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Abstract

Over the past five years, large-scale storage installations

have required fault-protection beyond RAID-5, leading

to a flurry of research on and development of erasure

codes for multiple disk failures. Numerous open-source

implementations of various coding techniques are avail-

able to the general public. In this paper, we perform

a head-to-head comparison of these implementations in

encoding and decoding scenarios. Our goals are to com-

pare codes and implementations, to discern whether the-

ory matches practice, and to demonstrate how parameter

selection, especially as it concerns memory, has a signifi-

cant impact on a code’s performance. Additional benefits

are to give storage system designers an idea of what to

expect in terms of coding performance when designing

their storage systems, and to identify the places where

further erasure coding research can have the most im-

pact.

1 Introduction

In recent years, erasure codes have moved to the fore

to prevent data loss in storage systems composed of

multiple disks. Storage companies such as Allmy-

data [1], Cleversafe [7], Data Domain [36], Network Ap-

pliance [22] and Panasas [32] are all delivering prod-

ucts that use erasure codes beyond RAID-5 for data

availability. Academic projects such as LoCI [3],

Oceanstore [29], and Pergamum [31] are doing the same.

And of equal importance, major technology corporations

such as Hewlett Packard [34], IBM [12, 13] and Mi-

crosoft [15, 16] are performing active research on erasure

codes for storage systems.

Along with proprietary implementations of erasure

codes, there have been numerous open source implemen-

tations of a variety of erasure codes that are available

for download [7, 19, 23, 26, 33]. The intent of most

of these projects is to provide storage system developers

with high quality tools. As such, there is a need to un-

derstand how these codes and implementations perform.

In this paper, we compare the encoding and decoding

performance of five open-source implementations of five

different types of erasure codes: Classic Reed-Solomon

codes [28], Cauchy Reed-Solomon codes [6], EVEN-

ODD [4], Row Diagonal Parity (RDP) [8] and Minimal

Density RAID-6 codes [5, 24, 25]. The latter three codes

are specific to RAID-6 systems that can tolerate exactly

two failures. Our exploration seeks not only to compare

codes, but also to understand which features and param-

eters lead to good coding performance.

We summarize the main results as follows:

• The special-purpose RAID-6 codes vastly outper-

form their general-purpose counterparts. RDP per-

forms the best of these by a narrow margin.

• Cauchy Reed-Solomon coding outperforms classic

Reed-Solomon coding significantly, as long as at-

tention is paid to generating good encoding matri-

ces.

• An optimization called Code-Specific Hybrid Re-

construction [14] is necessary to achieve good de-

coding speeds in many of the codes.

• Parameter selection can have a huge impact on how

well an implementation performs. Not only must

the number of computational operations be consid-

ered, but also how the code interacts with the mem-

ory hierarchy, especially the caches.

• There is a need to achieve the levels of improvement

that the RAID-6 codes show for higher numbers of

failures.

Of the five libraries tested, Zfec [33] implemented the

fastest classic Reed-Solomon coding, and Jerasure [26]

implemented the fastest versions of the others.
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2 Nomenclature and Erasure Codes

It is an unfortunate consequence of the history of era-

sure coding research that there is no unified nomencla-

ture for erasure coding. We borrow terminology mostly

from Hafner et al [14], but try to conform to more classic

coding terminology (e.g. [5, 21]) when appropriate.

Our storage system is composed of an array of n
disks, each of which is the same size. Of these n disks, k
of them hold data and the remaining m hold coding in-

formation, often termed parity, which is calculated from

the data. We label the data disks D0, . . . , Dk−1 and the

parity disks C0, . . . , Cm−1. A typical system is pictured

in Figure 1.

Figure 1: A typical storage system with erasure coding.

We are concerned with Maximum Distance Separa-

ble (MDS) codes, which have the property that if any m
disks fail, the original data may be reconstructed [21].

When encoding, one partitions each disk into strips of

a fixed size. Each parity strip is encoded using one

strip from each data disk, and the collection of k + m
strips that encode together is called a stripe. Thus, as

in Figure 1, one may view each disk as a collection of

strips, and one may view the entire system as a collec-

tion of stripes. Stripes are each encoded independently,

and therefore if one desires to rotate the data and parity

among the n disks for load balancing, one may do so by

switching the disks’ identities for each stripe.

2.1 Reed-Solomon (RS) Codes

Reed-Solomon codes [28] have the longest history. The

strip unit is a w-bit word, where w must be large enough

that n ≤ 2w + 1. So that words may be manipulated

efficiently, w is typically constrained so that words fall

on machine word boundaries: w ∈ {8, 16, 32, 64}. How-

ever, as long as n ≤ 2w + 1, the value of w may be

chosen at the discretion of the user. Most implementa-

tions choose w = 8, since their systems contain fewer

than 256 disks, and w = 8 performs the best. Reed-

Solomon codes treat each word as a number between 0

and 2w − 1, and operate on these numbers with Galois

Field arithmetic (GF (2w)), which defines addition, mul-

tiplication and division on these words such that the sys-

tem is closed and well-behaved [21].

The act of encoding with Reed-Solomon codes is sim-

ple linear algebra. A Generator Matrix is constructed

from a Vandermonde matrix, and this matrix is multiplied

by the k data words to create a codeword composed of

the k data and m coding words. We picture the process

in Figure 2 (note, we draw the transpose of the Generator

Matrix to make the picture clearer).

Figure 2: Reed-Solomon coding for k = 4 and m = 2.

Each element is a number between 0 and 2w − 1.

When disks fail, one decodes by deleting rows of GT ,

inverting it, and multiplying the inverse by the surviving

words. This process is equivalent to solving a set of inde-

pendent linear equations. The construction of GT from

the Vandermonde matrix ensures that the matrix inver-

sion is always successful.

In GF (2w), addition is equivalent to bitwise

exclusive-or (XOR), and multiplication is more com-

plex, typically implemented with multiplication tables

or discrete logarithm tables [11]. For this reason, Reed-

Solomon codes are considered expensive. There are sev-

eral open-source implementations of RS coding, which

we detail in Section 3.

2.2 Cauchy Reed-Solomon (CRS) Codes

CRS codes [6] modify RS codes in two ways. First,

they employ a different construction of the Generator

matrix using Cauchy matrices instead of Vandermonde

matrices. Second, they eliminate the expensive multipli-

cations of RS codes by converting them to extra XOR

operations. Note, this second modification can apply to

Vandermonde-based RS codes as well. This modifica-

tion transforms GT from a n × k matrix of w-bit words

to a wn×wk matrix of bits. As with RS coding, w must

be selected so that n ≤ 2w + 1.

Instead of operating on single words, CRS coding op-

erates on entire strips. In particular, strips are partitioned

into w packets, and these packets may be large. The act

of coding now involves only XOR operations – a coding

packet is constructed as the XOR of all data packets that
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have a one bit in the coding packet’s row of GT . The

process is depicted in Figure 3, which illustrates how the

last coding packet is created as the XOR of the six data

packets identified by the last row of GT .

Figure 3: CRS example for k = 4 and m = 2.

To make XORs efficient, the packet size must be a

multiple of the machine’s word size. The strip size is

therefore equal to w times the packet size. Since w no

longer relates to the machine word sizes, w is not con-

strained to [8, 16, 32, 64]; instead, any value of w may be

selected as long as n ≤ 2w.

Decoding in CRS is analogous to RS coding — all

rows of GT corresponding to failed packets are deleted,

and the matrix is inverted and employed to recalculate

the lost data.

Since the performance of CRS coding is directly re-

lated to the number of ones in GT , there has been re-

search on constructing Cauchy matrices that have fewer

ones than the original CRS constructions [27]. The Jera-

sure library [26] uses additional matrix transformations

to improve these matrices further. Additionally, in the

restricted case when m = 2, the Jerasure library uses re-

sults of a previous enumeration of all Cauchy matrices to

employ provably optimal matrices for all w ≤ 32 [26].

2.3 EVENODD and RDP

EVENODD [4] and RDP [8] are two codes developed for

the special case of RAID-6, which is when m = 2. Con-

ventionally in RAID-6, the first parity drive is labeled P ,

and the second is labeled Q. The P drive is equivalent to

the parity drive in a RAID-4 system, and the Q drive is

defined by parity equations that have distinct patterns.

Although their original specifications use different

terms, EVENODD and RDP fit the same paradigm as

CRS coding, with strips being composed of w packets.

In EVENODD, w is constrained such that k + 1 ≤ w
and w+1 is a prime number. In RDP, w+1 must be prime

and k ≤ w. Both codes perform the best when (w−k) is

minimized. In particular, RDP achieves optimal encod-

ing and decoding performance of (k−1) XOR operations

per coding word when k = w or k +1 = w. Both codes’

performance decreases as (w − k) increases.

2.4 Minimal Density RAID-6 Codes

If we encode using a Generator bit-matrix for RAID-

6, the matrix is quite constrained. In particular, the

first kw rows of GT compose an identity matrix, and in

order for the P drive to be straight parity, the next w
rows must contain k identity matrices. The only flex-

ibility in a RAID-6 specification is the composition of

the last w rows. In [5], Blaum and Roth demonstrate

that when k ≤ w, these remaining w rows must have

at least kw + k − 1 ones for the code to be MDS. We

term MDS matrices that achieve this lower bound Mini-

mal Density codes.

There are three different constructions of Minimal

Density codes for different values of w:

• Blaum-Roth codes when w + 1 is prime [5].

• Liberation codes when w is prime [25].

• The Liber8tion code when w = 8 [24].

These codes share the same performance characteris-

tics. They encode with (k − 1) + k−1
2w XOR operations

per coding word. Thus, they perform better when w
is large, achieving asymptotic optimality as w → ∞.

Their decoding performance is slightly worse, and re-

quires a technique called Code-Specific Hybrid Recon-

struction [14] to achieve near-optimal performance [25].

The Minimal Density codes also achieve near-optimal

updating performance when individual pieces of data are

modified [27]. This performance is significantly better

than EVENODD and RDP, which are worse by a factor

of roughly 1.5 [25].

2.5 Anvin’s RAID-6 Optimization

In 2007, Anvin posted an optimization of RS encoding

for RAID-6 [2]. For this optimization, the row of GT

corresponding to the P drive contains all ones, so that

the P drive may be parity. The row corresponding to

the Q drive contains the number 2 i in GF (2w) in col-

umn i (zero-indexed), so that the contents of the Q drive

may be calculated by successively XOR-ing drive i’s
data into the Q drive and multiplying that sum by two.

Since multiplication by two may be implemented much

faster than general multiplication in GF (2w), this op-

timizes the performance of encoding over standard RS

implementations. Decoding remains unoptimized.

3 Open Source Libraries

We test five open source erasure coding libraries. These

are all freely available libraries from various sources

on the Internet, and range from brief proofs of concept
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(e.g. Luby) to tuned and supported code intended for use

in real systems (e.g. Zfec). We also tried the Schifra open

source library [23], which is free but without documen-

tation. We were unable to implement an encoder and

decoder to perform a satisfactory comparison with the

others. We present them chronologically.

Luby: CRS coding was developed at the ICSI lab in

Berkeley, CA in the mid 1990’s [6]. The authors released

a C version of their codes in 1997, which is available

from ICSI’s web site [19]. The library supports all set-

tings of k, m, w and packet sizes. The matrices employ

the original constructions from [6], which are not opti-

mized to minimize the number of ones.

Zfec: The Zfec library for erasure coding has been in

development since 2007, but its roots have been around

for over a decade. Zfec is built on top of a RS coding

library developed for reliable multicast by Rizzo [30].

That library was based on previous work by Karn et

al [18], and has seen wide use and tuning. Zfec is based

on Vandermonde matrices when w = 8. The latest ver-

sion (1.4.0) was posted in January, 2008 [33]. The library

is programmable, portable and actively supported by the

author. It includes command-line tools and APIs in C,

Python and Haskell.

Jerasure: Jerasure is a C library released in 2007

that supports a wide variety of erasure codes, including

RS coding, CRS coding, general Generator matrix and

bit-matrix coding, and Minimal Density RAID-6 cod-

ing [26]. RS coding may be based on Vandermonde or

Cauchy matrices, and w may be 8, 16 or 32. Anvin’s

optimization is included for RAID-6 applications. For

CRS coding, Jerasure employs provably optimal encod-

ing matrices for RAID-6, and constructs optimized ma-

trices for larger values of m. Additionally, the three Min-

imal Density RAID-6 codes are supported. To improve

performance of the bit-matrix codes, especially the de-

coding performance, the Code-Specific Hybrid Recon-

struction optimization [14] is included. Jerasure is re-

leased under the GNU LGPL.

Cleversafe: In May, 2008, Cleversafe exported the

first open source version of its dispersed storage sys-

tem [7]. Written entirely in Java, it supports the same

API as Cleversafe’s proprietary system, which is notable

as one of the first commercial distributed storage systems

to implement availability beyond RAID-6. For this pa-

per, we obtained a version containing just the the erasure

coding part of the open source distribution. It is based on

Luby’s original CRS implementation [19] with w = 8.

EVENODD/RDP: There are no open source versions

of EVENODD or RDP coding. However, RDP may be

implemented as a bit-matrix code, which, when com-

bined with Code-Specific Hybrid Reconstruction yields

the same performance as the original specification of the

code [16]. EVENODD may also be implemented with a

bit-matrix whose operations may be scheduled to achieve

the code’s original performance [16]. We use these ob-

servations to implement both codes as bit-matrices with

tuned schedules in Jerasure. Since EVENODD and RDP

codes are patented, this implementation is not available

to the public, as its sole intent is for performance com-

parison.

4 Encoding Experiment

We perform two sets of experiments – one for encoding

and one for decoding. For the encoding experiment, we

seek to measure the performance of taking a large data

file and splitting and encoding it into n = k + m pieces,

each of which will reside on a different disk, making the

system tolerant to up to m disk failures. Our encoder

thus reads a data file, encodes it, and writes it to k +
m data/coding files, measuring the performance of the

encoding operations.

Figure 4: The encoder utilizes a data buffer and a coding

buffer to encode a large file in stages.

Since memory utilization is a concern, and since large

files exceed the capacity of most computers’ memo-

ries, our encoder employs two fixed-size buffers, a Data

Buffer partitioned into k blocks and a Coding Buffer par-

titioned into m blocks. The encoder reads an entire data

buffer’s worth of data from the big file, encodes it into the

coding buffer and then writes the contents of both buffers

to k + m separate files. It repeats this process until the

file is totally encoded, recording both the total time and

the encoding time. The high level process is pictured in

Figure 4.

The blocks of the buffer are each partitioned into s
strips, and each strip is partitioned either into words

of size w (RS coding, where w ∈ {8, 16, 32, 64}),

or into w packets of a fixed size PS (all other codes

– recall Figure 3). To be specific, each block Di

(and Cj) is partitioned into strips DSi,0, . . . , DSi,s−1.
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(and CSj,0, . . . , CSj,s−1), each of size wPS. Thus,

the data and coding buffer sizes are dependent on

the various parameters. Specifically, the data buffer

size equals (kswPS) and the coding buffer size

equals (mswPS).
Encoding is done on a stripe-by-stripe basis. First,

the data strips DS0,0, . . . , DSk−1,0 are encoded into the

coding strips CS0,0, . . . , CSm−1,0. This completes the

encoding of stripe 0, pictured in Figure 5. Each of the s
stripes is successively encoded in this manner.

Figure 5: How the data and coding buffers

are partitioned, and the encoding of Stripe 0

from data strips DS0,0, . . . , DSk−1,0 into coding

strips CS0,0, . . . , CSm−1,0.

Thus, there are multiple parameters that the encoder

allows the user to set. These are k, m, w (subject to the

code’s constraints), s and PS. When we mention setting

the buffer size below, we are referring to the size of the

data buffer, which is (kswPS).

4.1 Machines for Experimentation

We employed two machines for experimentation. Nei-

ther is exceptionally high-end, but each represents

middle-range commodity processors, which should be

able to encode and decode comfortably within the I/O

speed limits of the fastest disks. The first is a Macbook

with a 32-bit 2GHz Intel Core Duo processor, with 1GB

of RAM, a L1 cache of 32KB and a L2 cache of 2MB.

Although the machine has two cores, the encoder only

utilizes one. The operating system is Mac OS X, version

10.4.11, and the encoder is executed in user space while

no other user programs are being executed. As a base-

line, we recorded a memcpy() speed of 6.13 GB/sec and

an XOR speed of 2.43 GB/sec.

The second machine is a Dell workstation with an Intel

Pentium 4 CPU running at 1.5GHz with 1GB of RAM,

an 8KB L1 cache and a 256KB L2 cache. The operating

system is Debian GNU Linux revision 2.6.8-2-686, and

the machine is a 32-bit machine. The memcpy() speed

is 2.92 GB/sec and the XOR speed is 1.32 GB/sec.

4.2 Encoding with Large Files

Our intent was to measure the actual performance of en-

coding a large video file. However, doing large amounts

of I/O causes a great deal of variability in performance

timings. We exemplify with Figure 6. The data is from

the Macbook, where we use a 256 MB video file for

input. The encoder works as described in Section 4

with k = 10 and m = 6. However, we perform no real

encoding. Instead we simply zero the bytes of the coding

buffer before writing it to disk. In the figure, we modify

the size of the data buffer from a small size of 64 KB to

256 MB – the size of the video file itself.
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Figure 6: Times to read a 256 MB video, peform a

dummy encoding when k = 10 and m = 6, and write

to 16 data/coding files.

In Figure 6, each data point is the result of ten runs

executed in random order. A tukey plot is given, which

has bars to the maximum and minimum values, a box en-

compassing the first to the third quartile, hash marks at

the median and a dot at the mean. While there is a clear

trend toward improving performance as the data buffer

grows to 128 MB, the variability in performance is colos-

sal: between 15 and 20 seconds for many runs. Running

Unix’s split utility on the file reveals similar variability.

Because of this variability, the tests that follow remove

the I/O from the encoder. Instead, we simulate reading

by filling the buffer with random bytes, and we simulate

writing by zeroing the buffers. This reduces the vari-

ability of the runs tremendously – the results that follow

are all averages of over 10 runs, whose maximum and

minimum values differ by less than 0.5 percent. The

encoder measures the times of all coding activites us-

ing Unix’s gettimeofday(). To confirm that these times
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are accurate, we also subtracted the wall clock time of a

dummy control from the wall clock time of the encoder,

and the two matched to within one percent.

Figure 6 suggests that the size of the data buffer can

impact performance, although it is unclear whether the

impact comes from memory effects or from the file sys-

tem. To explore this, we performed a second set of tests

that modify the size of the data buffer while performing

a dummy encoding. We do not graph the results, but

they show that with the I/O removed, the effects of mod-

ifying the buffer size are negligible. Thus, in the results

that follow, we maintain a data buffer size of roughly 100

KB. Since actual buffer sizes depend on k, m, w and PS,

they cannot be affixed to a constant value; instead, they

are chosen to be in the ballpark of 100 KB. This is large

enough to support efficient I/O, but not so large that it

consumes all of a machine’s memory, since in real sys-

tems the processors may be multitasking.

4.3 Parameter Space

We test four combinations of k and m – we will denote

them by [k, m]. Two combinations are RAID-6 scenar-

ios: [6,2] and [14,2]. The other two represent 16-disk

stripes with more fault-tolerance: [12,4] and [10,6]. We

chose these combinations because they represent values

that are likely to be seen in actual usage. Although

large and wide-area storage installations are composed

of much larger numbers of disks, the stripe sizes tend to

stay within this medium range, because the benefits of

large stripe sizes show diminishing returns compared to

the penalty of extra coding overhead in terms of encod-

ing performance and memory use. For example, Clever-

safe’s widely dispersed storage system uses [10,6] as its

default [7]; Allmydata’s archival online backup system

uses [3,7], and both Panasas [32] and Pergamum [31] re-

port keeping their stripe sizes at or under 16.

For each code and implementation, we test its perfor-

mance by encoding a randomly generated file that is 1

GB in size. We test all legal values of w ≤ 32. This

results in the following tests.

• Zfec: RS coding, w = 8 for all combinations

of [k, m].

• Luby: CRS coding, w ∈ {4, . . . , 12} for all combi-

nations of [k, m], and w = 3 for [6,2].

• Cleversafe: CRS coding, w = 8 for all combina-

tions of [k, m].

• Jerasure:

– RS coding, w ∈ {8, 16, 32} for all combina-

tions of [k, m]. Anvin’s optimization is in-

cluded for the RAID-6 tests.

– CRS coding, w ∈ {4, . . . , 32} for all combi-

nations of [k, m], and w = 3 for [6,2].

– Blaum-Roth codes, w ∈ {6, 10, 12} for [6,2]

and w ∈ {16, 18, 22, 28, 30} for [6,2] and

[14,2].

– Liberation codes, w ∈ {7, 11, 13} for [6,2]

and w ∈ {17, 19, 23, 29, 31} for [6,2] and

[14,2].

– The Liber8tion code, w = 8 for [6,2].

• EVENODD: Same parameters as Blaum-Roth codes

in Jerasure above.

• RDP: Same parameters as EVENODD.

4.4 Impact of the Packet Size

Our experience with erasure coding led us to experi-

ment first with modifying the packet sizes of the en-

coder. There is a clear tradeoff: lower packet sizes have

less tight XOR loops, but better cache behavior. Higher

packet sizes perform XORs over larger regions, but cause

more cache misses. To exemplify, consider Figure 7,

which shows the performance of RDP on the [6,2] con-

figuration when w = 6, on the Macbook. We test every

packet size from 4 to 10000 and display the speed of en-

coding.
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Figure 7: The effect of modifying the packet size on RDP

coding, k = 6, m = 2, w = 6 on the Macbook.

We display two y-axes. On the left is the encoding

speed. This is the size of the input file divided by the time

spent encoding and is the most natural metric to plot. On

the right, we normalize the encoding speed so that we

may compare the performance of encoding across con-

figurations. The normalized encoding speed is calculated

as:
(Encoding Speed) m(k − 1)

k
. (1)

This is derived as follows. Let S be the file’s size and t
be the time to encode. The file is split and encoded
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into m + k files, each of size S
k . The encoding process

itself creates Sm
k bytes worth of coding data, and there-

fore the speed per coding byte is Sm
kt . Optimal encoding

takes k−1 XOR operations per coding drive [35]; there-

fore we can normalize the speed by dividing the time

by k − 1, leaving us with
Sm(k−1)

kt , or Equation 1 for

the normalized encoding speed.

The shape of this curve is typical for all codes on both

machines. In general, higher packet sizes perform bet-

ter than lower ones; however there is a maximum perfor-

mance point which is achieved when the code makes best

use of the L1 cache. In this test, the optimal packet size

is 2400 bytes, achieving a normalized encoding speed of

2172 MB/sec. Unfortunately, this curve does not mono-

tonically increase to nor decrease from its optimal value.

Worse, there can be radical dips in performance between

adjacent packet sizes, due to collisions between cache

entries. For example, at packet sizes 7732, 7736 and

7740, the normalized encoding speeds are 2133, 2066

and 2129 MB/sec, respectively. We reiterate that each

data point in our graphs represents over 10 runs, and the

repetitions are consistent to within 0.5 percent.
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Figure 8: The effect of modifying w on the best packet

sizes found.

We do not attempt to find the optimal packet sizes for

each of the codes. Instead, we perform a search algo-

rithm that works as follows. We test a region r of packet

sizes by testing each packet size from r to r +36 (packet

sizes must be a multiple of 4). We set the region’s perfor-

mance to be the average of the five best tests. To start our

search, we test all regions that are powers of two from 64

to 32K. We then iterate, finding the best region r, and

then testing the two regions that are halfway between the

two values of r that we have tested that are adjacent to r.

We do this until there are no more regions to test, and se-

lect the packet size of all tested that performed the best.

For example, the search for the RDP instance of Figure 7

tested only 202 packet sizes (as opposed to 2500 to gen-

erate Figure 7) to arrive at a packet size of 2588 bytes,

which encodes at a normalized speed of 2164 MB/sec

(0.3% worse than the best packet size of 2400 bytes).

One expects the optimal packet size to decrease

as k, m and w increase, because each of these increases

the stripe size. Thus smaller packets are necessary for

most of the stripe to fit into cache. We explore this effect

in Figure 8, where we show the best packet sizes found

for different sets of codes – RDP, Minimum Density, and

Jerasure’s CRS – in the two RAID-6 configurations. For

each code, the larger value of k results in a smaller packet

size, and as a rough trend, as w increases, the best packet

size decreases.

4.5 Overall Encoding Performance

We now present the performance of each of the codes

and implementations. In the codes that allow a packet

size to be set, we select the best packet size from the

above search. The results for the [6,2] configuration are

in Figure 9.

Although the graphs for both machines appear similar,

there are interesting features of both. We concentratefirst

on the MacBook. The specialized RAID-6 codes outper-

form all others, with RDP’s performance with w = 6
performing the best. This result is expected, as RDP

achieves optimal performance when k = w.

The performance of these codes is typically quantified

by the number of XOR operations performed [5, 4, 8,

25, 24]. To measure how well number of XORs matches

actual performance, we present the number of gigabytes

XOR’d by each code in Figure 10.

On the MacBook, the number of XORs is an excellent

indicator of performance, with a few exceptions (CRS

codes for w ∈ {21, 22, 32}). As predicted by XOR

count, RDP’s performance suffers as w increases, while

the Minimal Density codes show better performance. Of

the three special-purpose RAID-6 codes, EVENODD

performs the worst, although the margins are not large

(the worst performing EVENODD encodes at 89% of the

speed of the best RDP).

The performance of Jerasure’s implementation the

CRS codes is also excellent, although the choice of w
is very important. The number of ones in the CRS gen-

erator matrices depends on the number of bits in the

Galois Field’s primitive polynomial. The polynomials

for w ∈ {8, 12, 13, 14, 16, 19, 24, 26, 27, 30, 32} have

one more bit than the others, resulting in worse perfor-

mance. This is important, as w ∈ {8, 16, 32} are very

natural choices since they allow strip sizes to be powers

of two.
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Figure 9: Encoding performance for [6,2].

Returning back to figure 9, the Luby and Cleversafe

implementations of CRS coding perform much worse

than Jerasure. There are several reasons for this. First,

they do not optimize the generator matrix in terms of

number of ones, and thus perform many more XOR op-

erations, from 3.2 GB of XORs when w = 3 to 13.5

GB when w = 12. Second, both codes use a dense,

bit-packed representation of the generator matrix, which

means that they spend quite a bit of time performing bit

operations to check matrix entries, many of which are

zeros and could be omitted. Jerasure converts the matrix

to a schedule which eliminates all of the matrix traver-

sal and entry checking during encoding. Cleversafe’s

poor performance relative to Luby can most likely be at-

tributed to the Java implementation and the fact that the

packet size is hard coded to be very small (since Clever-

safe routinely distributes strips in units of 1K).

Of the RS implementations, the implementation tai-

lored for RAID-6 (labeled “RS-Opt”) performs at a much

higher rate than the others. This is due to the fact that
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Figure 10: Gigabytes XOR’d by each code in the [6,2]

tests. The number of XORs is independent of the ma-

chine used.

it does not perform general-purpose Galois Field multi-

plication over w-bit words, but instead performs a ma-

chine word’s worth of multiplication by two at a time.

Its performance is better when w ≤ 16, which is not

a limitation as w = 16 can handle a system with a to-

tal of 64K drives. The Zfec implementation of RS cod-

ing outperforms the others. This is due to the heavily

tuned implementation, which performs explicit loop un-

rolling and hard-wires many features of GF (2 8) which

the other libraries do not. Both Zfec and Jerasure use pre-

computed multiplication and division tables for GF (28).
For w = 16, Jerasure uses discrete logarithms, and

for w = 32, it uses a recursive table-lookup scheme. Ad-

ditional implementation options for the underlying Ga-

lois Field arithmetic are discussed in [11].

The results on the Dell are similar to the MacBook

with some significant differences. The first is that larger

values of w perform worse relative to smaller values, re-

gardless of their XOR counts. While the Minimum Den-

sity codes eventually outperform RDP for larger w, their

overall performance is far worse than the best performing

RDP instance. For example, Liberation’s encoding speed

when w = 31 is 82% of RDP’s speed when w = 6, as

opposed to 97% on the MacBook. We suspect that the

reason for this is the smaller L1 cache on the Dell, which

penalizes the strip sizes of the larger w.

The final difference between the MacBook and the

Dell is that Jerasure’s RS performance for w = 16 is

much worse than for w = 8. We suspect that this is be-

cause Jerasure’s logarithm tables are not optimized for

space, consuming 1.5 MB of memory, since there are six

tables of 256 KB each [26]. The lower bound is two 128

KB tables, which should exhibit better behavior on the

Dell’s limited cache.

Figure 11 displays the results for [14,2] (we omit

Cleversafe since its performance is so much worse than

the others). The trends are similar to [6,2], with the ex-
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Figure 11: Encoding performance for [14,2].

ception that on the Dell, the Minimum Density codes

perform significantly worse than RDP and EVENODD,

even though their XOR counts follow the performance of

the MacBook. The definition of the normalized encoding

speed means that if a code is encoding optimally, its nor-

malized encoding speed should match the XOR speed. In

both machines, RDP’s [14,2] normalized encoding speed

comes closest to the measured XOR speed, meaning that

in implementation as in theory, this is an extremely effi-

cient code.

Figure 12 displays the results for [12,4]. Since this

is no longer a RAID-6 scenario, only the RS and CRS

codes are displayed. The normalized performance of

Jerasure’s CRS coding is much worse now because the

generator matrices are more dense and cannot be opti-

mized as they can when m = 2. As such, the codes per-

form more XOR operations than when k = 14. For ex-

ample, when w = 4 Jerasure’s CRS implementation per-

forms 17.88 XORs per coding word; optimal is 11. This

is why the normalized coding speed is much slower than

in the best RAID-6 cases. Since Luby’s code does not

optimize the generator matrix, it performs more XORs
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Figure 12: Encoding performance for [12,4].

(23.5 per word, as opposed to 17.88 for Jerasure), and as

a result is slower.

The RS codes show the same performance as in the

other tests. In particular, Zfec’s normalized performance

is roughly the same in all cases. For space purposes, we

omit the [10,6] results as they show the same trends as

the [12,4] case. The peak performer is Jerasure’s CRS,

achieving a normalized speed of 1409 MB/sec on the

MacBook and 869.4 MB/sec on the Dell. Zfec’s nor-

malized encoding speeds are similar to the others: 528.4

MB/sec on the MacBook and 380.2 MB/sec on the Dell.

5 Decoding Performance

To test the performance of decoding, we converted the

encoder program to perform decoding as well. Specif-

ically, the decoder chooses m random data drives, and

then after each encoding iteration, it zeros the buffers for

those drives and decodes. We only decode data drives

for two reasons. First, it represents the hardest decoding

case, since all of the coding information must be used.

Second, all of the libraries except Jerasure decode only
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the data, and do not allow for individual coding strips to

be re-encoded without re-encoding all of them. While we

could have modified those libraries to re-encode individ-

ually, we did not feel that it was in the spirit of the evalu-

ation. Before testing, we wrote code to double-check that

the erased data was decoded correctly, and in all cases it

was.
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Figure 13: Decoding performance for [6,2].

We show the performance of two configurations: [6,2]

in Figure 13 and [12,4] in Figure 14. The results are

best viewed in comparison to Figures 9 and 12. The re-

sults on the MacBook tend to match theory. RDP de-

codes as it encodes, and the two sets of speeds match

very closely. EVENODD and the Minimal Density codes

both have slightly more complexity in decoding, which is

reflected in the graph. As mentioned in [24], the Minimal

Density codes benefit greatly from Code-Specific Hybrid

Reconstruction [14], which is implemented in Jerasure.

Without the optimization, the decoding performance of

these codes would be unacceptable. For example, in the

[6,2] configuration on the MacBook, the Liberation code

for w = 31 decodes at a normalized rate of 1820 MB/sec.

Without Code-Specific Hybrid Reconstruction, the rate is

a factor of six slower: 302.7 MB/sec. CRS coding also

benefits from the optimization. Again, using an example

where w = 31, normalized speed with the optimization

is 1809 MB/s, and without it is 261.5 MB/sec.

The RS decoders perform identically to their encoding

counterparts with the exception of the RAID-6 optimized

version. This is because the optimization applies only to

encoding and defaults to standard RS decoding. Since

the only difference between RS encoding and decoding

is the inversion of a k × k matrix, the fact that encoding

and decoding performance match is expected.

On the Dell, the trends between the various codes fol-

low the encoding tests. In particular, larger values of w
are penalized more by the small cache.
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Figure 14: Decoding performance for [12,4].

In the [12,4] tests, the performance trends of the CRS

codes are the same, although the decoding proceeds more

slowly. This is more pronounced in Jerasure’s imple-

mentation than in Luby’s, and can be explained by XORs.

In Jerasure, the program attempts to minimize the num-

ber of ones in the encoding matrix, without regard to the
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decoding matrix. For example, when w = 4, CRS encod-

ing requires 5.96 GB of XORs. In a decoding example,

it requires 14.1 GB of XORs, and with Code-Specific

Hybrid Reconstruction, that number is reduced to 12.6.

Luby’s implementation does not optimize the encoding

matrix, and therefore the penalty of decoding is not as

great.

As with the [6,2] tests, the performance of RS coding

remains identical to decoding.

6 XOR Units

This section is somewhat obvious, but it does bear

mentioning that the unit of XOR used by the encod-

ing/decoding software should match the largest possible

XOR unit of the machine. For example, on 32-bit ma-

chines like the MacBook and the Dell, the long and int

types are both four bytes, while the char and short types

are one and two bytes, respectively. On 64-bit machines,

the long type is eight bytes. To illustrate the dramatic

impact of word size selection for XOR operations, we

display RDP performance for the [6,2] configuration (w
= 6) on the two 32-bit machines and on a an HP dc7600

workstation with a 64-bit Pentium D860 processor run-

ning at 2.8 GHz. The results in Figure 15 are expected.
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Figure 15: Effect of changing the XOR unit of RDP en-

coding when w = 6 in the [6,2] configuration.

The performance penalty at each successively smaller

word size is roughly a factor of two, since twice as many

XORs are being performed. All the libraries tested in

this paper perform XORs with the widest word possible.

This also displays how 64-bit are especially tailored for

these types of operations.

7 Conclusions

Given the speeds of current disks, the libraries explored

here perform at rates that are easily fast enough to build

high performance, reliable storage systems. We offer the

following lessons learned from our exploration and ex-

perimentation:

RAID-6: The three RAID-6 codes, plus Jerasure’s

implementation of CRS coding for RAID-6, all perform

much faster than the general-purpose codes. Attention

must be paid to the selection of w for these codes: for

RDP and EVENODD, it should be as low as possible;

for Minimal Density codes, it should be as high as the

caching behavior allows, and for CRS, it should be se-

lected so that the primitive polynomial has a minimal

number of ones. Note that w ∈ {8, 16, 32} are all bad

for CRS coding. Anvin’s optimization is a significant im-

provement ot generalized RS coding, but does not attain

the levels of the special-purpose codes.

CRS vs. RS: For non-RAID-6 applications, CRS cod-

ing performs much better than RS coding, but now w
should be chosen to be as small as possible, and atten-

tion should be paid to reduce the number of ones in the

generator matrix. Additionally, a dense matrix represen-

tation should not be used for the generator matrix while

encoding and decoding.

Parameter Selection: In addition to w, the packet

sizes of the codes should be chosen to yield good cache

behavior. To achieve an ideal packet size, experimenta-

tion is important; although there is a balance point be-

tween too small and too large, some packet sizes per-

form poorly due to direct-mapped cache behavior, and

therefore finding an ideal packet size takes more effort

than executing a simple binary search. As reported by

Greenan with respect to Galois Field arithmetic [11], ar-

chitectural features and memory behavior interact in such

a way that makes it hard to predict the optimal param-

eters for encoding operations. In this paper, we semi-

automate it by using the region-based search of Sec-

tion 4.4.

Minimizing the Cache/Memory Footprint: On

some machines, the implementation must pay attention

to memory and cache. For example, Jerasure’s RS im-

plementation performs poorly on the Dell when w = 16
because it is wasteful of memory, while on the MacBook

its memory usage does not penalize as much. Part of

Zfec’s better performance comes from its smaller mem-

ory footprint. In a similar vein, we have seen improve-

ments in the performance of the XOR codes by re-

ordering the XOR operations to minimize cache replace-

ments [20]. We anticipate further performance gains

through this technique.

Beyond RAID-6: The place where future research

will have the biggest impact is for larger values of m.

The RAID-6 codes are extremely successful in delivering

higher performance than their general-purpose counter-

parts. More research needs to be performed on special-

purpose codes beyond RAID-6, and implementations

need to take advantage of the special-purpose codes that

already exist [9, 10, 17].
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Multicore: As modern architectures shift more uni-

versally toward multicore, it will be an additional chal-

lenge for open source libraries to exploit the opportuni-

ties of multiple processors on a board. As demonstrated

in this paper, attention to the processor/cache interaction

will be paramount for high performance.

8 Acknowledgements

This material is based upon work supported by the Na-

tional Science Foundation under grants CNS-0615221

and IIS-0541527. The authors are greatly indebted to

Ilya Volvolski and Jason Resch from Cleversafe for pro-

viding us with the erasure coding core of their open

source storage dispersal system. The authors also thank

Hakim Weatherspoon for his helpful and detailed com-

ments on the paper.

References

[1] ALLMYDATA. Unlimited online backup, storage,

and sharing. http://allmydata.com, 2008.

[2] ANVIN, H. P. The mathematics of RAID-

6. http://kernel.org/pub/linux/kernel/

people/hpa/raid6.pdf, 2007.

[3] BECK, M., ARNOLD, D., BASSI, A., BERMAN,

F., CASANOVA, H., DONGARRA, J., MOORE,

T., OBERTELLI, G., PLANK, J. S., SWANY, M.,

VADHIYAR, S., AND WOLSKI, R. Logistical com-

puting and internetworking: Middleware for the use

of storage in communication. In Third Annual In-

ternational Workshop on Active Middleware Ser-

vices (AMS) (San Francisco, August 2001).

[4] BLAUM, M., BRADY, J., BRUCK, J., AND

MENON, J. EVENODD: An efficient scheme for

tolerating double disk failures in RAID architec-

tures. IEEE Transactions on Computing 44, 2

(February 1995), 192– 202.

[5] BLAUM, M., AND ROTH, R. M. On lowest den-

sity MDS codes. IEEE Transactions on Information

Theory 45, 1 (January 1999), 46–59.

[6] BLOMER, J., KALFANE, M., KARPINSKI, M.,

KARP, R., LUBY, M., AND ZUCKERMAN, D. An

XOR-based erasure-resilient coding scheme. Tech.

Rep. TR-95-048, International Computer Science

Institute, August 1995.

[7] CLEVERSAFE, INC. Cleversafe Dispersed Stor-

age. Open source code distribution: http://

www.cleversafe.org/downloads, 2008.

[8] CORBETT, P., ENGLISH, B., GOEL, A., GR-

CANAC, T., KLEIMAN, S., LEONG, J., AND

SANKAR, S. Row diagonal parity for double disk

failure correction. In 3rd Usenix Conference on

File and Storage Technologies (San Francisco, CA,

March 2004).

[9] FENG, G., DENG, R., BAO, F., AND SHEN, J.

New efficient MDS array codes for RAID Part I:

Reed-Solomon-like codes for tolerating three disk

failures. IEEE Transactions on Computers 54, 9

(September 2005), 1071–1080.

[10] FENG, G., DENG, R., BAO, F., AND SHEN, J.

New efficient MDS array codes for RAID Part II:

Rabin-like codes for tolerating multiple (≥ 4) disk

failures. IEEE Transactions on Computers 54, 12

(Decemeber 2005), 1473–1483.

[11] GREENAN, K., MILLER, E., AND SCHWARTZ,

T. J. Optimizing Galois Field arithmetic for diverse

processor architectures and applications. In MAS-

COTS 2008: 16th IEEE Symposium on Modeling,

Analysis and Simulation of Computer and Telecom-

munication Systems (Baltimore, MD, September

2008).

[12] HAFNER, J. L. WEAVER Codes: Highly fault tol-

erant erasure codes for storage systems. In FAST-

2005: 4th Usenix Conference on File and Stor-

age Technologies (San Francisco, December 2005),

pp. 211–224.

[13] HAFNER, J. L. HoVer erasure codes for disk ar-

rays. In DSN-2006: The International Conference

on Dependable Systems and Networks (Philadel-

phia, June 2006), IEEE.

[14] HAFNER, J. L., DEENADHAYALAN, V., RAO,

K. K., AND TOMLIN, A. Matrix methods for

lost data reconstruction in erasure codes. In FAST-

2005: 4th Usenix Conference on File and Stor-

age Technologies (San Francisco, December 2005),

pp. 183–196.

[15] HUANG, C., CHEN, M., AND LI, J. Pyramid

codes: Flexible schemes to trade space for access

efficienty in reliable data storage systems. In NCA-

07: 6th IEEE International Symposium on Net-

work Computing Applications (Cambridge, MA,

July 2007).

[16] HUANG, C., LI, J., AND CHEN, M. On optimizing

XOR-based codes for fault-tolerant storage appli-

cations. In ITW’07, Information Theory Workshop

(Tahoe City, CA, September 2007), IEEE, pp. 218–

223.



USENIX Association 	 FAST ’09: 7th USENIX Conference on File and Storage Technologies	 265

[17] HUANG, C., AND XU, L. STAR: An efficient cod-

ing scheme for correcting triple storage node fail-

ures. In FAST-2005: 4th Usenix Conference on File

and Storage Technologies (San Francisco, Decem-

ber 2005), pp. 197–210.

[18] KARN, P. Dsp and fec library. http://www.

ka9q.net/code/fec/, 2007.

[19] LUBY, M. Code for Cauchy Reed-Solomon cod-

ing. Uuencoded tar file: http://www.icsi.

berkeley.edu/˜luby/cauchy.tar.uu,

1997.

[20] LUO, J., XU, L., AND PLANK, J. S. An effi-

cient XOR-Scheduling algorithm for erasure code

encoding. Tech. Rep. Computer Science, Wayne

State University, December 2008.

[21] MACWILLIAMS, F. J., AND SLOANE, N. J. A.

The Theory of Error-Correcting Codes, Part I.

North-Holland Publishing Company, Amsterdam,

New York, Oxford, 1977.

[22] NISBET, B. FAS storage systems: Lay-

ing the foundation for application avail-

ability. Network Appliance white paper:

http://www.netapp.com/us/library/

analyst-reports/ar1056.html, February

2008.

[23] PARTOW, A. Schifra Reed-Solomon ECC Li-

brary. Open source code distribution: http:

//www.schifra.com/downloads.html,

2000-2007.

[24] PLANK, J. S. A new minimum density RAID-6

code with a word size of eight. In NCA-08: 7th

IEEE International Symposium on Network Com-

puting Applications (Cambridge, MA, July 2008).

[25] PLANK, J. S. The RAID-6 Liberation codes. In

FAST-2008: 6th Usenix Conference on File and

Storage Technologies (San Jose, February 2008),

pp. 97–110.

[26] PLANK, J. S., SIMMERMAN, S., AND SCHUMAN,

C. D. Jerasure: A library in C/C++ facilitating era-

sure coding for storage applications - Version 1.2.

Tech. Rep. CS-08-627, University of Tennessee,

August 2008.

[27] PLANK, J. S., AND XU, L. Optimizing Cauchy

Reed-Solomon codes for fault-tolerant network

storage applications. In NCA-06: 5th IEEE Inter-

national Symposium on Network Computing Appli-

cations (Cambridge, MA, July 2006).

[28] REED, I. S., AND SOLOMON, G. Polynomial

codes over certain finite fields. Journal of the

Society for Industrial and Applied Mathematics 8

(1960), 300–304.

[29] RHEA, S., WELLS, C., EATON, P., GEELS, D.,

ZHAO, B., WEATHERSPOON, H., AND KUBIA-

TOWICZ, J. Maintenance-free global data storage.

IEEE Internet Computing 5, 5 (2001), 40–49.

[30] RIZZO, L. Effective erasure codes for reliable com-

puter communication protocols. ACM SIGCOMM

Computer Communication Review 27, 2 (1997),

24–36.

[31] STORER, M. W., GREENAN, K. M., MILLER,

E. L., AND VORUGANTI, K. Pergamum: Replac-

ing tape with energy efficient, reliable, disk-based

archival storage. In FAST-2008: 6th Usenix Confer-

ence on File and Storage Technologies (San Jose,

February 2008), pp. 1–16.

[32] WELCH, B., UNANGST, M., ABBASI, Z., GIB-

SON, G., MUELLER, B., SMALL, J., ZELENKA,

J., AND ZHOU, B. Scalable performance of the

Panasas parallel file system. In FAST-2008: 6th

Usenix Conference on File and Storage Technolo-

gies (San Jose, February 2008), pp. 17–33.

[33] WILCOX-O’HEARN, Z. Zfec 1.4.0. Open source

code distribution: http://pypi.python.

org/pypi/zfec, 2008.

[34] WYLIE, J. J., AND SWAMINATHAN, R. Determin-

ing fault tolerance of XOR-based erasure codes ef-

ficiently. In DSN-2007: The International Confer-

ence on Dependable Systems and Networks (Edin-

burgh, Scotland, June 2007), IEEE.

[35] XU, L., AND BRUCK, J. X-Code: MDS array

codes with optimal encoding. IEEE Transactions

on Information Theory 45, 1 (January 1999), 272–

276.

[36] ZHU, B., LI, K., AND PATTERSON, H. Avoiding

the disk bottleneck in the Data Domain deduplica-

tion file system. In FAST-2008: 6th Usenix Confer-

ence on File and Storage Technologies (San Jose,

February 2008), pp. 269–282.




