system level recovery mechanism that

Table 2: Lock Access over 75 minutes
Lock Contention Number of Locks/IO

Cycles (Count) accesses

Fiber channel 2654991 (578) 137196747 10.34
IO state 219969 (76) 90122610 6.79
Resource 608103 (100) 63482290 4.78
Resource state 124965 (52) 30040757 2.26
Throttle timer 79848 (11) 113316 0.0085
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Figure 6: Rate vs Throughput (100% Writes)

checks all persistent system structures such as non-
volatile data in the write cache for consistency, reini-
tializes software state and redrives lost tasks. Note
that no hardware reboot is involved.

An alternative approach to Log(Lock) is to imple-
ment schemes such as strict 2-phase locking (2PL),
commonly used in transactional systems. Essen-
tially, these protocols require locks to be held for the
entire duration of a recoverable thread. However,
due to the high degree of concurrency in the sys-
tem and the implementation of lock timeouts, such a
scheme when implemented in our storage controller
software caused lock timeouts and failed to bring
up the system. Therefore, throughout this evalua-
tion section, we primarily use the baseline system
for comparison.

5.4 Efficiency of Log(Lock)

In order to measure efficiency, we compare the per-
formance of the Log(Lock) architecture with the
baseline system during failure-free operation.

5.4.1 Effect of Frequency of State Change

As described in Section 5.2, as the rate of accesses to
a state variable or resource being tracked increases,
the logging overhead increases. The workloads used
for this experiment consisted of 100% write IOs and
the data is averaged over 10 runs of 10 minutes each.
The queue depth is represented on the x-axis. For
this experiment, we chose four locks from Table 2,
representative of a range of access rates, ranging
from 12.5 times/second to 15244 times/second. The
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Figure 9: Duration of Tracking vs
Throughput (100% Writes)

Table 3: % Duration of Tracking vs Latency

Queue (Duration of tracking in CPU Cycles)

Depth 2894 7258 20228 34642 69830

% Increase in latency over baseline

16 2.03% 0.68% 0.00% 4.05% 9.46%
32 1.69% 0.34% 0.34% 4.39% 10.47%
64 2.72% 0.34% 0.51% 4.76% 10.71%
128 2.54% 0.85% 0.00% 5.08% 9.32%
256 2.10% 0.00% 0.42% 2.94% 8.82%

duration of tracking was 2600 CPU cycles on average
(and standard deviation 265 CPU cycles).

Figure 6 shows the throughput with varying ac-
cess rates under different queue depths. The num-
bers show that even for high access rates, the
Log(Lock) approach has negligible impact on perfor-
mance. The lock with access rate 14107 times/sec
(the resource pool lock) was tracked for 2429 CPU
cycles and results in a 4.5% drop in throughput.
We attribute this to the occurrence of nested lock
conditions in that particular code path, causing the
system to be sensitive to even the small delay intro-
duced by Log(Lock).

Figure 7 shows the variation of latency with queue
depth for different access rates. The curves for
the various access rates almost completely overlap
showing that across configurations, the impact of
Log(Lock) on latency, even for high access rates,
is negligible. The observation that the latency in-
creases with queue depth is a queuing effect com-
monly observed in systems [23] and is independent
of Log(Lock). Figure 8 zooms into the points for
queue depth 16 to give the reader a closer look at
the data. As in the case of throughput, latency in-
creases by ∼4% for the resource pool lock and is at-
tributed to the occurrence of nested lock situations
in the code path. The important message from Fig-
ures 6 and 7 is that Log(Lock) tracking can sustain
high performance even while tracking rapidly modi-
fied/accessed state or resources.

Table 4: % Overhead (other workloads)

Queue Workload 1 Workload 2

Depth Through- Latency Through- Latency

-put -put

16 0.43% 0.47% 0.08% ∼0.00%
32 0.25% ∼0.00% 0.78% 0.75%
64 0.24% 0.39% 0.13% ∼0.00%
128 0.29% 0.39% 0.79% 0.75%
256 0.25% 0.00% 0.12% 0.19%

5.4.2 Effect of Duration of Tracking

Figures 9 and Table 3 show the variation of sys-
tem performance with different durations of track-
ing. The durations were measured in terms of num-
ber of CPU cycles between the startTracking and
stopTracking calls, averaged over 10 runs of 10 min-
utes each. The independent parameter queue depth
is shown on the x-axis. The data represents the per-
formance for candidate locks from Table 2 that were
tracked for different durations ranging from 2894
CPU cycles to 69830 CPU cycles (IO state for 2894
and 69830 CPU cycles, timer, fiber channel and re-
source pool for 7258, 20228 and 34642 CPU cycles
respectively). The numbers were chosen to be repre-
sentative of a range of tracking durations. Since no
functional code was modified, rather than varying
the duration of a single lock, different locks were in-
strumented to obtain this range. The rate of access
of each lock varied as shown in Table 5.

From Figures 9 and Table 3 we observe that, the
performance of the system with Log(Lock) is com-
parable to the baseline system across various queue
depths. For the IO state lock (a lock in the IO path),
when the duration of tracking was increased from
2894 CPU cycles to 69830 CPU cycles, the through-
put dropped by 8.85% and response time increased
by 9.76% on average compared to baseline. This
drop in performance can be attributed to two fac-
tors: (1) occurrence of more conflicts with increase
in duration of tracking and (2) increased possibility
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of encountering nested lock conditions, which are
sensitive to the delay introduced by tracking. In
the case of the resource lock, a tracking duration to
34642 CPU cycles resulted in a drop of only 4.3%,
which is nearly identical to the performance with a
tracking duration of only 2429 CPU cycles, as shown
in Section 5.4.1. We conclude that, though the over-
head of tracking is a function of both the frequency
and duration of tracking, it is more significantly im-
pacted by the semantics of the lock being tracked
and the efficiency of the code path involving the lock.

5.4.3 Performance with Other Workloads

Table 4 show the throughput and latency with four
other workloads. The figures compare the perfor-
mance of a system powered by Log(Lock) and the
baseline system under varying queue depths for the
following workloads: Workload-1 (100% read, disk
latency 1ms), and Workload-2 (50% read, disk la-
tency 1ms). Data from tracking the fiber channel
lock (15244 times/sec for 20228 CPU cycles each) is
shown. Overall, the impact on performance was <

1% in all cases. These results reiterate the observa-
tion that Log(Lock) is lightweight and sustains high
performance for a range of workloads.

Examining the object code for our implemen-
tation showed that in the event of a lock being
tracked, fewer than 200 assembly instructions were
added to the code path. Assuming one instruc-
tion executes per CPU cycle, even at a frequency of
15244 times/second, on a 3.00 GHz processor, this
amounts to a time overhead of less than 1% (assum-
ing that the size of the state being saved to undo logs
is small). Also, note that storage controller code
by itself is aggressively optimized to sustain high
throughput, minimize the duration of locks in the
I/O path and avoid nesting of locks to a large extent.
Unlike checkpoints, which require a large amount of
state to be copied to stable storage, our techniques
copy small amounts of relevant state and informa-
tion in memory only. The combination of all these
factors results in the Log(Lock) system being able to
sustain high performance despite an extremely high
frequency of access to shared state and resources.
In conclusion, we believe that the scenarios where
performance will be impacted by tracking are when
there are multiple levels of nesting with frequently
accessed locks, increasing sensitivity to tracking de-
lay. However, we expect that these situations are
uncommon in well-designed systems.

5.5 Effectiveness of Log(Lock)

The next set of experiments are focused on evaluat-
ing the effectiveness of a micro-recovery framework
with Log(Lock) in improving system recovery.

5.5.1 Recovery Success

The first metric of effectiveness is recovery success
i.e., the percentage of time the restoration level
meets the recovery criterion at the end of execution
of a recoverable thread. This metric demonstrates
the opportunity for micro-recovery in the system
and evaluates if the system can effectively utilize
Log(Lock)-based state restoration. Table 5 shows
the recovery success for locks of varying semantics,
rates of access and duration of tracking. The IO
state lock was tracked for two types of recoverable
threads, for a duration of 2894 CPU cycles in one
and 69830 CPU cycles in the other. Hence data for
this lock appears twice in Table 5. For each lock, the
recovery criterion, the number of tracking threads
per second, the rate of access, duration of track-
ing and recovery success are shown. The restoration
level in each case was obtained by calling the ge-
tRestorationLevel method before stopTracking, and
recovery success was computed as the percentage of
time the restoration level met the recovery criterion.
As Table 5 shows, our storage controller exhibits a
high rate of recovery success for a range of locks,
even with high rates of access. We conclude that, for
failures involving the restoration of these instances
of state and resources, fine-grained recovery presents
an effective recovery strategy.

5.5.2 Recovery Time

To illustrate the impact of Log(Lock)-based micro-
recovery on the overall recovery time and availability
of the controller software, we injected transient fail-
ures that disappeared on retry. The failures required
restoration of the IO state to its previous value and
a retry of the function. For the Log(Lock) system,
the recovery criterion for IO state was set as shown
in Table 5. Once the failure was injected, the thread
verified if the restoration level at the time of recovery
met the recovery criterion, before attempting state
restoration and retry. The tracking duration was
equivalent to the set up with 69830 CPU cycles.

Figures 10 and 11 show the variation of through-
put and latency respectively over time. The points
of failure injection are marked in the figures. The
throughput and latency shown are for a workload
with 100% write IOs, queue depth 64 and disk la-
tency 20 ms. The Log(Lock) architecture is com-
pared to system-level recovery (abbreviated as SLR)
in the case of the baseline system. Recall that
SLR is implemented entirely in software and in-
volves restarting the controller process and verify-
ing data structures and cache data for consistency
before redriving IO transactions. Overall, during
failure-free operation, the average throughput and
latency respectively with Log(Lock) is 708IOps,
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Table 5: Recovery Success with the 100% Write Workload

Lock Recovery Tracking Calls #Access Duration Recovery

Criterion (times/sec) (times/sec) CPU cycles Success

Fiber channel No Residual Resources 3666 15244 20228 100%
IO state No DR, LU or UR 2500 10266 2894 99.88%
Resource pool No Residual Resources 10 14107 34642 100%
Resource state No Residual Resources 5 6675 4806 100%
Throttle timer No Residual Resources 10 12.59 7258 100%
IO state No DR, LU or UR 2444 10045 69830 99.38%
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Figure 11: Latency with Error Injection

0.0946 sec/IO and 710IOps, 0.0912 sec/IO for the
baseline system.

Log(Lock)-enabled micro-recovery imposes a 35%
performance overhead lasting six seconds during re-
covery. However, system-level recovery results in
4 seconds downtime and it takes an additional 2
seconds to begin sustaining high performance. It
is important to remember that as the size of the
system and in-memory data structures increase, the
recovery time for SLR is bound to increase. This,
along with the opportunity for micro-recovery illus-
trated by the high recovery success shown in the
previous experiment, further promote the case for
micro-recovery in high performance systems like the
storage controller.

6 Related Work

Our work is largely inspired by previous work in
the area of transactional systems, software fault tol-
erance and system availability. Hardware redun-
dancy and software redundancy [24], rejuvenation [9]
or fault isolation approaches such as isolating VMs
from the failure of other VMs [14] are complemen-
tary to our techniques and are already deployed in
our setups. Since these approaches are targeted at
handling failures at a different level they focus on a
coarser granularity of recovery compared to our tech-
niques. Failure-oblivious computing [25] introduces
a novel method to handle failures - by ignoring them
and returning possibly arbitrary values. This tech-
nique may be applicable to systems like search en-
gines where a few missing results may go unnoticed,
but is not an option in storage controllers where ig-

noring failures or returning arbitrary values could
lead to data corruption.

Application-specific recovery mechanisms such as
recovery blocks [22], and exception handling [26] are
used in many software systems. Constructs such as
try/throw/catch [27] can be used to transfer con-
trol to an exception handler and a similar excep-
tion model is used by our implementation. However
such exception handling constructs alone are insuf-
ficient for performing micro-recovery which requires
richer failure context information. The goal of the
Log(Lock) architecture is to provide this context in-
formation and provide the developer with a set of
guidelines to decide the precise way in which the
system should be restored given the failure context.

Logging of access patterns has been used for de-
terministic replay [15, 16, 17] during debugging.
However, in micro-recovery, there is no requirement
to perform deterministic replay. Also, the purpose
of logging access patterns in Log(Lock) is to identify
recovery dependencies between concurrent threads.

7 Conclusion

We have presented Log(Lock), a practical and flex-
ible architecture for tracking dynamic dependencies
and performing state restoration without rearchi-
tecting legacy code. By exploring system state
space, we formally model thread dependencies based
on both state and shared resources, capturing failure
contexts through different ‘restoration levels’. We
develop recovery strategies in the form of restora-
tion protocols based on recovery points and restora-
tion levels. A comprehensive experimental evalua-
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tion shows that Log(Lock)-enabled micro-recovery
is both efficient and effective in reducing system re-
covery time.

Even with retrofittable mechanisms such as
micro-recovery, we emphasize that failure recovery
should be a design concern. One approach to reduc-
ing recovery time would be to design the software us-
ing components with independent failure modes (e.g.
client-server interactions) or use a state space based
approach where transitions to functional states can
be identified even from a failure state.

Our effort in designing scalable failure recovery
continues along a number of directions. One of
our ongoing efforts is to reduce the need for pro-
grammer intervention in defining recovery actions.
We are also interested in deploying and evaluating
Log(Lock) in other high performance systems.
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