Spyglass: Fast, Scalable Metadata Search for Large-Scale Storage Systems

Andrew W. Leung* Minglong Shao'
*University of California, Santa Cruz
{aleung, elm}@cs.ucsc.edu

Abstract

The scale of today’s storage systems has made it in-
creasingly difficult to find and manage files. To address
this, we have developed Spyglass, a file metadata search
system that is specially designed for large-scale storage
systems. Using an optimized design, guided by an anal-
ysis of real-world metadata traces and a user study, Spy-
glass allows fast, complex searches over file metadata to
help users and administrators better understand and man-
age their files.

Spyglass achieves fast, scalable performance through
the use of several novel metadata search techniques that
exploit metadata search properties. Flexible index con-
trol is provided by an index partitioning mechanism that
leverages namespace locality. Signature files are used
to significantly reduce a query’s search space, improving
performance and scalability. Snapshot-based metadata
collection allows incremental crawling of only modified
files. A novel index versioning mechanism provides both
fast index updates and “back-in-time” search of meta-
data. An evaluation of our Spyglass prototype using our
real-world, large-scale metadata traces shows search per-
formance that is 1-4 orders of magnitude faster than ex-
isting solutions. The Spyglass index can quickly be up-
dated and typically requires less than 0.1% of disk space.
Additionally, metadata collection is up to 10 x faster than
existing approaches.

1 Introduction

The rapidly growing amounts of data in today’s stor-
age systems makes finding and managing files extremely
difficult. Storage users and administrators need to effi-
ciently answer questions about the properties of the files
being stored in order to properly manage this increas-
ingly large sea of data. Metadata search, which involves
indexing file metadata such as inode fields and extended
attributes, can help answer many of these questions [26].

Timothy Bisson’

"NetApp
{minglong, tbisson, shankarp }@netapp.com

Metadata search allows point, range, top-k, and aggre-
gation search over file properties, facilitating complex,
ad hoc queries about the files being stored. For exam-
ple, it can help an administrator answer “which files can
be moved to second tier storage?” or “which applica-
tion’s and user’s files are consuming the most space?”.
Metadata search can also help a user find his or her ten
most recently accessed presentations or largest virtual
machine images. Efficiently answering these questions
can greatly improve how user and administrator manage
files in large-scale storage systems.

Unfortunately, fast and efficient metadata search in
large-scale storage systems is difficult to achieve. Both
customer discussions [37] and personal experience have
shown that existing enterprise search tools that provide
metadata search [4, 14,17,21,30] are often too expen-
sive, slow, and cumbersome to be effective in large-scale
systems. Effective metadata search must meet several
requirements. First, it must be able to quickly gather
metadata from the storage system. We have observed
commercial systems that took 22 hours to crawl 500 GB
and 10 days to crawl 10 TB. Second, search and update
must be fast and scalable. Existing systems typically
index metadata in a general-purpose DBMS. However,
DBMSs are not a perfect fit for metadata search, which
can limit their performance and scalability in large-scale
systems. Third, resource requirements must be low. Ex-
isting tools require dedicated CPU, memory, and disk
hardware, making them expensive and difficult to inte-
grate into the storage system. Fourth, the search inter-
face must be flexible and easy to use. Metadata search
enables complex file searches that are difficult to ask
with existing file system interfaces and query languages.
Fifth, search results must be secure; many existing sys-
tems either ignore file ACLs or significantly degrade per-
formance to enforce them.

To address these issues, we developed Spyglass, a
novel metadata search system that exploits file metadata
properties to enable fast, scalable search that can be em-

USENIX Association

7th USENIX Conference on File and Storage Technologies 153

Shankar Pasupathy” Ethan L. Miller*

bedded within the storage system. To guide our design,
we collected and analyzed file metadata snapshots from
real-world storage systems at NetApp and conducted a
survey of over 30 users and IT administrators. Our de-
sign introduces several new metadata search techniques.
Hierarchical partitioning is a new method of namespace-
based index partitioning that exploits namespace local-
ity to provide flexible control of the index. Signature
files are used to compactly describe a partition’s con-
tents, helping to route queries only to relevant partitions
and prune the search space to improve performance and
scalability. A new snapshot-based metadata collection
method provides scalable collection by re-crawling only
the files that have changed. Finally, partition versioning,
a novel index versioning mechanism, enables fast up-
date performance while allowing “back-in-time” search
of past metadata. Spyglass does not currently address
search interface or security, which are left to future work.

An evaluation of our Spyglass prototype, using our
real-world, large-scale metadata traces, shows that
search performance is improved 1-4 orders of magni-
tude compared to basic DBMS setups. Additionally,
search performance is scalable; it is capable of search-
ing hundreds of millions of files in less than a second.
Index update performance is up to 40x faster than basic
DBMS setups and scales linearly with system size. The
index itself typically requires less than 0.1% of total disk
space. Index versioning allows “back-in-time” metadata
search while adding only a tiny overhead to most queries.
Finally, our snapshot-based metadata collection mecha-
nism performs 10x faster than a straw-man approach.
Our evaluation demonstrates that Spyglass can leverage
file metadata properties to improve how files are man-
aged in large-scale storage systems.

This remainder of this paper is organized as follows.
Section 2 provides additional metadata search motivation
and background. Section 3 presents the Spyglass design.
Our prototype is evaluated in Section 4. Related work is
discussed in Section 5, with future work and conclusions
in Section 6.

2 Background

This section describes and motivates the use of file meta-
data search and includes a discussion of real-world query
and metadata characteristics.

2.1 File Metadata

File metadata, such as inode fields (e.g., size, owner,
timestamps, efc.), generated by the storage system and
extended attributes (e.g., document title, retention policy,
backup dates, efc.), generated by users and applications,

is typically represented as (attribute, value) pairs that de-
scribe file properties. Today’s storage systems can con-
tain millions to billions of files, and each file can have
dozens of metadata attribute-value pairs, resulting in a
data set with 10'° — 10'! total pairs.

The ability to search file metadata facilitates complex
queries on the properties of files in the storage system,
helping administrators understand the kinds of files being
stored, where they are located, how they are used, how
they got there (provenance), and where they should be-
long. For example, finding which files to migrate to tape
may involve searching file size, access time, and owner
metadata attributes, allowing administrators to decide on
and enforce their management policies. Metadata search
also helps users locate misplaced files, manage their stor-
age space, and track file changes. As a result, metadata
search tools are becoming more prevalent; recent reports
state that 37% of enterprise businesses use such tools and
40% plan to do so in the near future [12].

To better understand metadata search needs, we sur-
veyed over 30 large scale storage system users and ad-
ministrators. We found subjects using metadata search
for a wide variety of purposes. Use cases included
managing storage tiers, tracking legal compliance data,
searching large scientific data output files, finding files
with incorrect security ACLs, and resource/capacity
planning. Table 1 provides examples of some popular
use cases and the metadata attributes searched.

2.2 Efficient Metadata Search

Providing efficient metadata search in large-scale stor-
age systems is a challenge. While a number of commer-
cial file metadata search systems exist today [4, 14,17,
21,30], these systems focus on smaller scales (e.g., up to
tens of millions of files) and are often too slow, resource
intensive, and expensive to be effective for large-scale
systems. To be effective at large scales, file metadata
search must provide the following:

1) Minimal resource requirements. Metadata search
should not require additional hardware. It should be em-
bedded within the storage system and close to the files it
indexes while not degrading system performance. Most
existing systems require dedicated CPU, memory, and
disk hardware, making them expensive and hard to de-
ploy, and limiting their scalability.

2) Fast metadata collection. Metadata changes must be
periodically collected from millions to billions of files
without exhausting or slowing the storage system. Ex-
isting crawling methods are slow and can tax system re-
sources. Hooks to notify systems of file changes can add
overhead to important data paths.

3) Fast and scalable index search and update. Searches
must be fast, even as the system grows, or usability may

154

7th USENIX Conference on File and Storage Technologies

USENIX Association

File Management Question

Metadata Search Query

Which files can I migrate to tape?

size > 50 GB, atime > 6 months.

How many duplicates of this file are in my home directory?

owner = john, datahash = 0xE431, path = /home /john.

Where are my recently modified presentations?

owner = john, type = (ppt | keynote), mtime < 2 days.

Which legal compliance files can be expired?

retention time = expired, mtime > 7 years

Which of my files grew the most in the past week?

Top 100 where size(today) > size(1 week ago), owner = john.

How much storage do these users and applications consume?

Sum size where owner = john, type = database

Table 1: Use case examples. Metadata search use cases collected from our user survey. The high-level questions being addressed
are on the left. On the right are the metadata attributes being searched and example values. Users used basic inode metadata, as
well as specialized extended attributes, such as legal retention times. Common search characteristics include multiple attributes,

localization to part of the namespace, and “back-in-time” search.

suffer. Updates must allow fast periodic re-indexing of
metadata. However, existing systems typically rely on
general-purpose relational databases (DBMSs) to index
metadata. For example, Microsoft’s enterprise search in-
dexes metadata in their Extensible Storage Engine (ESE)
database [30]. Unfortunately, DBMSs often use heavy-
weight locking and transactions that add overhead even
when disabled [43]. Additionally, their designs make
significant trade-offs between search and update perfor-
mance [1]. DBMSs also assume abundant CPU, mem-
ory, and disk resources. Although standard DBMSs have
benefited from decades of performance research and op-
timizations, such as vertical partitioning [23] and materi-
alized views, their designs are not a perfect fit for meta-
data search. This is not a new concept; the DBMS com-
munity has argued that general-purpose DBMSs are not a
“one size fits all solution” [9,42,43], instead saying that
application-specific designs are often best.

4) Easy to use search interface. Most systems export
simple search APIs. However, recent research [3] has
shown that specially designed interfaces that can pro-
vide an expressive and easy to use query capabilities can
greatly improve search experience.

5) Secure search results. Search results must not allow
users to find or access restricted files [10]. Existing sys-
tems either ignore security or enforce it at a significant
cost to performance.

We designed Spyglass to address these challenges in
large-scale storage systems. Spyglass is specially de-
signed to exploit metadata search properties to achieve
scale and performance while being embedded within the
storage system. Spyglass focuses on crawling, updating,
and searching metadata; interface and security designs
are left to future work.

2.3 Metadata Search Properties

To understand metadata search properties, we analyzed
results from our user survey and real-world metadata
snapshot traces collected from storage servers at NetApp.
We then used this analysis to guide our Spyglass design.

Data Set Description # of Files Capacity
Web web & wiki server 15 million 1.28TB
Eng build space 60 million 30GB

Home home directories 300 million | 76.78 TB

Table 2: Metadata traces collected. The small server capacity of
the Eng trace is due to the majority of the files being small source
code files: 99% of files are less than 1 KB.

Attribute Description Attribute | Description
inumber inode number owner file owner
path full path name size file size

ext file extension ctime change time
type file or directory atime access time
mtime | modification time hlink hard link #

Table 3: Attributes used. We analyzed the fields in the inode
structure and extracted extvalues from path.

Search Characteristics. From our survey, we observed
three important metadata search characteristics. First,
over 95% of searches included multiple metadata at-
tributes to refine search results; a search on a single at-
tribute over a large file system can return thousands or
even millions of results, which users do not want to sift
through. Second, about 33% of searches were localized
to part of the namespace, such as a home or project di-
rectory. Users often have some idea of where their files
are and a strong idea of where they are not; localizing
the search focuses results on only relevant parts of the
namespace. Third, about 25% of the searches that users
deemed most important searched multiple versions of
metadata. Users use “back-in-time” searches to under-
stand file trends and how files are accessed.
Metadata Characteristics. We collected metadata
snapshot traces from three storage servers at NetApp.
Our traces—Web, Eng, and Home—are described in Ta-
ble 2. Table 3 describes the metadata attributes that we
analyzed. NetApp servers support extended attributes,
though they were rarely used in these traces. We found
two key properties in these traces: metadata has spatial
locality and highly skewed distributions of values.
Spatial locality means that attribute values are clus-
tered in the namespace (i.e., occurring in relatively few
directories). For example, john’s files reside mostly in

USENIX Association

7th USENIX Conference on File and Storage Technologies 155

LN /
P SRS

(a) Locality Ratio=54% (b) Locality Ratio=38%
Figure 1: Examples of locality ratio. Directories that recur-
sively contain the ext attribute value html are black and gray.
The black directories contain the value. The locality ratio of ext
value html is 54% (=7/13) in the first tree and 38% (=5/13)
in the second tree. The value of htm1 has better spatial locality
in the second tree than in the first one.

the /home/john sub-tree, not scattered evenly across
the namespace. Spatial locality comes from the way that
users and applications organize files in the namespace,
and has been noted in other file system studies [2,25].
To measure spatial locality, we use an attribute value’s
locality ratio: the percent of directories that recursively
contain the value, as illustrated in Figure 1. A directory
recursively contains an attribute value if it or any of its
sub-directories contains the value. The figure on the right
has a lower locality ratio because the ext attribute value
html is recursively contained in fewer directories. Ta-
ble 4 shows the locality ratios for the 32 most frequently
occurring values for various attributes (ext, size, owner,
ctime, mtime) in each trace. Locality ratios are less than
1% for all attributes, meaning that 99% of directories do
not recursively contain the value. We expect extended at-
tributes to exhibit similar properties since they are often
tied to file type and owner attributes.

Utilizing spatial locality can help prune a query’s
search space by identifying only the parts of the names-
pace that contain a metadata value, eliminating a large
number of files to search. Unfortunately, most general-
purpose DBMSs treat path names as flat string attributes,
making it difficult for them to utilize this information, in-
stead typically requiring them to consider all files for a
search no matter its locality.

Metadata values also have highly skewed
frequencies—their popularity distributions are asym-
metric, causing a few very popular metadata values to
account for a large fraction of all total values. This
distribution has also been observed in other metadata
studies [2,11]. Figures 2(a) and 2(b) show the distri-
bution of ext and size values from our Home trace on
a log-log scale. The linear appearance indicates that
the distributions are Zipf-like and follow the power law
distribution [40]. In these distributions, 80% of files
have one of the 20 most popular ext or Size values,
while the remaining 20% of the files have thousands of
other values. Figure 2(c) shows the distribution of the
Cartesian product (i.e., the intersection) of the top 20
ext and size values. The curve is much flatter, which
indicates a more even distribution of values. Only 33%

of files have one of the top 20 ext and Size combinations.
In Figure 2(c), file percentages for corresponding ranks
are at least an order of magnitude lower than in the
other two graphs. This means, for example, that there
are many files with owner john and many files with
ext pdf, but there are often over an order of magnitude
fewer files with both owner john and ext pdf.

These distribution properties show that multi-attribute
searches will significantly reduce the number of query
results. Unfortunately, most DBMSs rely on attribute
value distributions (also known as selectivity) to choose
a query plan. When distributions are skewed, query
plans often require extra data processing [28]; for ex-
ample, they may retrieve all of john’s files to find the
few that are john’s pdf files or vice-versa. Our anal-
ysis shows that query execution should utilize attribute
values’ spatial locality rather than their frequency distri-
butions. Spatial locality provides a more effective way
to execute a query because it is more selective and can
better reduce a query’s search space.

3 Spyglass Design

Spyglass uses several novel techniques that exploit the
metadata search properties discussed in Section 2 to pro-
vide fast, scalable search in large-scale storage systems.
First, hierarchical partitioning partitions the index based
on the namespace, preserving spatial locality in the index
and allowing fine-grained index control. Second, signa-
ture files [13] are used improve search performance by
leveraging locality to identify only the partitions that are
relevant to a query. Third, partition versioning versions
index updates, which improves update performance and
allows “back-in-time” search of past metadata versions.
Finally, Spyglass utilizes storage systems snapshots to
crawl only the files whose metadata has changed, pro-
viding fast collection of metadata changes. Spyglass re-
sides within the storage system and consists of two ma-
jor components, shown in Figure 3: the Spyglass index,
which stores metadata and serves queries, and a crawler
that extracts metadata from the storage system.

3.1 Hierarchical Partitioning

To exploit metadata locality and improve scalability, the
Spyglass index is partitioned into a collection of separate,
smaller indexes, which we call hierarchical partitioning.
Hierarchical partitioning is based on the storage system’s
namespace and encapsulates separate parts of the names-
pace into separate partitions, thus allowing more flexible,
finer grained control of the index. Similar partitioning
strategies are often used by file systems to distribute the
namespace across multiple machines [35,44].

156

7th USENIX Conference on File and Storage Technologies

USENIX Association

ext size uid ctime mtime
Web | 0.000162% —0.120% | 0.0579% —0.177% | 0.000194% —0.0558% | 0.000291% —0.0105% | 0.000388% — 0.00720%
Eng 0.00101% —0.264% | 0.00194% —0.462% | 0.000578% —0.137% | 0.000453% —0.0103% | 0.000528% — 0.0578%
Home | 0.000201% —0.491% | 0.0259% —0.923% 0.000417% — 0.623% 0.000370% — 0.128% 0.000911% —0.0103%

Table 4: Locality ratios of the 32 most frequently occurring attribute values. All locality ratios are well below 1%, which means

that files with these attribute values are recursively contained in less than 1% of directories.

10+ 10 | 10 ¢
g 0.1 ¢ g 0.1 ¢ g 0.1 ¢
(%] (%] (%]
K K K
i 0.001 i 0.001 i 0.001
k) k) k)
g 1e-05 g 1e-05 g 1e-05
€ € €
2 1e07t 2 1e07t 2 1e07t
s
16-09 16-09 16-09 (ext size)
10 100 1000 10000100000 1 10 100 1000 10000100000 1 10 100 1000 10000100000
Rank of ext Rank of size Rank of (ext, size)
(a) (b) (©

Figure 2: Attribute value distribution examples. A rank of 1 represents the attribute value with the highest file count. The linear
curves on the log-log scales in Figures 2(a) and 2(b) indicate a Zipf-like distribution, while the flatter curve in Figure 2(c) indicates

a more even distribution.

Storage
system

Index

\Spyglass

Query

Results

[Cache] [Crawler]
I)
v

\, v

Figure 3: Spyglass overview. Spyglass resides within the stor-
age system. The crawler extracts file metadata, which gets
stored in the index. The index consists of a number of partitions
and versions, all of which are managed by a caching system.

Each of the Spyglass partitions is stored sequentially
on disk, as shown in Figure 4. Thus, unlike a DBMS,
which stores records adjacently on disk using their row
or column order, Spyglass groups records nearby in the
namespace together on disk. This approach improves
performance since the files that satisfy a query are often
clustered in only a portion of the namespace, as shown
by our observations in Section 2. For example, a search
of the storage system for john’s . ppt files likely does
not require searching sub-trees such as other user’s home
directories or system file directories. Hierarchical parti-
tioning allows only the sub-trees relevant to a search to
be considered, thereby enabling reduction of the search
space and improving scalability. Also, a user may choose
to localize the search to only a portion of the names-
pace. Hierarchical partitioning allows users to control
the scope of the files that are searched. A DBMS-based

solution usually encodes pathnames as flat strings, mak-
ing it oblivious to the hierarchical nature of file organiza-
tion and requiring it to consider the entire namespace for
each search. If the DBMS stores the files sorted by file
name, it can improve locality and reduce the fraction of
the index table that must be scanned; however, this ap-
proach can still result in performance problems for index
updates, and does not encapsulate the hierarchical rela-
tionship between files.

Spyglass partitions are kept small, on the order of
100,000 files, to maintain locality in the partition and to
ensure that each can be read and searched very quickly.
Since partitions are stored sequentially on disk, searches
can usually be satisfied with only a few small sequential
disk reads. Also, sub-trees often grow at a slower rate
than the system as a whole [2,25], which provides scal-
ability because the number of partitions to search will
often grow slower than the size of the system.

We refer to each partition as a sub-tree partition; the
Spyglass index is a tree of sub-tree partitions that reflects
the hierarchical ordering of the storage namespace. Each
partition has a main partition index, in which file meta-
data for the partition is stored; partition metadata, which
keeps information about the partition; and pointers to
child partitions. Partition metadata includes information
used to determine if a partition is relevant to a search and
information used to support partition versioning.

The Spyglass index is stored persistently on disk; how-
ever, all partition metadata, which is small, is cached
in-memory. A partition cache manages the movement
of entire partition indexes to and from disk as needed.
When a file is accessed, its neighbor files will likely need
to be accessed as well, due to spatial locality. Paging en-

USENIX Association

7th USENIX Conference on File and Storage Technologies

157

usr

¢

| include |

jim Adistmeta reliability

src experiments

; Spyglass index

l_l | ‘ l_l | On disk

layout

-

Figure 4: Hierarchical partitioning example. Sub-tree parti-
tions, shown in different colors, index different storage system
sub-trees. Each partition is stored sequentially on disk. The
Spyglass index is a tree of sub-tree partitions.

tire partition indexes allows metadata for all of these files
to be fetched in a single, small sequential read. This con-
cept is similar to the use of embedded inodes [15], to
store inodes adjacent to their parent directory on disk.

In general, Spyglass search performance is a function
of the number of partitions that must be read from disk.
Thus, the partition cache’s goal is to reduce disk accesses
by ensuring that most partitions searched are already in-
memory. While we know of no studies of file system
query patterns we believe that a simple LRU algorithm
is effective. Both web queries [5] and file system ac-
cess patterns [25] exhibit skewed, Zipf-like popularity
distributions, suggesting that file metadata queries may
exhibit similar popularity distributions; this would mean
that only a small subset of partitions will be frequently
accessed. An LRU algorithm keeps frequently accessed
partitions in-memory, ensuring high performance for
common queries and efficient cache utilization.
Partition Indexes. Each partition index must provide
fast, multi-dimensional search of the metadata it in-
dexes. To do this we use a K-D tree [7], which is a k-
dimensional binary tree, because it provides lightweight,
logarithmic point, range, and nearest neighbor search
over k dimensions and allows multi-dimensional search
of a partition in tens to hundreds of microseconds.
However, other index structures can provide additional
functionality. For example, FastBit [45] provides high
index compression, Berkeley DB [34] provides trans-
actional storage, cache-oblivious B-trees [6] improve
update time, and K-D-B-trees [38] allow partially in-
memory K-D trees. However, in most cases, the fast,
lightweight nature of K-D trees is preferred. The draw-
back is that K-D trees are difficult to update; Section 3.2
describes techniques to avoid continuous updates.
Partition Metadata. Partition metadata contains infor-
mation about the files in the partition, including paths
of indexed sub-trees, file statistics, signature files, and
version information. File statistics, such as file counts
and minimum and maximum values, are kept to answer

aggregation and trend queries without having to process
the entire partition index. These statistics are computed
as files are being indexed. A version vector, which is de-
scribed in Section 3.2, manages partition versions. Sig-
nature files are used to determine if the partition contains
files relevant to a query.

Signature files [13] are bit arrays that serve as compact
summaries of a partition’s contents and exploit metadata
locality to prune a query’s search space. A common ex-
ample of a signature file is the Bloom Filter [8]. Spy-
glass can determine whether a partition may index any
files that match a query simply by testing bits in the sig-
nature files. A signature file and an associated hashing
function are created for each attribute indexed in the par-
tition. All bits in the signature file are initially set to zero.
As files are indexed, their attribute values are hashed to
a bit position in the attribute’s signature file, which is set
to one. To determine if the partition indexes files relevant
to a query, each attribute value being searched is hashed
and its bit position is tested. The partition needs to be
searched only if all bits tested are set to one. Due to spa-
tial locality, most searches can eliminate many partitions,
reducing the number of disk accesses and processing a
query must perform.

Due to collisions in the hashing function that cause
false positives, a signature file determines only if a par-
tition may contain files relevant to a query, potentially
causing a partition to be searched when it does not con-
tain any files relevant to a search. However, signature
files cannot produce false negatives, so partitions with
relevant files will never be missed. False-positive rates
can be reduced by varying the size of the signature or
changing the hashing function. Increasing signature file
sizes, which are initially around 2KB, decreases the
chances of a collision by increasing the total number of
bits. This trades off increased memory requirements and
lower false positive rates. Changing the hashing function
allow a bit’s meaning and how it is used to be improved.
For example, consider a signature file for file size at-
tributes. Rather than have each bit represent a single size
value (e.g., 522 bytes), we can reduce false positives for
common small files by mapping each 1 KB range to a
single bit for sizes under 1 MB. The ranges for less com-
mon large files can be made more coarse, perhaps using
a single bit for sizes between 25 and 50 MB.

The number of signature files that have to be tested can
be reduced by utilizing the tree structure of the Spyglass
index to create hierarchically defined signature files. Hi-
erarchical signature files are smaller signatures (roughly
100 bytes) that summarize the contents of its partition
and the partitions below it in the tree. Hierarchical signa-
ture files are the logical OR of a partition’s signature files
and the signature files of its children. A single failed test
of a hierarchical signature file can eliminate huge parts of

158

7th USENIX Conference on File and Storage Technologies

USENIX Association

/s

proj

dis;meta relia:ility
src experiments

Spyglass

’ \ I ;indexer
4 I
’ \ |
7 \ \
4
N

-

Baseline Incremental
index indexes

Figure 5: Versioning partitioning example. FEach sub-tree
partition manages its own versions. A baseline index is a nor-
mal partition index from some initial time Ty. Each incremental
index contains the changes required to roll query result forward
to a new point in time. Each sub-tree partition manages its ver-
sion in a version vector.

the index from the search space, preventing every parti-
tion’s signature files from being tested. Hierarchical sig-
nature files are kept small to save memory at the cost of
increased false positives.

3.2 Partition Versioning

Spyglass improves update performance and enables
“back-in-time” search using a technique called parti-
tion versioning that batches index updates, treating each
batch as a new incremental index version. The motiva-
tion for partition versioning is two-fold. First, we wish
to improve index update performance by not having to
modify existing index structures. In-place modification
of existing indexes can generate large numbers of disk
seeks and can cause partition index structures to become
unbalanced. Second, back-in-time search can help an-
swer many important storage management questions that
can track file trends and how they change.

Spyglass batches updates before they are applied as
new versions to the index, meaning that the index may
be stale because file modifications are not immediately
reflected in the index. However, batching updates im-
proves index update performance by eliminating many
small, random, and frequent updates that can thrash the
index and cache. Additionally, from our user survey,
most queries can be satisfied with a slightly stale index.
It should be noted that partition versioning does not re-
quire updates to be batched. The index can be updated in
real time by versioning each individual file modification,
as is done in most versioning file systems [39,41].
Creating Versions. Spyglass versions each sub-tree par-
tition individually rather than the entire index as a whole
in order to maintain locality. A versioned sub-tree par-
tition consists of two components: a baseline index and

incremental indexes, which are illustrated in Figure 5. A
baseline index is a normal partition index that represents
the state of the storage system at time 7p, or the time of
the initial update. An incremental index is an index of
metadata changes between two points in time 7,,_; and
T,. These changes are indexed in K-D trees, and smaller
signature files are created for each incremental index.
Storing changes differs from the approach used in some
versioning file systems [39], which maintain full copies
for each version. Changes consist of metadata creations,
deletions, and modifications. Maintaining only changes
requires a minimal amount of storage overhead, resulting
in a smaller footprint and less data to read from disk.

Each sub-tree partition starts with a baseline index, as
shown in Figure 5. When a batch of metadata changes
is received at T, it is used to build incremental indexes.
Each partition manages its incremental indexes using a
version vector, similar in concept to inode logs in the
Elephant File System [39]. Since file metadata in differ-
ent parts of the file system change at different rates [2,
25], partitions may have different numbers and sizes of
incremental indexes. Incremental indexes are stored se-
quentially on disk adjacent to their baseline index. As a
result, updates are fast because each partition writes its
changes in a single, sequential disk access. Incremen-
tal indexes are paged into memory whenever the base-
line index is accessed, increasing the amount of data that
must be read when paging in a partition, though not typi-
cally increasing the number of disk seeks. As aresult, the
overhead of versioning on overall search performance is
usually small.

Performing a “back-in-time” search that is accurate as
of time 7,, works as follows. First, the baseline index
is searched, producing query results that are accurate as
of Ty. The incremental indexes 77 through T, are then
searched in chronological order. Each incremental in-
dex searched produces metadata changes that modify the
search results, rolling them forward in time, and even-
tually generating results that are accurate as of T,,. For
example, consider a query for files with owner john
that matches two files, F, and Fj, at Tp. A search of in-
cremental indexes at 71 may yield changes that cause F;,
to no longer match the query (e.g., no longer owned by
john), and a later search of incremental indexes at T,
may yield changes that cause file F,. to match the query
(i.e., now owned by john). The results of the query are
F, and F,, which is accurate as of 7,,. Because this pro-
cess is done in memory and each version is relatively
small, searching through incremental indexes is often
very fast. In rolling results forward, a small penalty is
paid to search the most recent changes; however, updates
are much faster because no data needs to be copied, as
is the case in CVFS [41], which rolls version changes
backwards rather than forwards.

USENIX Association

7th USENIX Conference on File and Storage Technologies 159

Managing Versions. Over time, older versions tends
to decrease in value and should be removed to re-
duce search overhead and save space. Spyglass pro-
vides two efficient techniques for managing partition
versions: version collapsing and version checkpointing.
Version collapsing applies each partition’s incremental
index changes to its baseline index. The result is a single
baseline for each partition that is accurate as of the most
recent incremental index. Collapsing is efficient because
all original index data is read sequentially and the new
baseline is written sequentially. Version checkpointing
allows an index to be saved to disk as a new copy to pre-
serve an important landmark version of the index.

We describe how collapsing and checkpointing can be
used with an example. During the day, Spyglass is up-
dated hourly, creating new versions every hour, thus al-
lowing “back-in-time” searches to be performed at per-
hour granularity over the day. At the end of each day,
incremental versions are collapsed, reducing space over-
head at the cost of prohibiting hour-by-hour searching
over the last day. Also, at the end of each day, a copy
of the collapsed index is checkpointed to disk, represent-
ing the storage system state at the end of each day. At
the end of each week, all but the latest daily checkpoints
are deleted; and at the end of each month, all but the lat-
est weekly checkpoints are deleted. This results in ver-
sions of varying time scales. For example, over the past
day any hour can be searched, over the past week any
day can be searched, and over the past month any week
can be searched. The frequency for index collapsing and
checkpointing can be configured based on user needs and
space constraints.

3.3 Collecting Metadata Changes

The Spyglass crawler takes advantage of NetApp

SnapshotTM technology in the NetApp WAFL ® file
system [19] on which it was developed to quickly collect
metadata changes. Given two snapshots, 7,1 and T},
Spyglass calculates the difference between them. This
difference represents all of the file metadata changes be-
tween T,,_; and T,,. Because of the way snapshots are
created, only the metadata of changed files is re-crawled.

All metadata in WAFL resides in a single file called
the inode file, which is a collection of fixed length inodes.
Extended attributes are included in the inodes. Perform-
ing an initial crawl of the storage system is fast because
it simply involves sequentially reading the inode file.
Snapshots are created by making a copy-on-write clone
of the inode file. Calculating the difference between two
snapshots leverages this mechanism. This is shown in
Figure 6. By looking at the block numbers of the inode
file’s indirect and data blocks, we can determine exactly
which blocks have changed. If a block’s number has not

Inode file in snapshot 1 Inode file in snapshot 2
block 1 block 9
block 2 block 3 block 2 block 8
block 4 block 5 block 6 block 4 block 5 block 7

l«Inode 50 Inode 50

(mtime changed)

Figure 6: Snapshot-based metadata collection. In snapshot 2,
block 7 has changed since snapshot 1. This change is propa-
gated up the tree. Because block 2 has not changed, we do not
need to examine it or any blocks below it.

changed, then it does not need to be crawled. If this block
is an indirect block, then no blocks that it points to need
to be crawled either because block changes will propa-
gate all the way back up to the inode file’s root block. As
a result, the Spyglass crawler can identify just the data
blocks that have changed and crawl only their data. This
approach greatly enhances scalability because crawl per-
formance is a function of the number of files that have
changed rather than the total number of files.

Spyglass is not dependent on snapshot-based crawl-
ing, though it provides benefits compared to alterna-
tive approaches. Periodically walking the file system
can be extremely slow because each file must be tra-
versed. Moreover, traversal can utilize significant sys-
tem resources and alter file access times on which file
caches depend. Another approach, file system event noti-
fications (e. g., inot ify [22]), requires hooks into crit-
ical code paths, potentially impacting performance. A
changelog, such as the one used in NTFS, is another al-
ternative; however, since we are not interested in every
system event, a snapshot-based scheme is more efficient.

3.4 Distributed Design

Our discussion thus far has focused on indexing and
crawling on a single storage server. However, large-scale
storage systems are often composed of tens or hundreds
of servers. While we do not currently address how to dis-
tribute the index, we believe that hierarchical partitioning
lends itself well to a distributed environment because the
Spyglass index is a tree of partitions. A distributed file
system with a single namespace can view Spyglass as
a larger tree composed of partitions placed on multiple
servers. As a result, distributing the index is a matter of
effectively scaling the Spyglass index tree. Also, the use
of signature files may be effective at routing distributed
queries to relevant servers and their sub-trees. Obviously,
there are many challenges to actually implementing this.
A complete design is left to future work.

160

7th USENIX Conference on File and Storage Technologies

USENIX Association

4 Experimental Evaluation

We evaluated our Spyglass prototype to determine how
well our design addresses the metadata search challenges
described in Section 2 for varying storage system sizes.
To do this, we first measured metadata collection speed,
index update performance, and disk space usage. We
then analyzed search performance and how effectively
index locality is utilized. Finally, we measured partition
versioning overhead.

Implementation Details. Our Spyglass prototype was
implemented as a user-space process on Linux. An RPC-
based interface to WAFL gathers metadata changes using
our snapshot-based crawler. Our prototype dynamically
partitions the index as it is being updated. As files and
directories are inserted into the index, they are placed
into the partition with the longest pathname match (i.e.,
the pathname match farthest down the tree). New par-
titions are created when a directory is inserted and all
matching partitions are full. A partition is considered
full when it contains over 100,000 files. We use 100,000
as the soft partition limit in order to ensure that parti-
tions are small enough to be efficiently read and written
to disk. Using a much smaller partition size will often
increase the number of partitions that must be accessed
for a query; this incurs extra expensive disk seeks. Us-
ing a much larger partition size decreases the number of
partitions that must be accessed for a query; however it
poorly encapsulates spatial locality, causing extra data to
be read from disk. In the case of symbolic and hard links,
multiple index entries are used for the file.

During the update process, partitions are buffered in-
memory and written sequentially to disk when full; each
is stored in a separate file. K-D trees were implemented
using libkdtree++ [27]. Signature file bit-arrays
are about 2 KB, but hierarchical signature files are only
100 bytes, ensuring that signature files can fit within
our memory constraints. Hashing functions that allowed
each signature file’s bit to correspond to a range of values
were used for file size and time attributes to reduce false
positive rates. When incremental indexes are created,
they are appended to their partition on disk. Finally, we
implement a simple search API that allows point, range,
top-k, and aggregation searches. We plan to extend this
interface as future work.

Experimental Setup. We evaluated performance us-
ing our real-world metadata traces described in Table 2.
These traces have varying sizes, allowing us to exam-
ine scalability. Our Web and Eng traces also have in-
cremental snapshot traces of daily metadata changes for
several days. Since no standard benchmarks exist, we
constructed synthetic sets of queries, discussed later in
this section, from our metadata traces to evaluate search
performance. All experiments were performed on a dual

core AMD Opteron machine with 8§ GB of main memory
running Ubuntu Linux 7.10. All index files were stored
on a network partition that accessed a high-end NetApp
file server over NFS.

We also evaluated the performance of two popular re-
lational DBMSs, PostgreSQL and MySQL, which serve
as relative comparison points to DBMS-based solutions
used in other metadata search systems. The goal of our
comparison is to provide some context to frame our Spy-
glass evaluation, not to compare performance to the best
possible DBMS setup. We compared Spyglass to an
index-only DBMS setup, which is used in several com-
mercial metadata search systems, and also tuned various
options, such as page size, to the best of our ability. This
setup is effective at pointing out several basic DBMS
performance problems. DBMS performance can be im-
proved through the techniques discussed in Section 2;
however, as stated earlier, they do not completely match
metadata search cost and performance requirements.

Our Spyglass prototype indexes the metadata at-
tributes listed in Table 3. Our index-only DBMSs in-
clude a base relation with the same metadata attributes
and a B+-tree index for each. Each B+-tree indexes ta-
ble row ID. An index-only design reduces space usage
compared to some more advanced setups, though it has
slower search performance. In all three traces, cache
sizes were configured to 128 MB, 512 MB, and 2.5 GB
for the Web, Eng, and Home traces, respectively. These
sizes are small relative to the size of their trace and cor-
respond to about 1 MB for every 125,000 files.

350
300
= g 0r %
g g 150 F A p
£ = 100 | P E
50
S iffiff}
0 20 40 60 80 100
0 20 40 60 80 100 Files (Millions)
Files (Millions) SM-10% SB-10% -
SM —+— SM-5% -—x-—- SB-5% L
SB --x--- SM-2% %+ SB2% --0-

(b) Incremental: 2%, 5%,
and 10% changes from base-
line

(a) Baseline

Figure 7: Metadata collection performance. We compare
Spyglass’s snapshot-based crawler (SB) to a straw-man design
(SM). Our crawler has good scalability, performance is a func-
tion of the number of changed files rather than system size.

Metadata Collection Performance. We first evaluated
our snapshot-based metadata crawler and compared it
to a straw-man approach. Fast collection performance
impacts how often updates occur and system resource
utilization. Our straw-man approach performs a paral-
lelized walk of the file system using stat () to ex-

USENIX Association

7th USENIX Conference on File and Storage Technologies 161

14h 18n 110
250000 — 50m 7m 31m
%h 5s - 225 33s
25000 el | sem
@ 48m 45m = 26s
.g 2500 — -
'_
L 250
(3]
©
o
=} 25 —
0 T T T
Web Eng Home
B Spyglass PostgreSQL Table MySQL Table
PostgreSQL Index MySQL Index

Figure 8: Update performance. The time required to build an
initial baseline index shown on a log-scale. Spyglass updates
quickly and scales linearly because updates are written to disk
mostly sequentially.

tract metadata. Figure 7(a) shows the performance of a
baseline crawl of all file metadata. Our snapshot based
crawler is up to 10x faster than our straw-man for 100
million files because our approach simply scans the in-
ode file. As a result, a 100 million file system is crawled
in less than 20 minutes.

Figure 7(b) shows the time required to collect incre-
mental metadata changes. We examine systems with 2%,
5%, and 10% of their files changed. For example, a
baseline of 40 million files and 5% change has 2 million
changed files. For the 100 million file tests, each of our
crawls finishes in under 45 minutes, while our straw-man
takes up to 5 hours. Our crawler is able to crawl the inode
file at about 70,000 files per second. Our crawler effec-
tively scales because we incur only a fractional overhead
as more files are crawled; this is due to our crawling only
changed blocks of the inode file.

Update Performance. Figure 8 shows the time re-
quired to build the initial index for each of our metadata
traces. Spyglass requires about 4 minutes, 20 minutes,
and 100 minutes for the three traces, respectively. These
times correspond to a rate of about 65,000 files per sec-
ond, indicating that update performance scales linearly.
Linear scaling occurs because updates to each partition
are written sequentially, with seeks occurring only be-
tween partitions. Incremental index updates have a sim-
ilar performance profile because metadata changes are
written in the same fashion and few disk seeks are added.
Our reference DBMSs take between 8 x and 44 x longer
to update because DBMSs require loading their base ta-
ble and updating index structures. While loading the ta-
ble is fast, updating index structures often requires seeks
back to the base table or extra data copies. As a result,
DBMS updates with our Home trace can take a day or

100 — 86
m
m —
S 24
- 19 47
®©
Q
g 10
5 o,
[0]
[$]
8
o 1 7

0 T T T
Web Eng Home

B Spyglass PostgreSQL Table MySQL Table

PostgreSQL Indexes MySQL Indexes

Figure 9: Space overhead. The index disk space requirements
shown on a log-scale. Spyglass requires just 0.1% of the Web
and Home traces and 10% of the Eng trace to store the index.

more; however, approaches such as cache-oblivious B-
trees [6] may be able to reduce this gap.

Space Overhead. Figure 9 shows the disk space usage
for all three of our traces. Efficient space usage has two
primary benefits: less disk space taken from the storage
system and the ability to cache a higher fraction of the
index. Spyglass requires less than 0.1% of the total disk
space for the Web and Home traces. However, it requires
about 10% for the Eng trace because the total system size
is low due to very small files. Spyglass requires about 50
bytes per file across all traces, resulting in space usage
that scales linearly with system size. Space usage in Spy-
glass is 5x—8 x lower than in our references DBMSs be-
cause they require space to store the base table and index
structures. Figure 9 shows that building index structures
can more the double the total space requirements.
Search Performance. To evaluate Spyglass search per-
formance, we generated sets of queries derived from real-
world queries in our user study; there are, unfortunately,
no standard benchmarks for file system search. These
query sets are summarized in Table 5. Our first set is
based on a storage administrator searching for the user
and application files that are consuming the most space
(e.g., total size of john’s . vmdk files)—an example of
a simple two-attribute search. The second set is an ad-
ministrator localizing the same search to only part of
the namespace, which shows how localizing the search
changes performance. The third set is a storage user
searching for recently modified files of a particular type
in a specific sub-tree, demonstrating how searching many
attributes impacts performance. Each query set consists
of 100 queries, with attribute values randomly selected
from our traces. Randomly selecting attribute values
means that our query sets loosely follow the distribution
of values in our traces and that a variety of values are
used.

162

7th USENIX Conference on File and Storage Technologies

USENIX Association

Set Search Metadata Attributes
Set 1 Which user and application files consume the most space? Sum sizes for files using owner and ext.
Set 2 | How much space, in this part of the system, do files from query 1 consume? Use query 1 with an additional directory path.
Set 3 What are the recently modified application files in my home directory? Retrieve all files using mtime, owner, ext, and path.
Table 5: Query Sets. A summary of the searches used to generate our evaluation query sets.
23h
1000 10000 48m 100000 - 8h 6h 7h
3m 3m) 26m 25m 13s 14 ;;1 29m 16m 3h
59s 2 59s 2m m 13m m s 24 36s] 0m
o S 200 = ;é’; 20s 1000 5m 29s 595"; 25510000 29m . 10s
@ 100 51s
E b
=
s 100
(] -
g 10
& 10 1 - 7.1s
1 4 i i
B Spyglass Set 1 Set 2 Set 3 Set 1 Set 2 Set 3 Set 1 Set 2 Set 3
PostgreSQL
MySQL Web Eng Home

Figure 10: Query set run times. The total time required to run each set of queries. Each set is labeled I through 3 and is clustered
by trace file. Each trace is shown on a separate log-scale axis. Spyglass improves performance by reducing the search space to a
small number of partitions, especially for query sets 2 and 3, which are localized to only a part of the namespace.

Figure 10 shows the total run times for each set of
queries. In general, query set 1 takes Spyglass the longest
to complete, while query sets 2 and 3 finish much faster.
This performance difference is caused by the ability of
sets 2 and 3 to localize the search to only a part of the
namespace by including a path with the query. Spyglass
is able to search only files from this part of the storage
system by using hierarchical partitioning. As a result,
the search space for these queries is bound to the size
of the sub-tree, no matter how large the storage system.
Because the search space is already small, using many at-
tributes has little impact on performance for set 3. Query
set 1, on the other hand, must consider all partitions and
tests each partition’s signature files to determine which
to search. While many partitions are eliminated, there
are more partitions to search than in the other query sets,
which accounts for the longer run times.

Our comparison DBMSs perform closer to Spyglass
on our smallest trace, Web; however we see the gap
widen as the system size increases. In fact, Spyglass is
over four orders of magnitude faster for query sets 2 and
3 on our Home trace, which is our largest at 300 mil-
lion files. The large performance gap is due to several
reasons. First, our DBMSs consider files from all parts
of the namespace, making the search space much larger.
Second, skewed attribute value distributions cause our
DBMSs to process extra data even when there are few
results. Third, the DBMSs base tables ignore metadata
locality, causing extra disk seeks to find files close in the
namespace but far apart in the table. Spyglass, on the
other hand, uses hierarchical partitioning to significantly
reduce the search space, performs only small, sequential

disk accesses, and can exploit locality in the workload to
greatly improve cache utilization.

Using the results from Figure 10, we calculated query
throughput, shown in Table 6. Query throughput (queries
per second) provides a normalized view of our results
and the query loads that can be achieved. Spyglass
achieves throughput of multiple queries per second in all
but two cases; in contrast, the reference DBMSs do not
achieve one query per second in any instance, and, in
many cases, cannot even sustain one query per five min-
utes. Figure 11 shows an alternate view of performance;
a cumulative distribution function (CDF) of query exe-
cution times on our Home trace, allowing us to see how
each query performed. In query sets 2 and 3, Spyglass
finishes all searches in less than a second because local-
ized searches bound the search space. For query set 1,
we see that 75% of queries take less than one second,
indicating that most queries are fast and that a few slow
queries contribute significantly to the total run times in
Figure 10. These queries take longer because they must
read many partitions from disk, either because few were
previously cached or many partitions are searched.

Index Locality. We now evaluate how well Spyglass ex-
ploits spatial locality to improve query performance. We
generated another set of queries, based on query 1 from
Table 5, with 500 queries with owner and ext values ran-
domly selected from our Eng trace. We generated similar
query sets for individual ext and owner attributes.

Figure 12(a) shows a CDF of the fraction of partitions
searched. Searching more partitions often increases the
amount of data that must be read from disk, which de-
creases performance. We see that 50% of searches using
just the ext attribute reference fewer than 75% of par-

USENIX Association

7th USENIX Conference on File and Storage Technologies

163

System Web Eng Home

Set1 | Set2 | Set3 | Setl | Set2 | Set3 | Setl | Set2 | Set3
Spyglass 2.38 2.12 71.4 | 0315 | 14.1 18.9 0.05 15.4 14.1
PostgreSQL | 0.418 | 0.418 | 0.94 | 0.062 | 0.034 | 0.168 | 0.003 | 0.001 | 0.003
MySQL 0.714 | 0.68 | 0.063 | 0.647 | 0.123 | 0.115 | 0.019 | 0.004 | 0.009

Table 6: Query throughput. We use the results from Figure 10 to calculate query throughput (queries per second). We find that

Spyglass can achieve query throughput that enables fast metadata search even on large-scale storage systems.

1] 1 1] 1 [} 1

£ 08 I —— £ 08 [£ 08

Sosl/ ool N

S o6 S o6 S o6

(o) (o) [e]

_5 0.4 _5 0.4 .5 0.4

§ 0.2 § 0.2 § 0.2

ool — S — S o oli —_— ‘

100msls 5s 10s 25s 100s 100msls 5s 10s 25s 100s 100msls 5s 10s 25s 100s
— Spyglass Postgres MySQL — Spyglass Postgres MySQL —— Spyglass Postgres MySQL

Query Execution Time

(a) Query set 1.

Query Execution Time
(b) Query set 2.

Query Execution Time

(c) Query set 3.

Figure 11: Query execution times. A CDF of query set execution times for the Eng trace. In Figures 11(b) and 11(c), all queries
are extremely fast because these sets include a path predicate that allows Spyglass to narrow the search to a few partitions.

;

3o 00

T 80

28 —

»G 60

= 0

25 40 /

GE

8T 20 —

(SR

o 0 ‘ - : ‘
0 20 40 60 80 100
- ext owner ext/owner

Percent of Queries

(a) CDF of sub-tree partition accesses.

T 7
o 80 —
<
g 60l
) /
s w0
)
g 20
£ o : : : :
0 20 40 60 80 100
— ext owner - ext/owner

Percent of Queries
(b) CDF of partition cache hits.
Figure 12: Index locality. A CDF of the number of partitions
accessed and the number of accesses that were cache hits for

our query set. Searching multiple attributes reduces the number
of partition accesses and increases cache hits.

titions. However, 50% of searches using both ext and
owner together reference fewer than 2% of the parti-
tions, since searching more attributes increases the lo-
cality of the search, thereby reducing the number of par-
titions that must be searched. Figure 12(b) shows a CDF
of cache hit percentages for the same set of queries.
Higher cache hit percentages means that fewer partitions

@ 500 77. g 1 ’—Mﬂ' —

© 400 {—o ¢ 08 —

F 300 C 061w

c o

5 200 £ 04 /

< 100 S 0.2

° o

= 0 T T L 0 T T T
0 1 2 3 1ims 10ms 100ms 1s 10s
Number of Versions Query Overhead
== 1 Version 2 Versions 3 Versions

Figure 13: Versioning overhead. The figure on the left shows
total run time for a set of 450 queries. Each version adds about
10% overhead. On the right, a CDF shows per-query over-
heads. Over 50% of queries have an overhead of 5 ms or less.

are read from disk. Searching owner and ext attributes
together results in 95% of queries having a cache hit per-
centage of 95% or better due to the higher locality ex-
hibited by multi-attribute searches. The higher locality
causes repeated searches in the sub-trees where these
files reside and allows Spyglass to ignore more non-
relevant partitions.

Versioning Overhead. To measure the search overhead
added by partition versioning, we generated 450 queries
based on query 1 from Table 5 with values randomly se-
lected from our Web trace. We included three full days
of incremental metadata changes, and used them to per-
form three incremental index updates. Figure 13 shows
the time required to run our query set with an increasing
number of versions; each version adds about a 10% over-
head to the total run time. However, the overhead added
to most queries is quite small. Figure 13 also shows, via

164

7th USENIX Conference on File and Storage Technologies

USENIX Association

a CDF of the query overheads incurred for each version,
that more than 50% of the queries have less than a Sms
overhead. Thus, it is a few much slower queries that con-
tribute to most of the 10% overhead. This behavior oc-
curs because overhead is typically incurred when incre-
mental indexes are read from disk, which doesn’t occur
once a partition is cached. Since reading extra versions
does not typically incur extra disk seeks, the overhead
for the slower queries is mostly due to reading partitions
with much larger incremental indexes from disk.

5 Related Work

Spyglass seeks to improve how file systems manage
growing volumes of data, which has been an important
challenge and an active area of research for over two
decades. A significant amount of work has looked at
how file systems can improve file naming and organi-
zation by leveraging file attributes. The Semantic File
System [16] utilized file (artribute,value) pairs to dy-
namically construct a namespace based on queries rather
than use a standard hierarchical namespace. Virtual di-
rectories allowed queries to be integrated directly into the
namespace as a directory containing search results. The
Hierarchy and Content (HAC) [18] file system looked
as how Semantic File System concepts could be applied
to a hierarchical namespace, providing users with a new
naming mechanism without requiring them to forgo tra-
ditional hierarchies. These and similar systems [32,36]
focus on how users name and view files, though they do
not focus on how files are actually indexed and searched,
thereby potentially limiting their performance and scal-
ability. While Spyglass does not provide higher level
naming semantics, it is the first to address the challenge
of scalable file metadata indexing and search, allowing it
to potentially be used as the underlying indexing method
for such file systems.

Spyglass focuses on how to exploit file metadata prop-
erties to improve search performance and scalability,
though it is not the first to look at how new indexing
structures improve file retrieval. Inversion [33] used a
general-purpose DBMS as the core file system structure,
rather than traditional file system inode and data layouts.
Inversion used several PostgreSQL tables to store both
file metadata and data, allowing the file system to benefit
from database transaction and recovery support and al-
lowing metadata and data to be queried. Like Spyglass,
Inversion provides ad hoc metadata query functionality,
though it focuses on allowing file systems to leverage
database functionality rather than on query performance.

However, a number of new index designs have been
proposed to improve various aspects of file system
search. GLIMPSE [29] reduced disk space requirements,
compared to a normal full-text inverted index, by main-

taining only a partial inverted index that does not store
the location of every term occurrence. Like Spyglass,
GLIMPSE partitioned the search space, using fixed size
blocks of the file space, which were then referenced by
the partial inverted index. A tool similar to grep was
used to find exact term locations with each fixed size
block. Similarly, Diamond [20] eliminated disk space re-
quirements by using a mechanism to improve the speed
of brute force searches instead of maintaining an index.
A technique called Early Discard allowed files that are
irrelevant to the search to be rejected as early as possi-
ble, helping to reduce the search space. Early Discard
used application-specific “searchlets” to determine when
a file is irrelevant to a given query. Geometric partition-
ing [24] aimed to improve inverted index update perfor-
mance by breaking up the inverted index’s inverted lists
by update time. The most recently updated inverted lists
were kept small and sequential, allowing future updates
to be applied quickly. A merging algorithm created new
partitions as the lists grow over time. Query-based par-
titioning [31] used a similar approach, though it parti-
tioned the inverted index based on file search frequency,
allowing index data for infrequently searched files to be
offloaded to second-tier storage to improve cost.

6 Conclusions and Future Work

As storage systems have become larger, finding and man-
aging files has become increasingly difficult. To address
this problem we presented Spyglass, a metadata search
system that improves file management by allowing com-
plex, ad hoc queries over file metadata. Spyglass in-
troduces several novel indexing techniques that improve
metadata crawling, search, and update performance by
exploiting metadata properties. Our evaluation shows
that Spyglass has up to 1-4 orders of magnitude faster
search performance then existing designs.

We plan on improving Spyglass in the future in a num-
ber of ways. First, we plan on addressing file security
by leveraging hierarchical partitioning to help eliminate
partitions that the user does not have access to from the
search space. Second, we are exploring new interface
and query language designs that allow users to ask com-
plex queries (e.g., “back-in-time” queries) while remain-
ing easy to use. Third, we propose fully distributing Spy-
glass across a cluster by allowing partitions to be repli-
cated and migrated across machines. Fourth, we will ex-
plore how partitioning can be improved by using other
metadata attributes to partition the index. Finally, we are
looking at how Spyglass can be used as the main meta-
data store for a storage system, eliminating many of the
space and performance overheads incurred when used in
addition to the storage system’s metadata store.

USENIX Association

7th USENIX Conference on File and Storage Technologies 165

Acknowledgments

We would like to thank our colleagues in the Storage Sys-
tems Research Center and NetApp’s Advanced Technol-
ogy Group for their input and guidance. Also, we thank
Remzi Arpaci-Dusseau, Stavros Harizopoulos, and Jiri
Schindler for their early feedback and discussions on this
work. Finally, we thank our shepherd Sameer Ajmani
and our anonymous reviewers, whose comments signifi-
cantly improved the quality of this paper.

This work was supported in part by the Depart-
ment of Energy’s Petascale Data Storage Institute under
award DE-FC02-06ER25768 and by the National Sci-
ence Foundation under award CCF-0621463. We thank
the industrial affiliates of the SSRC for their support.

References

(11

(2]

(31

(41

(51

(6]

[7

—

(8]
(91

[10]
[11]
[12]

[13]

[14]

[15]

[16]
[17]

[18]

D. J. Abadi, S. R. Madden, and N. Hachem. Column-Stores vs.
Row-Stores: How different are they really? In SIGMOD 2008.
N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A
five-year study of file-system metadata. In FAST 2007.

S. Ames, C. Maltzahn, and E. L. Miller. QUASAR: Interaction
with file systems using a query and naming language. Technical
Report UCSC-SSRC-08-03, University of California, Santa Cruz,

September 2008.
Apple. Spotlight Server: Stop searching, start find-
ing. http://www.apple.com/server/macosx/

features/spotlight/, 2008.

S. M. Beitzel, E. C. Jensen, A. Chowdhury, D. Grossman, and
O. Frieder. Hourly analysis of a very large topical categorized
web query log. In SIGIR 2004.

M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R. Fogel,
B. C. Kuszmaul, and J. Nelson. Cache-oblivious streaming B-
trees. In Proceedings of the 19th Symposium on Parallel Algo-
rithms and Architectures (SPAA ’07), pages 81-92, 2007.

J. L. Bentley. Multidimensional binary search trees used for asso-
ciative searching. Communications of the ACM, 18(9):509-517,
1975.

B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422-426, 1970.

E. Brewer. Readings in Database Systems, chapter Combining
Systems and Databases: A Search Engine Retrospective. MIT
Press, 4th edition, 2005.

S. Buttcher and C. L. Clarke. A security model for full-text file
system search in multi-user environments. In FAST 2004.

J. R. Douceur and W. J. Bolosky. A large-scale study of file-
system contents. In SIGMETRICS 1999.

Enterprise Strategy Groups. ESG Research Report: storage re-
source management market on the launch pad, 2007.

C. Faloutsos and S. Christodoulakis. Signature files: An access
method for documents and its analytical performance evaluation.
ACM TolS, 2(4), 1984.

Fast, A Microsoft Subsidiary. FAST — enterprise search. http:
//www.fastsearch.com/,2008.

G. R. Ganger and M. F. Kaashoek. Embedded inodes and explicit
groupings: Exploiting disk bandwidth for small files. In USENIX
1997.

D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole, Jr.
Semantic file systems. In SOSP 1991.

Google, Inc. Google enterprise. http://www.google . com/
enterprise/, 2008.

B. Gopal and U. Manber. Integrating content-based access mech-
anisms with hierarchical file systems. In OSDI 1999.

[19]

[20]

(21]

(22]

[23]

[24]

[25]

(26]

[27]

[28]

[29]
[30]

(31]

[35]

[36]
[37]
[38]

(391

[40]
[41]
[42]

[43]

[44]

[45]

D. Hitz, J. Lau, and M. Malcom. File system design for an NFS
file server appliance. In USENIX Winter 1994.

L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satya-
narayanan, G. R. Ganger, E. Riedel, and A. Ailamaki. Diamond:
A storage architecture for early discard in interactive search. In
FAST 2004.

Kazeon. Kazeon: Search the enterprise.
kazeon.com/, 2008.

Kernel.org. inotify official readme. http://www.kernel.
org/pub/linux/kernel/people/rml/inotify/
README, 2008.

S. Khoshafian, G. Copeland, T. Jagodits, H. Boral, and P. Val-
duriez. A query processing strategy for the decomposed storage
model. In /ICDE 1987.

N. Lester, A. Moffat, and J. Zobel. Fast on-line index construction
by geometric partitioning. In CIKM 2005.

A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller. Mea-
surement and analysis of large-scale network file system work-
loads. In USENIX 2008.

A. W. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. L. Miller.
High-performance metadata indexing and search in petascale data
storage systems. Journal of Physics: Conference Series, 125,
2008.
libkdtree++.
org/, 2008.
C. A. Lynch. Selectivity estimation and query optimization in
large databases with highly skewed distribution of column values.
In VLDB 1988.

U. Manber and S. Wu. GLIMPSE: A tool to search through entire
file systems. In USENIX Winter 1994.

Microsoft, Inc. Enterprise search from microsoft. http://
www.microsoft.com/Enterprisesearch/,2008.

S. Mitra, M. Winslett, and W. W. Hsu. Query-based partitioning
of documents and indexes for information lifecycle management.
In SIGMOD 2008.

K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and
M. Seltzer. Provenance-aware storage systems. In USENIX 2006.
M. A. Olson. The design and implementation of the Inversion file
system. In USENIX Winter 1993.

Oracle. Oracle berkeley db. http://www.oracle.com/
technology/products/berkeley-db/index.html,
2008.

J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson,
and B. B. Welch. The Sprite network operating system. [EEE
Computer, 21(2):23-36, Feb. 1988.

Y. Padioleau and O. Ridoux. A logic file system. In USENIX
2003.

Private Customers. On the efficiency of modern metadata search
appliances, 2008.

J. T. Robinson. The K-D-B-tree: a search structure for large mul-
tidimensional dynamic indexes. In SIGMOD 1981.

D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch, R. W.
Carton, and J. Ofir. Deciding when to forget in the Elephant file
system. In SOSP 1999.

H. A. Simon. On a class of skew distribution functions.
Biometrika, 42:425-440, 1955.

C. A. N. Soules, G. R. Goodson, J. D. Strunk, and G. R. Ganger.
Metadata efficiency in versioning file systems. In FAST 2003.
M. Stonebraker and U. Cetintemel. “One Size Fits All”: An idea
whose time has come and gone. In /CDE 2005).

M. Stonebraker, S. Madden, D. Abadi, S. Harizopoulos,
N. Hachem, and P. Helland. The end of an architectural era (it’s
time for a complete rewrite). In VLDB 2007 .

S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and
C. Maltzahn. Ceph: A scalable, high-performance distributed
file system. In OSDI 2006.

K. Wu, E. Otoo, and A. Shoshani. Optimizing bitmap indices
with efficient compression. ACM ToDS, 31(1), 2006.

http://www.

http://libkdtree.alioth.debian.

166

7th USENIX Conference on File and Storage Technologies

USENIX Association

